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CONSERVATIVESYSTEMS:NEWTON, LAGRANGETHAMILTON

1 =1mx -kx#t p
=2 =mx

H =mp +Ekx2,isthat aretheene
->

1 =1 x 2 +Eosx-
p
=2 =x! me =-mgsinxH ==p2-20sx



UNFORTUNATELY...

His constantalong solutions can we guarante this
mix

to the equations ofmotion when performing numerics?

H(p) =2 +2 ->(j) =(i)(i)
GSOLURON

is):(nEE)() ---
.... tMETHOD (NUMERICAL, TIMESTEP h =0.2)

(E) =( ) (i) Ii):=(is)



HOWEVER

second order

integrator
↓

I +E

-2nd order
symplectic
integrator



NOT JUST THEOREICALLY INTERESTING...

In principle, there is also greatpotential for applications



MANY INTERESTING NONCONSERVATIVE SYSTEMS

...
are described by a slight modification of Newton's equations from
the previous slide:

-> external forcing f(t)
x =-YV(x) - c(t)x -It)
me

NEWTON'S GW L viscous damping with ratioo
ASSEEN BEFORE

for example
Cmoment of inertie
& angular velocity

It
1Spin-Orbit model C +d) =Nz(0,7) Nz external torque

Families of perturbed Kepler problems i +1 =F(t,x,x)

and more...



MANY INTERESTING NONCONSERVATIVE SYSTEMS

...
are described by a slight modification of Newton's equations from
the previous slide:

-> external forcing f(t)
x =-YV(x) - c(t)x -It)
me

NEWTON'S GW L viscous damping with ratioo
ASSEEN BEFORE

Do we still have a geometric structure?
-
-> &Do we still have a victional formulation?

mDoes itmake any sense to find the

corresponding geometric integrators?
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NEWTON, LAGRANGETHAMILTON:REPRISE

NEWTON EQUATION HAMILTON HAMILTONIAN FUNCON
in configuration space R

=ONS
in momentum space T*

xi =-xV(x) -SYMPLECTIC
GEOMETRY

71:T* ->A

size ran stramitaTRANSFORM weXn,) = -dH1p,)+Lai
↓

LAGRANGIAN FUNCTION
in state space TQ

CALCULUS OFVARIATONS

Esamenit



SYMPLECTIC GEOMETRY IN A NUTSHELL (SYMPLECTIC FORM)

↓
Smooth manifold M it closed non-degreedifferential 2-form w

=>morphism by Him - R and X:M- TM

a(X+,0) = -dH

Eg. M=TYR, w =dprdg => XH =(Et,-)



SYMPLECTIC GEOMETRY IN A NUTSHELL (SYMPLECTIC FORM)

↓
Smooth manifold M it closed non-degreedifferential 2-form w

=>isomorphism by Him -> R and X:M- TM

a(X+,0) = -dH

· dimM =

2n and locally w=dproa
=>. A constant along itsflow:dH(X) = - w(X,Xn) =0E

· wis invenientalong the flow:2xnw =d(ix,w) + ix+ (dw)
=0



SYMPLECTIC GEOMETRY IN A NUTSHELL (SYMPLECTIC FORM)

↓
Smooth manifold M it closed non-degreedifferential 2-form w

=>isomorphism by Him -> R and X:M- TM

a(X+,0) = -dH

· dimM =

2n and locally w=dproa
=>. A constant along itsflow:dH(X) = - w(X,Xn) =0E

· wis invenientalong the flow:2xnw =d(ix,w) + ix+ (dw)
=0

& 4: M- M SYMPLECTIC MAPif 4
*w =w =eX is symplectie!



SYMPLECTIC INTEGRATORS

A SYMPLECTIC INTEGRATOR IS A NUMERICAL SCHEME

WHOSE DISCRETETIME STEPS ARESYMPLECRC MAPS



SYMPLECTIC INTEGRATORS

A SYMPLECTIC INTEGRATOR IS A NUMERICAL SCHEME

WHOSE DISCRETETIME STEPS ARESYMPLECRC MAPS

VARIATIONAL HAMILTONIAN

Discretization of the Discretization ofHamilton's

Lagrangian leads to equations such thatthe
Discrete action whose ↳isteps are

alterin- Icritical curves are the
discrete time steps



SYMPLECTIC INTEGRATORS

A SYMPLECTIC INTEGRATOR IS A NUMERICAL SCHEME

WHOSE DISCRETETIME STEPS ARESYMPLECRC MAPS

VARIATIONAL e.g. I
disc (9, 9n+1) =1 (qu, ap)

waitautanheadtheene Sise(x) =E, Loisc(Xs-, Xj)
1) DISCRET EULER-LAGRANGE EQUAMONS

