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Manuel Iñarrea, Vı́ctor Lanchares, Ana I. Pascual, J. Pablo Salas,
Universidad de La Rioja, Spain

Fahimeh Mokhtari, Vrije Universiteit Amsterdam, The Netherlands

Patricia Yanguas Formal Stability of Elliptic Equilibria Wednesday, May 11th 2022 2 / 49



Co-authors
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Lie stability

Hamiltonian system

A Hamiltonian system is a system of 2n ordinary differential equations of the
form

ẋ =
∂H
∂y

, ẏ = −∂H
∂x

,

where (x, y) = (x1, . . . , xn, y1, . . . , yn) and H(x, y) is the Hamiltonian
function.

We consider H(−, x, y) to be an autonomous system.

An equilibrium of the Hamiltonian system satisfies the equations

ẋ =
∂H
∂y

= 0, ẏ = −∂H
∂x

= 0.

The Hamiltonian H can be expanded around the equilibrium as a Taylor series
in the form

H = H2 + H3 + H4 + . . . .

Patricia Yanguas Formal Stability of Elliptic Equilibria Wednesday, May 11th 2022 5 / 49



Lie stability

Configuration: Relative equilibrium

We consider the linearisation of H around the equilibrium to be in the form:

H2 =
ω1

2
(x2

1 + y2
1) + . . .+

ωn

2
(x2

n + y2
n) = ω1I1 + . . .+ ωnIn,

where ωi ∈ R \ {0} and (I, φ) are the classical action-angle variables:

Ii =
ωi

2
(x2

i + y2
i ), φi = arctan

(
yi

xi

)
, i = 1, . . . , n.

The expression in matrix form is: H2 = 1
2 xTA x.

The equilibrium is elliptic when:

all eigenvalues of A are pure imaginary: ±ıωi.

the linearisation matrix A is diagonalisable.
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Lie stability

Equilibrium’s stability

An equilibrium is spectrally stable if all eigenvalues of A are pure
imaginary.

An equilibrium is linearly stable when all eigenvalues are pure imaginary
and A is diagonalisable.

All orbits of the tangent flow are bounded for all forward time.

In particular, an elliptic point is always linearly stable.

An equilibrium z0 is Liapunov stable if for every neighbourhood V of z0,
there exists a neighbourhood U ⊆ V such that z(0) ∈ U ⇒ z(t) ∈ V for
all forward time.
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Lie stability

Formal integrals and normal forms

A function F is a formal first integral of Hamiltonian H when

{F,H} =

n∑

i=1

(
∂F
∂xi

∂H
∂yi
− ∂F
∂yi

∂H
∂xi

)
= 0.

Patricia Yanguas Formal Stability of Elliptic Equilibria Wednesday, May 11th 2022 8 / 49



Lie stability

Goal

Establish a criterion to obtain formal stability for elliptic equilibria in
autonomous Hamiltonian systems with n DOF.

Find positive definite formal integrals of the Hamiltonian.

In case of formal stability, prove that the solutions are bounded near the
equilibrium over exponentially long times.
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Lie stability

Formal stability versus Lie stability

Definition

We say that the origin of R2n is formally stable if there exists a formal series
which is positive definite near the origin and a formal integral for the full
Hamiltonian.

Definition

We say that the origin of R2n is Lie stable if there exists p ≥ 2 such that the
truncated Hamiltonian function in normal form associated toHm is stable (in
the sense of Liapunov) for any (arbitrary) m ≥ p.
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Lie stability

Lie stability features

Lie stability for elliptic equilibria ⇒ formal stability.

Formal stability theory was initiated by Siegel (1954), Moser (1955),
Glimm (1964), Bryuno (1967), etc.

Khazin (1971) introduced the concept of Lie stability, although he
named it as “Birkhoff stability” in the case of elliptic equilibria.

dos Santos and Vidal developed the concept of Lie stability for
resonant systems.
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Lie stability

Key elements for Lie stability

Exploit the algebraic structure of the linear part
of the equation as much as we can.

H2(I) =

d∑

k=1

σkFk(I), where the σk 6= 0 are linear combinations of the ωj,

I = (I1, . . . , In) and Fi are first integrals of H2.

