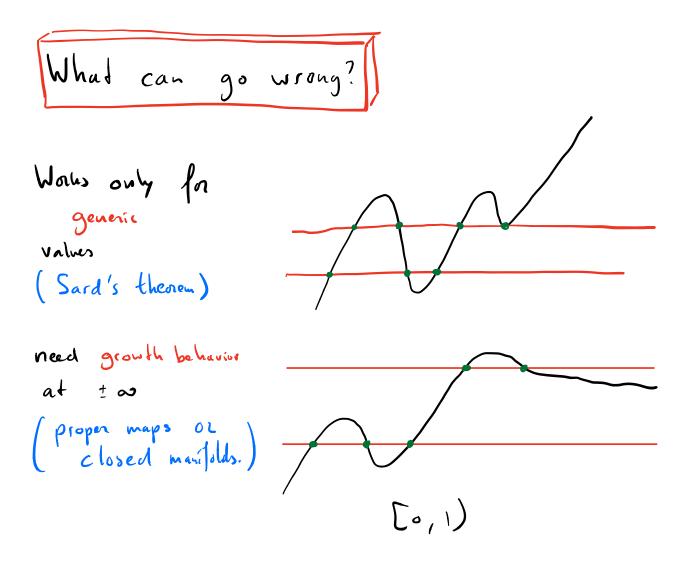
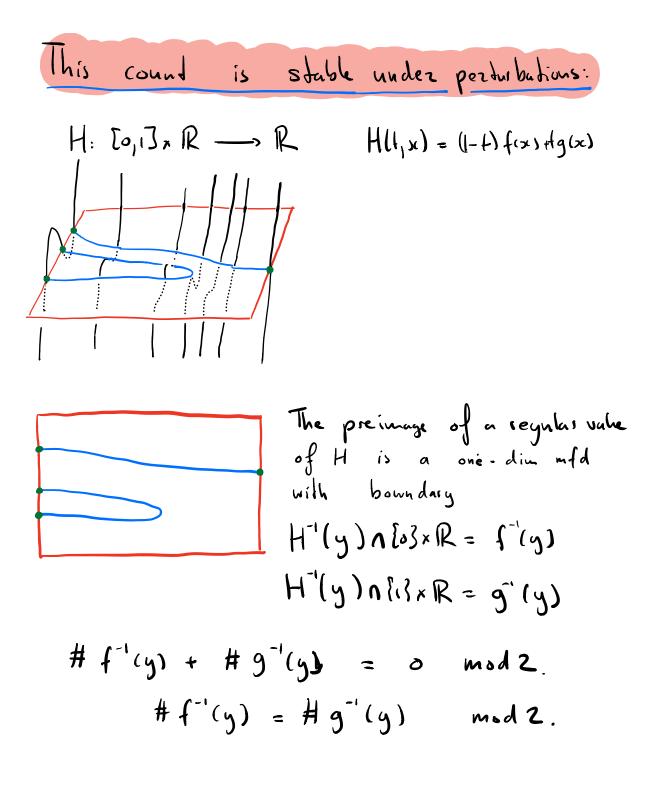


Let's have a break. Question: Why can Joey do this?

.

