A brief history of reduction types of algebraic curves

Nirvana Coppola (joint work with I. Bouw, P. Kiliçer, S. Kunzweiler, E. Lorenzo García and A. Somoza)

Vrije Universiteit Amsterdam

22/09/2021

Definition

An algebraic curve is an algebraic variety of dimension one.

Definition

An algebraic curve is an algebraic variety of dimension one. a geometric object given by polynomial equations.

Definition

An algebraic curve is an algebraic variety of dimension one. a geometric object given by polynomial equations.

For example, the following are algebraic curves over \mathbb{R} :

Definition

An algebraic curve is an algebraic variety of dimension one. a geometric object given by polynomial equations.

...while these are the "same" curves, over \mathbb{C}^1 :

¹Complex curves are Riemann surfaces.

Definition

The genus of a curve is the dimension of the space of regular differential 1-forms on it.

Definition

The genus of a curve is the dimension of the space of regular differential 1-forms on it. (For smooth curves), the genus is the number of "holes" that the curve has when seen over \mathbb{C} .

Definition

The genus of a curve is the dimension of the space of regular differential 1-forms on it. (For smooth curves), the genus is the number of "holes" that the curve has when seen over \mathbb{C} .

Definition

The genus of a curve is the dimension of the space of regular differential 1-forms on it. (For smooth curves), the genus is the number of "holes" that the curve has when seen over \mathbb{C} .

Example

The genus-degree formula tells us that if our curve is an irreducible plane curve given by a homogeneous polynomial of degree d, then the genus is:

$$g=\frac{(d-1)(d-2)}{2}.$$

Genus 0 curves

Curves of genus 0 are "easy" to understand. Let X be such a curve, then:

- X is given by a polynomial of degree 1 or 2 (so X is either a line or a conic).
- Over \mathbb{C} , X is a sphere (equivalently, a projective line).
- Over a number field K, if X has a K-rational point, it is the projective line.

Genus 0 curves

Curves of genus 0 are "easy" to understand. Let X be such a curve, then:

- X is given by a polynomial of degree 1 or 2 (so X is either a line or a conic).
- Over \mathbb{C} , X is a sphere (equivalently, a projective line).
- Over a number field K, if X has a K-rational point, it is the projective line.

A rational parametrization of the unit circle: $x = \frac{1-t^2}{1+t^2}$, $y = \frac{2t}{1+t^2}$.

Genus 1 curves

Genus 1 curves (which are smooth, projective and have at least one rational point) are **elliptic curves**. If K is a number field, an elliptic curve E over K can be expressed via a Weierstrass equation, i.e. an equation of the form $y^2 = f(x)$, where $f(x) \in K[x]$ has degree 3. The point at infinity is always a rational point.

 $E: y^2 = (x+1)(x+2)(x+3)$ is an elliptic curve.

Reduction types of elliptic curves – I

Let E be a curve given by a Weierstrass equation over a number field K. Write:

$$E: y^2 = x^3 + ax + b \qquad a, b \in K.$$

Reduction types of elliptic curves – I

Let E be a curve given by a Weierstrass equation over a number field K. Write:

$$E: y^2 = x^3 + ax + b$$
 $a, b \in K$.

Let $\Delta = -16(4a^3 + 27b^2)$ be the **discriminant** of the curve, then $\Delta \neq 0$ if and only if $x^3 + ax + b$ has three different roots over an algebraic closure of K, if and only if E is smooth.

Reduction types of elliptic curves – I

Let E be a curve given by a Weierstrass equation over a number field K. Write:

$$E: y^2 = x^3 + ax + b$$
 $a, b \in K$.

Let $\Delta = -16(4a^3 + 27b^2)$ be the **discriminant** of the curve, then $\Delta \neq 0$ if and only if $x^3 + ax + b$ has three different roots over an algebraic closure of K, if and only if E is smooth. Otherwise, E is either:

Nodal curve: two roots coincide $(a \neq 0)$.

Cuspidal curve: the three roots coincide (a = 0).

Reduction types of elliptic curves – II

Let $\mathfrak p$ be a prime of K (not dividing 2, 3), and let $v_{\mathfrak p}$ be the $\mathfrak p$ -adic valuation. Fix a Weierstrass equation for E where $v_{\mathfrak p}(a), v_{\mathfrak p}(b) \geq 0$ and $v_{\mathfrak p}(\Delta)$ is minimal.

Reduction types of elliptic curves – II

Let $\mathfrak p$ be a prime of K (not dividing 2,3), and let $v_{\mathfrak p}$ be the $\mathfrak p$ -adic valuation. Fix a Weierstrass equation for E where $v_{\mathfrak p}(a), v_{\mathfrak p}(b) \geq 0$ and $v_{\mathfrak p}(\Delta)$ is minimal. The **reduction** of E at $\mathfrak p$ is the curve with equation

$$y^2 = x^3 + \overline{a}x + \overline{b}$$

over the residue field of K at \mathfrak{p} , where $\bar{\cdot}$ is the reduction modulo \mathfrak{p} map.