S = {I | Ij ≥ 0, F1(I) = . . . = Fd(I) = 0}

n is the number of DOF of the system.

d is the number of independent first integrals of H2.

s = n− d.

0 ≤ dim S ≤ s.
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Lie stability

Lie stability Theorem

Theorem
D. Cárcamo-Dı́az, J.F. Palacián, C. Vidal, P.Y.

Consider I ∈ S:

(A) Suppose there is an even integer j (with 4 ≤ j ≤ p) such thatHj(I, φ) 6= 0
for |I| small enough and all φ. Then the origin of R2n is Lie stable for the
Hamiltonian function H.

(B) Suppose there is an integer i ≥ 3 such thatHi(I, φ) changes sign for some
I and φ. Then there is no index j (with i < j ≤ p) such thatHj(I, φ) 6= 0 for |I|
sufficiently small.

The case n = 2 corresponds to Cabral & Meyer stability result.
The lower dim S is, the more cases of Lie stable systems we get.
When S = {0} there is always Lie stability.
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Lie stability

Estimates

It is said that vector σ = (σ1, . . . , σd) satisfies a Diophantine condition
when there are fixed constants c > 0 and ν > d − 1 such that

∀k ∈ Zd \ {0} , |k · σ| ≥ c|k|−ν . (1)

Theorem
D.Cárcamo-Dı́az, J.F. Palacián, C. Vidal, P.Y.

If the real analytic Hamiltonian H has the origin of R2n as a formally stable
equilibrium according to hypotheses (A) of the previous theorem, while the
frequency vector σ satisfies the Diophantine condition (1), then there exist
C > 0, K > 0, a > 1 and ε0 > 0 such that for all ε ∈ (0, ε0), and for all x0
with |x0| < ε we have

|x(t, x0)| < a ε2/j for all t with 0 ≤ t ≤ T = C exp
(

K
ε1/(ν+1)

)
.
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Lie stability

Estimates behaviour

The fewer terms are needed to conclude Lie stability (j), the better the
bounds on the solutions are.

The fewer independent formal integrals (d) there are, the larger time T
can be.

When d = 1 the Diophantine condition is not required.
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Lie stability

Formal stability versus Nekhoroshev estimates

Niederman, Bennetin, Fassò, Guzzo, Pöschel,. . . (∼ 1998).

Hj(I) is convex at I = 0 if the quadratic formH4(I) is definite.

It is quasi-convex at I = 0 if H2(I) = H4(I) = 0⇒ I = 0;
It corresponds to Glimm’s criterion on formal stability.

It is directionally quasi-convex at I = 0 if H2 andH4 vanish
simultaneously for Ii ≥ 0 only at I = 0;
It is equivalent to Bryuno’s hypotheses for formal stability (1967);
It is a particular case of Lie stability.

Glimm’s ideas inspired Nekhoroshev to establish the concept of
steepness of a function.

Convexity on S.
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Lie stability

Pros and cons

We can get Lie stability for Hamiltonians that do not satisfy the conditions
needed in Nekhoroshev theory:

When the formal stability is deduced from Hamiltonians depending on
resonant angles.

When the normal form is too degenerate to establish a certain convexity
condition.

There are steep systems for which we cannot conclude Lie stability.
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Applications L4 in the SRCTBP

The system

Motion in the 3D space of an infinitesimal particle under the gravitational
attraction of m1 and m2 that describe circular orbits around their common
centre of mass.

q

q

1 2

3

q

µ
1−µ

m1

2m

3m
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Applications L4 in the SRCTBP

The Hamiltonian

Hamiltonian in rectangular coordinates (x, y, z,X,Y,Z) in a rotating
reference frame:

H =
1
2
(
X2 + Y2 + Z2)+Xy−xY− µ√

(x + µ− 1)2 + y2 + z2
− 1− µ√

(µ+ x)2 + y2 + z2
.

µ = m2
m1+m2

.

Assuming m1 ≥ m2, then µ ∈ (0, 1/2].

m1 is located at (−µ, 0, 0) and m2 is at (1− µ, 0, 0).
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Applications L4 in the SRCTBP

The Lagrange equilibria

The stability of L4 and L5 depends on µ.
Coordinates of L4 and L5:

(
1
2 − µ, ±

√
3

2 , 0, ∓
√

3
2 ,

1
2 − µ, 0

)
, where

the upper sign applies for L4 and the lower sign does for L5.
The stability of both equilibria is the same, so from now on we only refer
to the point L4, although the same conclusions are valid for L5.