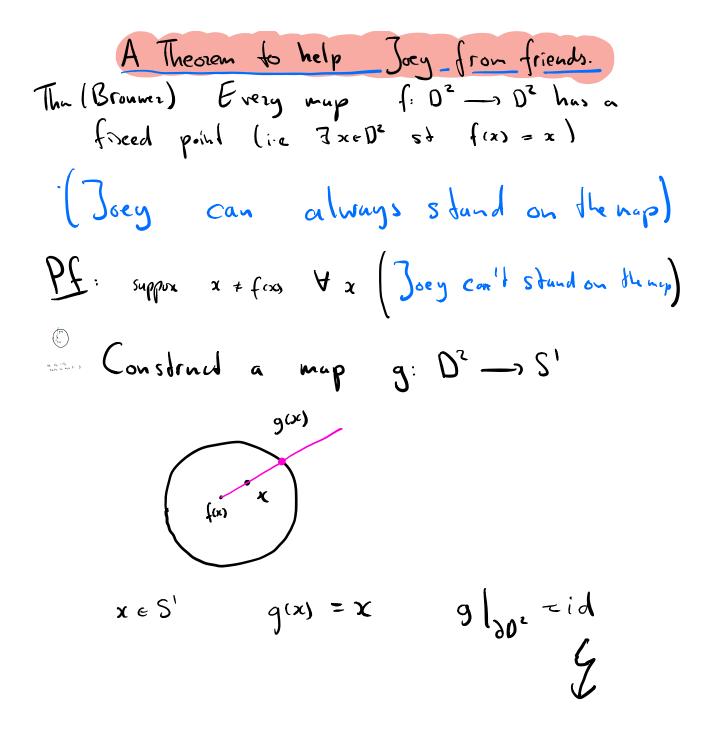


Under these conditions the count node is well-defined



The Mod-2 degree
Let
$$f: M \rightarrow N$$
 smooth map
(proper if M&N non compact)
The mod-2 degree is
 $deg_2(f) = \# f''(y) \mod 2.$
for my regular
Observations:
1) Independent of regular value y
2) In dependent of homology i.e
 $H: Eo_1 J \times M \rightarrow N$
Then $deg_2 f = deg_2 g$ when $f(x) = H(o_1 x)$
 $g(x) = H(i_1 x).$
3) If $deg_2 f = 1$ then f is surjective
 \Rightarrow
 $f(x) = c$ has a solution for all $c \in N$!

-

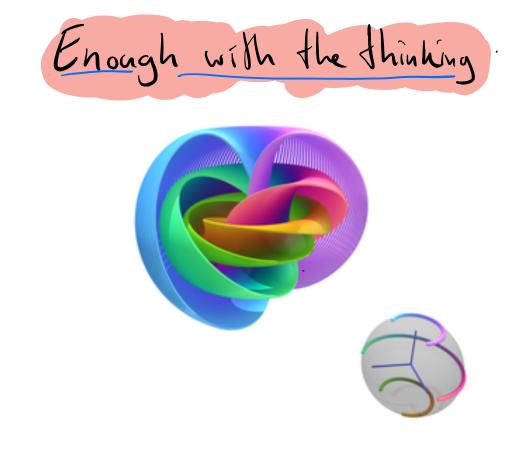


A proof of the fundamental theorem of algebra.
A proof of the fundamental theorem of algebra.
The A non-constant polynomial

$$p(z) = 2^n + a_{n-1} 2^{n-1} + \dots + a_0$$

 $(a_i \in C)$
has a root: $\exists z_0 \in C \ st \ p(z_0) = 0$
PF $p: C \rightarrow C$
 $H: Eo_1 \exists x C \rightarrow C$
 $H(L_1 z) = 2^n + (i-t)a_{n-1} 2^{n-1} + \dots + (i-t)a_0$
 $H(o_1 z) = p(z)$
 $H(c_1, z) = 2^n$
 $f(c_1, z) = 2^n$
 $f(c_1, z) = n$ hold z

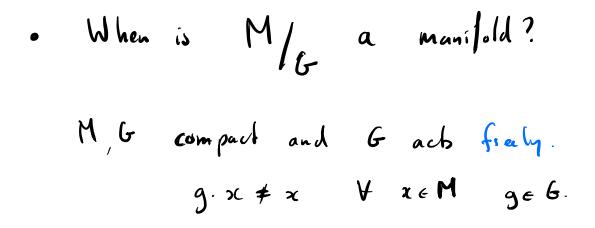
1. (1995) (1997

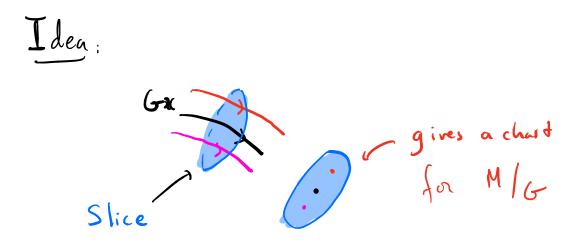


Let's have another break.

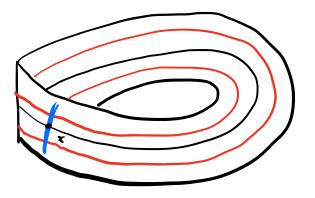
Ex The Hopf fibration

$$z \in S' \subseteq C$$
 acts on $S^{2} \subseteq C^{2}$
via $z(v, w) = (zv, zw)$
 $(dp' \in S^{3}/_{S^{1}}$ parametrices complex lines in C^{2})
 $h : S^{2} \longrightarrow S^{2} \subset C \times R$
 $h(v, w) = (2vw, 1v)^{2} - 1w)^{2}$
• I dentifies $S^{3}/_{S^{1}}$ with the manifold S^{2}
When is $M/_{G}$ a manifold?