Reduction types of elliptic curves – II

Let $\mathfrak p$ be a prime of K (not dividing 2,3), and let $v_{\mathfrak p}$ be the $\mathfrak p$ -adic valuation. Fix a Weierstrass equation for E where $v_{\mathfrak p}(a), v_{\mathfrak p}(b) \geq 0$ and $v_{\mathfrak p}(\Delta)$ is minimal. The **reduction** of E at $\mathfrak p$ is the curve with equation

$$y^2 = x^3 + \overline{a}x + \overline{b}$$

over the residue field of K at \mathfrak{p} , where $\bar{\cdot}$ is the reduction modulo \mathfrak{p} map.

Definition

We say E has good reduction if the reduced curve is smooth, multiplicative reduction if it has a node, additive reduction if it has a cusp.

Reduction types of elliptic curves - III

Theorem (Tate '75)

- E has good reduction at \mathfrak{p} iff $\mathfrak{p} \nmid \Delta$.
- E has bad multiplicative reduction iff $\mathfrak{p} \mid \Delta$ and $\mathfrak{p} \nmid a$.
- E has bad additive reduction iff $\mathfrak{p} \mid \Delta$ and $\mathfrak{p} \mid a$.

Reduction types of elliptic curves - III

Theorem (Tate '75)

- E has good reduction at \mathfrak{p} iff $\mathfrak{p} \nmid \Delta$.
- E has bad multiplicative reduction iff $\mathfrak{p} \mid \Delta$ and $\mathfrak{p} \nmid a$.
- E has bad additive reduction iff $\mathfrak{p} \mid \Delta$ and $\mathfrak{p} \mid a$.

An elliptic curve with additive reduction acquires either good or multiplicative reduction at $\mathfrak p$ over a finite extension of K. The other two reduction types are "stable".

Reduction types of elliptic curves – III

Theorem (Tate '75)

- E has good reduction at \mathfrak{p} iff $\mathfrak{p} \nmid \Delta$.
- E has bad multiplicative reduction iff $\mathfrak{p} \mid \Delta$ and $\mathfrak{p} \nmid a$.
- E has bad additive reduction iff $\mathfrak{p} \mid \Delta$ and $\mathfrak{p} \mid a$.

An elliptic curve with additive reduction acquires either good or multiplicative reduction at $\mathfrak p$ over a finite extension of K. The other two reduction types are "stable".

The *j*-invariant of *E* is $j = 1728 \frac{4a^3}{4a^3 + 27b^2}$.

Reduction types of elliptic curves - III

Theorem (Tate '75)

- E has good reduction at \mathfrak{p} iff $\mathfrak{p} \nmid \Delta$.
- E has bad multiplicative reduction iff $\mathfrak{p} \mid \Delta$ and $\mathfrak{p} \nmid a$.
- E has bad additive reduction iff $\mathfrak{p} \mid \Delta$ and $\mathfrak{p} \mid a$.

An elliptic curve with additive reduction acquires either good or multiplicative reduction at $\mathfrak p$ over a finite extension of K. The other two reduction types are "stable".

The *j*-invariant of *E* is $j = 1728 \frac{4a^3}{4a^3 + 27b^2}$.

Fact

E has potentially good reduction if and only if $v_p(j) \geq 0$.

Stable reduction: a definition

We say that an algebraic curve has **semistable** reduction if its only singular points are ordinary double, i.e.

Stable reduction: a definition

We say that an algebraic curve has **semistable** reduction if its only singular points are ordinary double, i.e.

Among the semistable reduction models of a curve, we call stable model one such that each irreducible component of genus 0 intersects the rest of the reduction in at least three points.

Curves of genus > 1

Algebraic curves of genus greater than 1 are either:

- **hyperelliptic**, i.e. 2-sheet covers of the projective line with 2g + 2 ramified points (possibly including the point at infinity): these are given by $y^2 = f(x)$ with $\deg(f) \in \{2g + 1, 2g + 2\}$. Or:
- non-hyperelliptic, in which case they are embedded into the (g-1)-dimensional projective space.

Theorem (Stable Reduction Theorem, Deligne and Mumford '69)

Every curve of genus g>1 admits a unique stable model over a finite extension of the field of definition.

Genus 2 curves

Genus 2 curves are always hyperelliptic, thus given by $C: y^2 = f(x)$, $deg(f) \in \{5,6\}$. The stable reduction types of such curves are 7, namely good reduction and the following bad types:

Genus 2 curves

Genus 2 curves are always hyperelliptic, thus given by $C: y^2 = f(x)$, $deg(f) \in \{5,6\}$. The stable reduction types of such curves are 7, namely good reduction and the following bad types:

The role of the *j*-invariant is played by the four **Igusa** invariants I_2 , I_4 , I_6 , $I_{10} = \Delta$.