2

x

x1
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Applications L4 in the SRCTBP

Taylor expansion

We translate the equilibrium solution L4 to the origin by means of:

x = x1 + 1
2 − µ, y = y1 +

√
3

2 , z = z1,

X = X1 −
√

3
2 , Y = Y1 + 1

2 − µ, Z = Z1.

Then, the Hamiltonian function is expanded in Taylor series around the
origin, constant terms are eliminated and we get a Hamiltonian of the form

H = H2 + H3 + · · ·+ Hj + · · · .
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Applications L4 in the SRCTBP

The Routh critical value

Eigenvalues of the linearization:

±λ1,±λ2,±λ3.

λ1 = iω1, λ2 = iω2, λ3 = iω3 ⇔ 0 < µ < µR = 1
2

(
1−

√
69
9

)

ω1 =

√
1 +

√
1− 27µ+ 27µ2

√
2

, ω2 =

√
1−

√
1− 27µ+ 27µ2

√
2

, ω3 = 1.

0 < ω2 <

√
2

2
< ω1 < 1 and ω2

1 + ω2
2 = 1.

µ ∈ (0, µR)⇔ ω1 ∈
(√

2
2
, 1

)
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Applications L4 in the SRCTBP

The normal form in action-angle variables

H = H2 +H4 + · · · ,
where

H2 = ω1I1 − ω2I2 + ω3I3,

H4 = c200I2
1 + c110I1I2 + c101I1I3 + c020I2

2 + c011I2I3 + c002I2
3

c200 =
ω2

2(124ω4
1−696ω2

1+81)
144(1−2ω2

1)
2(1−5ω2

1)
, c110 = − ω1ω2(64ω2

1ω
2
2+43)

6(1−5ω2
1)(1−2ω2

1)(1−5ω2
2)(1−2ω2

2)
,

c101 =
−8ω1ω

2
2

3(1−2ω2
1)(4−ω2

1)
, c020 =

ω2
1(124ω4

1+448ω2
1−491)

144(1−2ω2
1)

2(1−5ω2
2)
,

c011 =
8ω2ω

2
1

3(1−2ω2
2)(4−ω2

2)
, c002 =

−ω2
1ω

2
2

3(4−ω2
1)(4−ω2

2)
.
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Applications L4 in the SRCTBP

Resonances

The system presents a resonance relation if there exists an integer vector
k = (k1, k2, k3) 6= 0 such that

k1ω1 − k2ω2 + k3ω3 = 0.

Vector k is known as the resonance vector and vector ω = (ω1, ω2, ω3) is
the frequency vector.

Consider the frequency vector ω = (m/n,
√

n2 − m2/n, 1), with
m, n ∈ Z+ and 0 < m < n. Vector (m,

√
n2 − m2, n) is a Pythagorean

triple if and only if n2 − m2 is a perfect square or, equivalently, ω2 ∈ Q.
In this case, we will say that vector ω is associated with a Pythagorean
triple.
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Applications L4 in the SRCTBP

General case

ω1I1 − ω2I2 + I3 = 0; k1ω1 − k2ω2 + k3 = 0; k1, k2, k3 ∈ Z; I1, I2, I3 ≥ 0.

Case ω1 ω2 Fi d s S dim S

(a1) Q Q F = ω1I1 − ω2I2 + I3 1 2
{(

I1,
I3+ω1I1

ω2
, I3

)
| I1, I3 ≥ 0

}
2

(a2) Q R \ Q F1 = ω1I1 + I3
F2 = I2

2 1 {0} 0

(b1) R \ Q R \ Q
F1 = I1
F2 = I2
F3 = I3

3 0 {0} 0

(b2) R \ Q R \ Q
F1 = k2

k1
I1 − I2

F2 = − k3
k1

I1 + I3
2 1

{(
I1,

k2
k1

I1,
k3
k1

I1

)
| I1 ≥ 0

}

{0}
1
0

(b3) R \ Q Q F1 = I1
F2 = −ω2I2 + I3

2 1 {(0, I3/ω2, I3) | I3 ≥ 0} 1
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Applications L4 in the SRCTBP

Case (a1)