Didisc(X), Xsti) + DzLoisc(X,-1, Xi) =0
discrete time steps

i
&DISCRETE LEGENDRETRANSFORME

IMARSDen,West - ActA NUMERIA - 2001 P= -DLdisc (Xj,X;+1)

Pi=De Lais(Xj-1, Xj)



LEAPFROG (OR STORMER-VERE INTEGRATOR

Lois =.((45,*)
jj =-TV(y) -((9,9) =192 - V(q)

o +L(j+,)
H

↳dise(X,y+) =(*-42 - I(V(x +V(x; +1))

=>discrete Euler-lagrange equation+x- V(xje

- E
X +1 =xj +kpj - 2v(xj)

I
LEAPFROG INTEGRATOR FROM

-> MorvarON SLDE

Pj +1 =pj - z(V(xj) +V(x, +1)

MARSDen,West - ActA NUMERIA - 2001



LEAPFROG (OR STORMER-VERE INTEGRATOR

Lois =.((45,*)
jj =-TV(y) -((9,9) =192 - V(q)

o +L(j+,)
H

↳dise(X,y+) =(*-42 - I(V(x +V(x; +1))

=>discrete Euler-lognange equation **- V(xj)=
·

x
+1

=xj +kpj - Ev(xj) (1stord)
->- E 4 + 1 =pj - z(v(x,) +vcx,+)(tast
MARSDen,West - ActA NUMERIA - 2001



HOWEVER

second order

integrator
↓

I +E

-2nd order
symplectic
integrator



HOW ABOUTNOW CONSERVATIVEMECHANICS?

-> external forcing f(t)
i =- V(q) -2t
me

NEWTON'S GW L viscous damping with ratioo
ASSEEN BEFORE



CONTACT HAMILTONIAN SYSTEMS TOTHERESCUE

Forget about time dependence (for now).

SYMPLECMC CMMILTONIAN): M2 with special 2-form w (inducing volumewasGEOMETRY SYSTEMS

CONTACT: mentwith special form y (inducing volume nn(dy))GEOMETRY



CONTACT HAMILTONIAN SYSTEMS TOTHERESCUE

Forget about time dependence (for now).

SYMPLECTC AMILTONIAN): M2 with special 2-form (inducing volumewasGEOMETRY C SYSTEMS

CONTACT: mentwith form(inducing volume (dy))GEOMETRY

Ker(y) cTM maximally non-integrable distribution
of hyperplanes (contact structure)



CONTACT HAMILTONIAN SYSTEMS TOTHERESCUE

Forget about time dependence (for now).

SYMPLECMC CHAMILTONIAN): M2 with special 2-form w (inducing volumewasGEOMETRY SYSTEMS

CONTACT: Men with form(inducing volume (dy))GEOMETRY

Ker(y) cTM

is the

Source:GERMAN WIRIPEDIA



CONTACTHAMILTONIAN VECTOR FIELDS

Saim:the extra space & a contactform is what we need

Say M=R**'=(9, p, 5) and y
=ds-pola

=>morphism bu H:M->R and Xn:M-TM vie

(xx7 = - H and (x, dy =dH + fr



CONTACTHAMILTONIAN VECTOR FIELDS

Saim:the extra space & a contactform is what we need

Say M=R**'=(9, p, 5) and y
=ds-pola

=>morphism bu H:M->R and Xn:M-TM vie

(xx7
=

- H and+
- (at) = -R(H)