Theorem (Liu '93)

- C has good reduction iff $\mathfrak{p} \nmid \Delta$.
- C has potentially good reduction iff i $v_{\mathfrak{p}}(I_{10}) \leq 5 v_{\mathfrak{p}}(I_{2i})$.
- The valuations of I_2, \ldots, I_{10} determine the type of the reduction.

Genus 3 curves

Genus 3 curves are either hyperelliptic or plane quartics.

- The 9 invariants associated to hyperelliptic curves are called Shioda invariants. Reduction types can be determined using the ramification points, in terms of these invariants (by work of Favereau, based on Dokchitser-Dokchitser-Maistret-Morgan).
- The 13 invariants associated to plane quartics are the Dixmier-Ohno invariants. One way to classify these curves is in terms of their automorphism group.

Automorphisms of a plane quartic

Automorphisms of a plane quartic

Picard curves

These are Picard curves: $y^3 = f(x)$, where deg(f) = 4.

This is solved by the work about the reduction of superelliptic curves by Bouw and Wewers, that is, for curves of the shape

$$y^m = f(x)$$
.

Picard curves

These are Picard curves: $y^3 = f(x)$, where deg(f) = 4.

This is solved by the work about the reduction of superelliptic curves by Bouw and Wewers, that is, for curves of the shape

$$y^m = f(x).$$

The main idea for studying hyperelliptic and superelliptic curves is to use a Galois cover $C \to \mathbb{P}^1$ and study the reduction of the ramification points.

Automorphisms of a plane quartic

Ciani quartics

A plane quartic Y with $Aut(Y) \supseteq V_4$ admits a model of the form:

Y:
$$Ax^4 + By^4 + Cz^4 + ay^2z^2 + bx^2z^2 + cx^2y^2 = 0$$
.

Here, the elements of V_4 act on Y as

$$(x:y:z)\mapsto (\pm x:\pm y:z),$$

and the cover $f: Y \to X = Y/V_4$ is Galois, with 6 ramification points.

Ciani quartics

A plane quartic Y with $Aut(Y) \supseteq V_4$ admits a model of the form:

Y:
$$Ax^4 + By^4 + Cz^4 + ay^2z^2 + bx^2z^2 + cx^2y^2 = 0$$
.

Here, the elements of V_4 act on Y as

$$(x:y:z)\mapsto (\pm x:\pm y:z),$$

and the cover $f: Y \to X = Y/V_4$ is Galois, with 6 ramification points.

The ring of invariants of such curves Y is generated by

$$I_3 = ABC$$
, $I_3'' = \Delta(X)$,
 $I_3' = A\Delta_a + B\Delta_b + C\Delta_c$, $I_6 = \Delta_a\Delta_b\Delta_c$,

with
$$\Delta_a = a^2 - 4BC$$
, $\Delta_b = b^2 - 4AC$, $\Delta_c = c^2 - 4AB$.

Stable reduction for covers

The Stable Reduction Theorem has a Galois covers analogue. It states that there exists a unique minimal semistable model of the marked curve X (markings are ramification points), and its special fiber \overline{X} is a tree of projective lines. Every irreducible component of \overline{X} contains at least 3 points which are either marked or singular points of \overline{X} .

Stable reduction for covers

The Stable Reduction Theorem has a Galois covers analogue. It states that there exists a unique minimal semistable model of the marked curve X (markings are ramification points), and its special fiber \overline{X} is a tree of projective lines. Every irreducible component of \overline{X} contains at least 3 points which are either marked or singular points of \overline{X} .

Strategy

- Determine all the possibilities for \overline{X} .
- Use "reverse-engineering" to determine the corresponding stable reductions.
- Make this explicit to classify stable reduction types in terms of I_3 , I_3' , I_3'' , I_6 .

Possible graphs of \overline{X}

Step 1: combinatorial conditions

The action of V_4 on the ramification points is represented by an "acceptable labeling" on the marked curve \overline{X} . For every such labeling, there exists a unique cover $\overline{f}: \overline{Y} \to \overline{X}$ and it determines the stable reduction of Y.

Step 1: combinatorial conditions

The action of V_4 on the ramification points is represented by an "acceptable labeling" on the marked curve \overline{X} . For every such labeling, there exists a unique cover $\overline{f}: \overline{Y} \to \overline{X}$ and it determines the stable reduction of Y.

Let D be the set of marked points and S be the set of singular points on \overline{X} . Let $\sigma_1, \sigma_2, \sigma_3$ denote the non-trivial elements of V_4 . Then, a labeling $I: \overline{D} \cup S \to \{ \mathrm{id}, 1, 2, 3 \}$ satisfies:

- $\#I^{-1}(i) \cap \overline{D} = 2$ for each i.
- On every component $X_i : \prod_{x \in X_i} \sigma_{I(x)} = id$.

An example

An example

An example

Fact

There are 20 such decorated graphs.

We compute the stable reduction of Y from the labeling of \overline{X} as follows.

Theorem

Let Y be a Ciani curve. Then there are 13 different possibilities for the type of stable reduction of Y.

Possible stable bad reductions of a Ciani curve

Thank you for your attention! Questions?