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Motivation

Many areas of mathematics study solutions of a partial di�erential relation

R:

� Dynamical systems; Planetary motion

� Control theory; Robots

� Geometric structures; Symplectic and contact structures

Often look at particular solutions with special properties:

� Stationary orbit of satellite;

� Trajectory with minimal costs;

H-principle approach: look at the space of all solutions at once.
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Questions

So, given R consider SolpRq as a topological space.

Question:

� Is it non-empty?

� Is it connected?

ñ Care about the shape (i.e. homotopy type) of SolpRq.

ñ homotopy: Allow solutions to be continuously deformed.
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Immersions

Theorem (Smale `59)

Any two immersions of S2 in R3 are regular homotopic.

ñ The space ImmpS2,R3q is connected.

De�nition

A map is an immersion if its di�erential is injective.

This implies:

� Can have self intersections.

� No cusps, creases or pinches.
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Sphere eversion

Corollary

The sphere can be turned inside out (through a regular homotopy).

� Smale said it is possible, not how to do it.

� The circle S1 in R2 cannot be turned inside out.

rot : ImmpS1,R2q Ñ Z.

� Rotation number is invariant under regular homotopy.
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Is there an explicit sphere eversion?

� The naive try does not work due to cusps:
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Hopf's idea

Hopf's strategy: Use a double cover.

� cylinder is double cover of Mobius band.

� Regular homotopic to standard cylinder?
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Hopf's idea

Now the sphere:

� S2 is a double cover of projective plane

P2 :� S2{x � �x .

� Kuiper's immersion of P2:

� double cover of core looks like:

� Philips �gured out how to complete the movie.
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Philip's pictures:
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Philips' Eversion

What happens to the rest of the surface?
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Fun facts

� Many more eversions have been found.

� Only spheres which can be turned inside out are: S0, S2,S6.
� Any (genus g) surface can be turned inside out. For example, torus:
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Jet space

De�nition

The r-th jet space of functions f : M Ñ R

J r pM,Rq :� tr -th order Taylor polynomials of functionsu
� tuples px , y , y 1, y2, . . . q

M basepoint x of the Taylor polynomial

π

� Sections: Any map s : M Ñ J r pM,Rq of the form

x ÞÑ px , s1pxq, . . . , sr pxqq.

� Holonomic sections: Given f we get a section j r f : M Ñ J r pM,Rq
x ÞÑ px , f pxq, f 1pxq, f 2pxq, . . . q.
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Di�erential relations

De�nition

A di�erential relation of order r is a subset R � J r pM,Rnq.

Example

Di�erential equation:

F px , f , 9f q :� 9f pxq3 � 4f pxq � 6x � 11 � 0

induces

RF :� tpx , y , zq | F px , y , zq � 0u � J1pR,Rq � R3

Note RF is closed

Example

J1pS2,R3q � S2 � R3 �M3�2, and

RImmpS2,R3q � tpx , y ,Aq | rankA � 2u.

This is open, and Isomorphism invariant.
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Di�erential relations

� Formal solutions: SolfRpMq :� tsections f : M Ñ Ru.

Dont always exist:

f 2 � 9f 2 � 1 � 0 ⇝ R :� tx2 � y2 � 1 � 0u � J1pR,Rq,
has no formal solutions.

� Solutions: SolRpMq :� tf P Solf pRq | f holonomicu.

There is a natural inclusion:

ιR : SolRpMq Ñ SolfRpMq.

De�nition

R satis�es the h-principle if ιR is an isomorphism (up to homotopy).

� Any formal solution is homotopic to a solution.

� Two solutions are homotopic if and only if they are homotopic as

formal solutions.
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Holonomic approximation

Consider the following (formal) section of J1pR,Rq (we ignore R for now).

Question

Is there a holonomic section approximating it?

ñ No, if 9f   ε then

f p1q � f p0q �

»
1

0

9f dx   ε.



Holonomic approximation

Consider the following (formal) section of J1pR,Rq (we ignore R for now).

Question

Is there a holonomic section approximating it?

ñ No, if 9f   ε then

f p1q � f p0q �

»
1

0

9f dx   ε.



Holonomic approximation

Consider the following (formal) section of J1pR,Rq (we ignore R for now).

Question

Is there a holonomic section approximating it?

ñ No, if 9f   ε then

f p1q � f p0q �

»
1

0

9f dx   ε.



Holonomic approximation

ñ Add more space!

ñ Now we can wiggle



Holonomic approximation

ñ Add more space!

ñ Now we can wiggle



Holonomic approximation

We proved the following:

Theorem (Gromov,Eliashberg-Mishachev)

Suppose we are given:

� A section σ of J r pM,Rq;
� A subspace S of positive codimension in M.

Then, there exists

� A wiggled version rS of S ;

� A holonomic section j r f on a neighborhood of rS , approximating σ.

Suppose now we are given:

� R � J r pM,Rq open,
� σ P Solf pR),

ñ f P SolpRq on a neighborhood of rS .
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Holonomic approximation

Moreover, if M is open (i.e. non-compact or with boundary)
� M � neighborhood of S � neighborhood of rS

ñ if R iso-invariant then f induces solution on M.

Corollary

If M is open, then any open iso-invariant relation R satis�es the h-principle.

Corollary

Immersions S2 Ñ R3 satisfy the h-principle.

� Microextension: S2 � p�ε, εq is open, Rimm is open and iso-invariant.
� Fact: Any two immersions S2 Ñ R3 are formally homotopic.

ñ Smale's result.
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Closed manifolds

If M is closed (compact without boundary) things are more complicated.

� Allowing (simple!) singularities gives �exibility.

Theorem (del Pino, T.)

Any section M Ñ J r pM,Rq (with M open or closed) can be approximated

by a singular holonomic multi-section.
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