where

I E y(R)
=1

V
dy(R1 =02x y =In7 Reeb vector field

=>Ker (n) is preserved
->R =Es



CONTACTHAMILTONIAN VECTOR FIELDS

Saim:the extra space & a contactform is what we need

Say M=R**'=(9, p, 5) and y
=ds-pola

=>isomorphism bu H:M->R and Xn:M-TM vie

-

y(x) = - H and [xn7 =

ty
> ber(n) is preserved

I
& 4:M-M CONTACT MAPif y *y= fy for some fy to



CONTACTHAMILTONIAN VECTOR FIELDS

Say M=R** = (9, p, 5) and y
=ds-poly

=>isomorphism bu H:M -> R and Xn:M-TM vie

&XH7 =
- H and 2xn7 =

94

=>Equations of motion

S=E-Datein



CONTACTHAMILTONIAN VECTOR FIELDS

Saim:the extra space is what we need

Say M=R**'=(9, p, 5) and y
=ds-pola

=>We can setup an isomorphism bu H:M->R and Xn:M-TM vie

&XH7 =
- H and 2xn7 =

94

=>Equations of motion
E.g. H =p2 +Eq +xS

9

j ~Ekq-<p} i =- kq-diS.E-Datein I i =p2 - 492 -S
=pi - H



⑰ De Leon, Valczor-JMP-2019
CONTACTHAMILTONIAN VECTOR FIELDS

Say M =R2* =(9, P, 5) and y
=ds-polq

=>isomorphism bu H:M -> R and Xn:M-TM vie

<XH7 = - H and [xn7 =

9

Energy not
conserved unless

9
*LxxH= 4nH =

-H
=>

Equationswereare
yet,

*H =0 or=0

· (xn(n -(dy)") =(n+1)fry r (dy)"S D
volume preserved only if 2=0

-entiy -(dy)" invenientr =H



SOME EXAMPLES OFCONTACTHAMILTONIAN SYSTEMS

RAYLEIGH DISSIPATION ↳1 +V6,t) +flts
- 2

THERMODYNAMICS (per((s) from 10.1103/PhysRevE.93.022/39

Cosmology IP +V(q) +V s from SLOAN-PhysRevD-2021

GENERIC x =(XxE +MXxS from 10.1703/PhysRevE.56.6620

GRADIENT SYSTEMS x =Xcx) (via FIcx,p) =p. X(x) e projection(
from 10.3390/math9161960



INTERESTING DYNAMICS ofCosmolar Dummy MoDE

H(9,p,s) =2 +y +2 - R

"cosmological contactoscillator"

Invariantsubspaces:
· H =0 (green ellipsoid)
· 3(0,0,5) 1StR3

· 2 fixedpts:attractive north pole &
repelling south pole I

X

2 co-many heteroclinic trajectories
connecting them



DO WEALSO HAVEA VARIATONAL

PRINCIPLE FOR THESESYSTEMS?



HERCLOTEVARIATIONAL PRINCIPE

***Let L:RxTxR - R. Given a nure. 9:[0,5] -> Q,
define S:[0,5] -M by an initial condition 5(0)=s. and the

differential equation (t)=((t, q(t), git), s(t)).

The cove of is a solution to HERGLTEVARIATIONAL PRINCIPL

with initial condition so if every variation ofa that

venishes of the boundary of [0,TS loves the action

s(T) invenient.

⑦First appearence is in Sophus Lie's notes, 60 years before Herglotz paper



HERCLOTEVARIATIONAL PRINCIPE

***Let L:RxTxR - R. Given a nure. 9:[0,5] -> Q,
define S:[0,5] -M by an initial condition 5(0)=s. and the

differential equation (t)=((t, q(t), git), s(t)).

A anreg is a solution if itsatisfies the GENERALZED
EULER-LAGRANGE ERVATIONS

- =025

Furthermore, theflow of the generalized Enter-Lagrange
equation is a CONTACT TRANSFORMANON Wet y

=ds-pda



TWO PICTURES OF CONTACT MECHANICS

VARIATIONAL on HAMILTONIAN
LEGENDRE

ACTION:S =L(p,9,5) TRANSFORM H =H(p,9,5) *ds-poly

GENERALISED E-L EONS CONTACT HAM. EONS

- =e

Erise: check this for the
E abere

damped oscillator



DiSCRE HERGLOTE PRINCIPLE

HERGLOTZ:GIVEN L -
GIVEN A discrete LaGran Glan

CONSIDER ME ODE L, CONSIDER
i =L(q,q,5) SS =((q),9

+1,S))
=>S(T) critical
wrt variations of 9 je0, . . ., N) a 9, qw

and so

PRESCRIBED

-D

·retablelerudubanassa,latierofthete



DISCRETE GENERALIZED EUR-LAGRANGEEaNs

THM (VERMEEREN-BRAVETTi-S,2019)

DeLIX,,X+ ,5s) +DeL(Xs-,Xs, 5-1)(1 +hDeL(X), x-1,5)) =0wirakise



CONTACTVARIATIONAL INTEGRATORS

Established the DISCRET HERDLOTZPRINCIPL and its

DISCRET E-L Earations, the construction of contact

integrators of any order proceed as in symplectic
case.