ω1 ω2 Fi d s S dim S

Q Q F = ω1I1 − ω2I2 + I3 1 2
{(

I1,
I3+ω1I1

ω2
, I3

)
| I1, I3 ≥ 0

}
2

H4(I) = β1I2
1 + β2I1I3 + β3I2

3

with

β1 =
644ω8

1−1288ω6
1+1185ω4

1−541ω2
1+36

16(1−ω2
1)(1−2ω2

1)
2(1−5ω2

1)(4−5ω2
1)
,

β2 =
ω1(18580ω12

1 −67928ω10
1 +70827ω8

1+30890ω6
1−62113ω4

1+22128ω2
1−8496)

72(1−ω2
1)(1−2ω2

1)2(1−5ω2
1)(3+ω2

1)(4−ω2
1)(4−5ω2

1)
,

β3 =
ω2

1(960ω10
1 −7364ω8

1+29940ω6
1−48219ω4

1+24155ω2
1−444)

144(1−ω2
1)(1−2ω2

1)2(3+ω2
1)(4−ω2

1)(4−5ω2
1)

.
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Applications L4 in the SRCTBP

Summary

Theorem

For 0 < µ < µR the equilibrium point L4 is Lie stable, excepting the unstable
cases µ(1,2,0), µ(1,3,0) and the values µ ∈ (µ1, µ2) leading to a Pythagorean
triple.
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Estimates

|I(t)| < α ε2/j for all t with 0 ≤ t ≤ T = C exp
( E
ε1/(2(ν+1))

)

1 S = {0} ⇒ j = 2, d = 2 or d = 3⇒ ν ≥ 1 or ν ≥ 2.
2 S 6= {0} ⇒ j = 4, d = 2 or d = 1⇒ ν ≥ 1 or ν ≥ 0.

Bounds are sharper when Lie stability is obtained through a low-order normal
form and low number of integrals.
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Contents

1 On Lie stability

2 Applications
Nonlinear stability of the triangular points in the spatial restricted
circular three-body problem
Nonlinear stability of the attitude of a satellite describing a circular orbit
in space
Nonlinear stability of the Levitron
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Applications The satellite

NONLINEAR STABILITY OF THE ATTITUDE OF A SATELLITE

DESCRIBING A CIRCULAR ORBIT IN SPACE

Taken from: Stability, Pointing, and Orientation, Willem Herman Steyn, in J. N. Pelton (ed.), Handbook of Small Satellites, Springer Nature
Switzerland AG 2020.

A.P. Markeev, A.G. Sokol’skii, On the stability of relative equilibrium of a satellite in a circular orbit,
Kosmicheskie Issledovaniya, 13(2), 139–146 (1975); Cosm. Res., 13(2), 119–125 (1975).
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The system

H(x, y, z,X,Y,Z; A,C) with A = a
b , C = c

b and a, b, c being the principal
central moments of inertia.
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The equilibria

There are 24 equilibria: P1, . . . ,P24.

The system enjoys 4 independent discrete symmetries: S1, . . . , S4.

Attitude stability in the spatial satellite problem in a circular orbit 5

the study of their stability can be reduced to the analysis of the equilibria P1,
P2, P3 and P4. The equivalence classes determined by the symmetries appear
in Table 1.

8
>>><
>>>:

P1

P5

...
P11

S4

������!

8
>><
>>:

P1

P6

P8

P10

S1

������!

⇢
P1

P8

S2

������! P1

8
>>><
>>>:

P2

P12

...
P18

S4

������!

8
>><
>>:

P2

P13

P15

P17

S1

������!

⇢
P2

P13

S3

������! P2

8
>><
>>:

P3

P19

P20

P21

S4

������!

⇢
P3

P20

S1

������! P3

8
>><
>>:

P4

P22

P23

P24

S4

������!

⇢
P4

P23

S1

������! P4

Table 1 The equivalence classes of equilibrium points Pj , for j = 1, . . . , 24 under the
symmetries Sj , j = 1, . . . , 4.