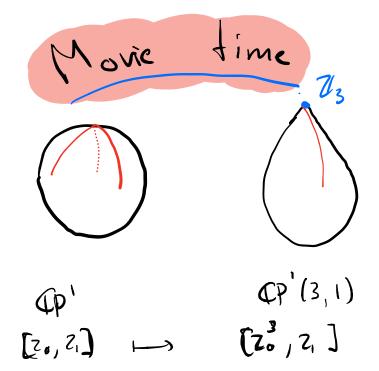
- If $Gx = \{g \in G \mid gx = x\}$ is drivid every orbit close to the orbit through x intervals the orbit unique by.
- Bud there are situations Where Gx = 0

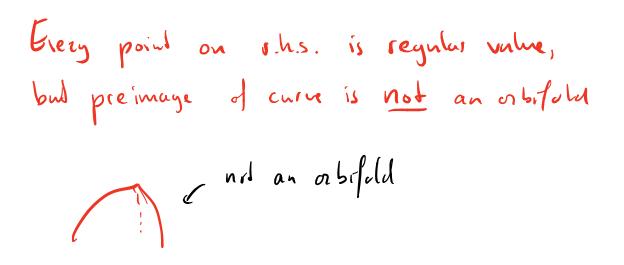


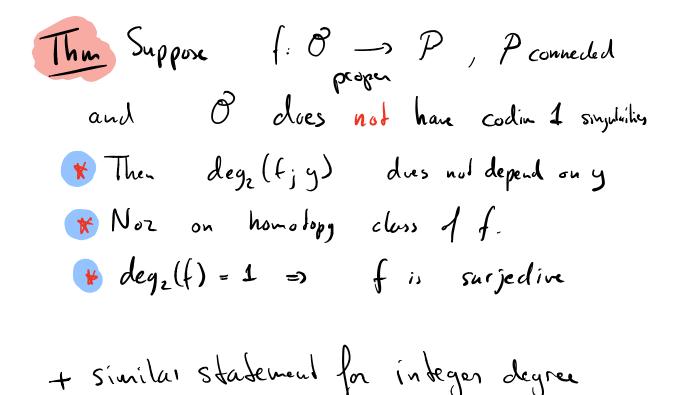
 $G_x = Z_2$

Nearby orbits can intersect the slice multiple times. Gx acts on the slice.

Ex Weighted Hopf action
let
$$P_1 q$$
 coprime (e.g. 283)
Then S' alls on S³ via
 $z(v_1 w) = (z^{p}v_1 z^{q}w)$
This action is 'semi-free:
 $P_1 : S'_{(v_1w_1)} = (z^{p}v_1 z^{q}w) = (v_1w_1)$
 $z^{p} = 1 \quad z^{1}z \quad 1$
 $S'_{(v_1v_2)} = \mathcal{U}_p$
 $z^{p} = 1 \quad z^{1}z \quad 1$
 $S'_{(v_1v_2)} = \mathcal{U}_p$
 $Underlying Space is homeomorphic to
 $S'_1 but \dots$$







Ex
$$Z \cdot (Z_{0}, ..., Z_{n}) = (Z^{1} Z_{0}, ..., Z^{n} Z)$$

9: pair wise coprime Z $CP(q) = S^{2n+1}/S \approx C^{n+1}/C$
 $f_{q} \in C^{n+1}(z_{0}) \longrightarrow C^{n+1}(z_{0})$
 $(q(Z_{0}, ..., Z_{n}) = (Z^{q}_{0}, ..., Z^{q}_{n}))$
 $Z = f_{q}^{q} (Z_{0}, ..., Z_{n}) = (Z^{q}_{0}, ..., Z^{q}_{n})$
 $Z = f_{q}^{q} (Z_{0}, ..., Z_{n}) = (Z^{q}_{0}, ..., Z^{q}_{n})$
 $Z = f_{q}^{q} (Z_{0}, ..., Z_{n}) = (Z^{q}_{0}, ..., Z^{q}_{n})$
 $Z = f_{q}^{q} (Z_{0}, ..., Z_{n}) = (Z^{q}_{0}, ..., Z^{q}_{n})$
 $Z = f_{q}^{q} (Z_{0}, ..., Z_{n}) = (Z^{q}_{0}, ..., Z^{q}_{n})$
 $Z = f_{q}^{q} (Z_{0}, ..., Z_{n}) = (Z^{q}_{0}, ..., Z^{q}_{n})$
 $Z = f_{q}^{q} (Z_{0}, ..., Z_{n}) = (Z^{q}_{0}, ..., Z^{q}_{n})$
 $Z = f_{q}^{q} (Z_{0}, ..., Z_{n}) = (Z^{q}_{0}, ..., Z^{q}_{n})$
 $deg f_{1} = q_{0} ... q_{n}$
 $deg g = f_{1}^{q} = q_{0} ... q_{n}$
 $deg h_{1} = \frac{(1c_{n}(q))^{n}}{q_{1} \cdots q_{n}} c_{0} - c_{n}$.