=>what about the discrete momentum equations?
1) DISCRET EULER-LAGRANGE EQUAMONS

Didisc(X), Xsti) + D2Loisc(X,-1, Xi) =0

&DISCRETE LEGENDRETRANSFORME

Pi
=

-DLdis (Xj,X;+1)

P5+1 =De Lais(Xj,Xj+)



CONTACTVARIATIONAL INTEGRATORS

THM (VERMEEREN-BRAVETTi-S,2019)

The ma

↳prions
here

pi =hDzL(X) -1,X,5x- 1)

↳me
contactmap wrty

=ds-polx

VERMEEREN, BMVETi, SERi-JPhysA-2019
BRAVETi, SERi, EADRA-CEL.MECHDYNAsiro-2020

↳HIGHER ORDER

SIMOES,DEDIEGO, VALCAZAR, DELEoN-J NONUNSa-2021 ALTERNATIVE PROOF



THEDAMPED OSCILLATOR

H =2 +V(q) +15 - LT-L =22 - v(g) - as 7
DISCRETE

LAGRANGIAN
⑰

E-LEONS

(195,95+,5, s,x) =(-9)2a) - as I
-

I+9--V(9-2/9- Vasil)
CONTACT 9 =9 - 1

+k(1 - z)p-1 - v9-1)
LEAPFROG -> E p. =E(V'19.7+V9-INTEGRATOR



THEDAMPED OSCILLATOR

H =2 +V(q) +15 - LT-L =22 - v(g) - as-
CONTACT

LEAPFROG

91=9) +k(1 - z)p - Eva, INTEGRATORE Pat
=EE(r'19,+VI9e -

x
+1

=xj +kpj - Ev(xj) LEAPFROG

E Pj +1 =pj - E((xi) +V(x, +1))
INTEGRATOR



THEDAMPED OSCILLATOR

H =2 +V(q) +cs- LT- L
=22 - V(q) - as-

CONTACT

LEAPFROG

9+ =9 +k(1 - z)p - Eva, INTEGRATORE Pat
=EE(r'19,+VI9e -

↓

0 -

x
+1

=xj +kpj - Ev(xj) LEAPFROG

E Pj +1 =pj - E((xi) +V(x, +1))
INTEGRATOR



HOW DOES IT PERFORM?

-

-



WHAT ABOUT THECONTACT HAMILTONIAN VERSION?

EMPTION:HIp, g,s) =2,4:(9,p,S)
Define

Sach) =eX4... exe ehXy.exte... exe

TIM (BRAVETTi,S, VERMEEREN, ZADRA 2020)

The map Xr> Xx+=S2Ch)X is a contact map
wrt ds-poly and defines a second order numerical

integrator, i.e. Hle** Xr-Sc(h)xnll= 0(h)

Ina(qr,Pr,Si)



WHAT ABOUT THECONTACT HAMILTONIAN VERSION?

EMPTION:HIp, g,s) =2,4:(9,p,S)
Define

Sach) =eX4... exe ehXy.exte... exe

TIM (BRAVETTi,S, VERMEEREN, ZADRA 2020)

The map Xr> Xx+=S2Ch)X is a contact map
wrt ds-poly and defines a second order numerical

integrator, i.e. Hle** Xr-Sc(h)xall-()
Ina I can be explicitly computed!
(qr,Pr,Si) See Bravetti,S,Vermeren,Zack 2020

of orxiv: 2210. 11155



WHAT ABOUT HIGHER ORDERS?

YOsHiA (1990)

5 mEX and [Wj3E CR such that

Si)(h) =Sc(Wmh) Sc (Wm-ih) --. Sz(Woh) --- Se(Wm-ch) Sc(wmh)

is an integrator of order 22

1EMMA(VBSZ2020)

IfS2 is a contact map, also S(m) is a contactmap

Mark For any fixed, neither m and Ewi3 are unique



HOW DO THESEPERFORM?

PERTURBED KEPLER H =1 + sinCtts +49l



HOW DO THESEPERFORM?