In order to determine the stability regions of Pj , we introduce a linear
symplectic change of variables Tj associated to each point Pj , j = 1, . . . , 4, in
the following way:

T1 : (x, y, z, X, Y, Z) �!
�
x, y + ⇡

2 , z, X, Y , Z + 1
A � 1

�
,

T2 : (x, y, z, X, Y, Z) �!
�
x, y + ⇡

2 , z + ⇡
2 , X, Y , Z + 1

A � 1
�
,

T3 : (x, y, z, X, Y, Z) �!
�
x, y, z, X, Y , Z

�
,

T4 : (x, y, z, X, Y, Z) �!
�
x, y, z + ⇡

2 , X, Y , Z
�
.

(2)

Then, we apply Tj to Hamiltonian (1) and translate the equilibrium so-
lution Pj = (Pj1, Pj2, Pj3, Pj4, Pj5, Pj6) to the origin by means of the linear
change of coordinates given by

x = x1 + Pj1, y = y1 + Pj2, z = z1 + Pj3,

X = X1 + Pj4, Y = Y1 + Pj5, Z = Z1 + Pj6,
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Necessary conditions for linear stability of the equilibria

I: Lagrange region:
Liapunov stability

II: Beletskii-DeBra-Delp region

(Beletskii, 1960, 1966)
(Delp, 1958) and (DeBra, Delp, 1961).
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The normal form in action-angle variables

H(I, θ) = H2(I) +H4(I) + · · · ,
where

H2(I) = ω1I1+ω2I2 + ω3I3,

in region I,
H2 = ω1I1−ω2I2 + ω3I3,

in region II and

H4(I) = c200I2
1 + c020I2

2 + c002I2
3 + c110I1I2 + c011I2I3 + c101I1I3.
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Formal integrals and set S

H2 = ω1I1 − ω2I2 + ω3I3

ω1 = ω1
ω3
, ω2 = ω2

ω3
, ω3 = 1.

The number of linearly independent integrals is 1 ≤ d(= 3− s) ≤ 3.

When I ∈ S then H2(I) = 0 and

I2 =
1
ω2

(ω1I1 + I3) ,

with I1, I3 ≥ 0.

k1ω1 − k2ω2 + k3 = 0, with k = (k1, k2, k3) ∈ Z3.

S = {0} =⇒ Lie stability holds from H2.
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Cases

(a1) ω1, ω2 ∈ Q.

(a2) ω1 ∈ Q and ω2 ∈ R \Q.

(b1) ω1, ω2 ∈ R \Q and there are no resonances among the Ij.

(b2) ω1, ω2 ∈ R \Q and there is an integer vector k 6= 0 such that

ω1 =
k2

k1
ω2 −

k3

k1
.

(b3) ω1 ∈ R \Q and ω2 ∈ Q.
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Lie stability regions
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Lie versus Nekhoroshev

6 The union of the regions of quasi-convexity and directional
quasi-convexity corresponds to the region where there is Lie stability for
any value of the frequencies (excluding the resonance lines).
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1 On Lie stability

2 Applications
Nonlinear stability of the triangular points in the spatial restricted
circular three-body problem
Nonlinear stability of the attitude of a satellite describing a circular orbit
in space
Nonlinear stability of the Levitron
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What is a Levitron?

The Levitron top is a device commercialised as a toy that displays the
phenomenon known as “spin-stabilized magnetic levitation”.

Patricia Yanguas Formal Stability of Elliptic Equilibria Wednesday, May 11th 2022 42 / 49

https://www.youtube.com/watch?v=316nJTkhBPs


Applications The Levitron

The model
Two reference frames:

(i) An inertial frame attached to the base, centered at its centre: coordinates
of the c.m. of the top w.r.t. this frame are (x, y, z).

(ii) A non-inertial frame attached to the spinning top: Euler’s angles ϑ, ϕ, ψ
give the top’s orientation w.r.t. the inertial frame.

Two forces: magnetic field created by the magnetic spinning top and the
repelling base magnet and gravity of the top.

The top is axi-symmetric and has inertia tensor diag{Θ1,Θ1,Θ3}.
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Equations of motion

The total energy is conserved:

H =
1

2m
(p2

x + p2
y + p2

z ) +
1

2Θ1

(
p2
ϑ +

(pϕ − pψ sinϑ)2

cos2 ϑ

)
+

p2
ϑ

2Θ3
+ U(r, ϑ, ϕ)

with potential

U(r, ϑ, ϕ) = mgz− µ
(1

2Φ2(z)(xR13 + yR23)

+ (−Φ1(z) + 1
4(x2 + y2)Φ3(z))R33 + . . .