PERTURBED KEPLER H =1 + sin(it)s +49



HOW DO THESEPERFORM?

LANE-EMDEN EqvaTiON y"(x) +y'x + y4x) =0, y10) =1,y/10) =0

y +9,y'tp,xxt =7 =2 +2 +E
contact Hamiltonion,

singular at 0

Numerically integrated
solutions with h=0.0
S(0) =0

Error bounded above by 10!
land better in fact -105)



SOMEEXAMPLES (WHERETHEROLOF h is CARIFIED)

PERTURBED KEPLER H =1 + sinCtts +49l

↳5notenoughe



SOMEEXAMPLES (WHERETHEROKOFh is CARIFIED)
LANE-EMDEN CRUDE ESTIMAES compared tocases with explicit solutions

h

n =0

h

n =1

h

n =5



A (CLEAR) ADVANTAGE

Computationally comparable to Euler but with error and structure guarantees
=>stronger guarantees for numerical investigations, e.g.on study resonances in
the SPIN-ORBIT PROBEM (Colios,Efthymiopoulos,Pucacco, Celleti 2017)

Poincaresurfaces for resonantcase for various values of coupling constant to

external body torques (leftclose toconservative, rightnon-conservatives



A (CLEAR) ADVANTAGE

Computationally comparable to Euler but with error and structure guarantees
=>stronger guarantees for numerical investigations, e.g.on study resonances in
the SPIN-ORBIT PROBEM (Colios,Efthymiopoulos,Pucacco, Celleti 2017)

X=0.01

1=0.2

Poincaresurfaces for non-resonant case for various values of coupling constant to

external body torques (leftclose toconservative, rightnon-conservativel



A (CLEAR) ADVANTAGE

Computationally comparable to Euler but with error and structure guarantees
=>stronger guarantees for numerical investigations, e.g.on study resonances in
the SPIN-ORBIT PROBEM (Colios,Efthymiopoulos,Pucacco, Celleti 2017)

Confined chaos:a capture into a 1:1 resonance



AN EXAMPLEAWAY from CELESTIAL MECHANICS

Van der Pol oscillator ContactHamiltonian Lift
x =

- x +E(1 -x2) X H - ps - (1-925 +9

X X = S

j =- x +E(1 - x2)SE yx +a(1-xy (i =pr - 1 +5((r -x4)p - 2xs)

a
the evolution



VAN DER POL LIMIT CYCLE IN THE STIFF REGIME

⊕

⊕ Chen
,
Ramon

,
Stern - Structure Preserving numerical integrators for Hodgkin -Huxley type systems, SIAM ] SCI COMP

2020



FINAL NOTES OF COMPARISON

CONTACT VARIATIONAL INTEGRATORS CONTACT HAMILTONIAN INTEGRATORS

⑦ EXTREMELY STABLE ⊕ EXPLICIT

⊕ HIGHER ACCURACY AT SAME ORDER ⊕ EASY TO IMPLEMENT
WRT HAMILTONIAN

⊕ EXTREMELY FAST AT 6W ORDERS
⊕ WORKS FOR ANY LAGRANGIAN

⊖ GETS SLOW AT HIGH ORDERS ( > 12)

⊖ OFTEN IMPUCLT

⊖ ONLY FOR SPUTIING HAMILTONIAN
⊖ MUST BE RE- IMPLEMENTED ON

A CASE TO CASE BASIS

In both cases
, including time dependence is very eiesy !



CURRENTAND FUTUREWORK

Very active field in rapid growth:
*Hamilton-Jacobi pt of view

*Study of "dissipation lows"
*Aubry -Mother theory
*Numerical methods (statistical mechanics, optimization

and fluid mechanics)
*Singular systems, their dynamicsand a notion of
integrability (work in progress by f.Zodra)

*...



and thanks
for

the patience!



WHAT ABOUT TIMEDependence?

Modulo some technicalities, all proofs go through in the same way...

EXAMPLE:DAMPED, DRIVEN OSCILLATOR iz -TV(q) - 29 + f(t)

L
=22 - v(q) - as +f(t)q -

CONTACT

LEAPFROG

9+1=9) +k(1 - z)p - zv(9,) +2f(t)) INTEGRATOR

E Pa ==-z(V (9,) +V(9,n)()=f())
-

1 +2x