)
,

where R = (Rij) is an orthogonal 3× 3-matrix and

Φk(z) =
dk

dzk V0(z), V0(z) = 2πz
(

1√
W2 + z2

− 1
z

)
.

pψ is an integral of the Hamiltonian system related toH.
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Equilibrium

We require that the gravity and the magnetic forces compensate each other,
preventing the device to be pushed downwards (gravity dominates) or
upwards (magnetic force dominates).

In 6 DOF we get a periodic solution with coordinates

(0 , 0 , zs , σt , 0 , 0 , 0 , 0 , 0 , σΘ3 , 0 , 0) with σ = (µΦ3(zs)/m)1/2,

and zs is the real solution of

−C1 −
6πC2W2z

(W2 + z2)5/2 = 0,

with

C1 = αβγ, C2 =
β

γ
, α = m

g
µ
, β = mµ, γ =

√
Θ3

m
.
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Non-linear stability

Dullin and Fassò apply Nekhoroshev theory:
AN ALGORITHM FOR DQC 583

Figure 4.1: The ellipticity region (light shading) and the DQC region (dark shading) for the
Levitron with disk-shaped base magnet described in the text. The figure on the right is an
enlargement of the rectangle on the left.

F so that B = −∇F . In turn F is determined by the field strength on the
symmetry axis φ(z) by

F (x, y, z) =

∞∑

j=0

(−1)j

(2jj!)2
(x2 + y2)j d2jφ

dz2j
(z).

The pure spinning motion of the top corresponds to the equilibrium of the
reduced system at which all variables except z are zero. The equilibrium value
of z is determined by the condition ∂U/∂z = 0. As it turns out, the ellipticity
is determined by three dimensionless parameteres, which are combinations of
α, β, γ and of the values at the origin of three derivatives of the function φ,
see [4] for details.

After a Taylor expansion about the equilibrium, the Hamiltonian is in a form
that can be subjected to the normal form computation, which produces the
vector Ω and the matrix M . As it turns out, these quantities depend on five
parameters, the previous three plus two more determined by two higher-order
derivatives of φ. A complete investigation of the DQC of the Levitron would
therefore require the scanning of a five-dimensional parameter space.

Here, for simplicity, we consider only a specific case. We assume that the base
magnet has the shape of a disk of radius R, in which case

φ(z) = 2π

(
1 − z√

R2 + z2

)
.(4.1)

Moreover, we fix all structural parameters but the mass m and the spin rate
L, varying correspondingly the momentum of inertia Θ in such a way that γ =√

Θ/m remains constant. Specifically, we consider a situation where R = 0.05
and γ = 0.0075. The resulting ellipticity region in the plane (α, β) is shown
in Figure 4.1. The Birkhoff normal form has been numerically constructed on
a grid within such an ellipticity region, and it has then been tested for DQC
with the algorithm proposed. The result is that there is only a very small region
for which the equilibrium is DQC, see Figure 4.1. Since this region is extremely
small it can probably not be responsible for the observed stability of the Levitron.
Further investigation is needed to explore the five-dimensional parameter space
of magnets.

The region of non-linear stability (dark grey) is very small compared to the
region of linear stability.

Experiments show stability in a much wider region.
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The normal form in action-angle variables #1

Define Ii = (x2
i + y2

i )/2, φi = arctan(yi/xi).

H(I, φ) = H2(I) +H4(I) + · · · ,
where

H2 = −ω1I1 + ω2I2 + ω3I3 + ω4I4 + ω5I5,

or
H2 = −ω1I1 + ω3I3 + ω4I4 + ω5I5,

or
H2 = −ω1I1−ω2I2 + ω3I3 + ω4I4 + ω5I5.

ω1, ω2, ω3, ω4, ω5 > 0
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General case

We have obtained all possibilities for S between {0} and dim S = 4.

There can be resonant cases with dim S = 0.

The most generic situation is S = {0}. Thus, Lie stability extends with
positive measure to the whole region of linear stability.

Patricia Yanguas Formal Stability of Elliptic Equilibria Wednesday, May 11th 2022 48 / 49



Applications The Levitron

Final

THANK YOU FOR YOUR ATTENTION!
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