A brief history of reduction types of algebraic curves

Nirvana Coppola

(joint work with I. Bouw, P. Kıliçer, S. Kunzweiler, E. Lorenzo García and A. Somoza)

Vrije Universiteit Amsterdam

22/09/2021
VU

What are algebraic curves?

Definition

An algebraic curve is an algebraic variety of dimension one.

What are algebraic curves?

Definition

An algebraic curve is an algebraic variety of dimension one. a geometric object given by polynomial equations.

What are algebraic curves?

Definition

An algebraic curve is an algebraic variety of dimension one. a geometric object given by polynomial equations.

For example, the following are algebraic curves over \mathbb{R} :

$$
x^{2}+y^{2}=1 \quad y^{2}=(x+1)(x+2)(x+3)
$$

What are algebraic curves?

Definition

An algebraic curve is an algebraic variety of dimension one. a geometric object given by polynomial equations.
...while these are the "same" curves, over \mathbb{C}^{1} :

[^0]
A first numerical invariant: the genus

Definition

The genus of a curve is the dimension of the space of regular differential 1 -forms on it.

A first numerical invariant: the genus

Definition

The genus of a curve is the dimension of the space of regular differentiat 1 -forms on it.(For smooth curves), the genus is the number of "holes" that the curve has when seen over \mathbb{C}.

A first numerical invariant: the genus

Definition

The genus of a curve is the dimension of the space of regular differential 1 -forms on it.(For smooth curves), the genus is the number of "holes" that the curve has when seen over \mathbb{C}.

Genus 0

Genus 1

A first numerical invariant: the genus

Definition

The genus of a curve is the dimension of the space of regular differential 1 -forms on it.(For smooth curves), the genus is the number of "holes" that the curve has when seen over \mathbb{C}.

Example

The genus-degree formula tells us that if our curve is an irreducible plane curve given by a homogeneous polynomial of degree d, then the genus is:

$$
g=\frac{(d-1)(d-2)}{2}
$$

Genus 0 curves

Curves of genus 0 are "easy" to understand. Let X be such a curve, then:

- X is given by a polynomial of degree 1 or 2 (so X is either a line or a conic).
- Over \mathbb{C}, X is a sphere (equivalently, a projective line).
- Over a number field K, if X has a K-rational point, it is the projective line.

Genus 0 curves

Curves of genus 0 are "easy" to understand. Let X be such a curve, then:

- X is given by a polynomial of degree 1 or 2 (so X is either a line or a conic).
- Over \mathbb{C}, X is a sphere (equivalently, a projective line).
- Over a number field K, if X has a K-rational point, it is the projective line.

A rational parametrization of the unit circle: $x=\frac{1-t^{2}}{1+t^{2}}, y=\frac{2 t}{1+t^{2}}$.

Genus 1 curves

Genus 1 curves (which are smooth, projective and have at least one rational point) are elliptic curves. If K is a number field, an elliptic curve E over K can be expressed via a Weierstrass equation, i.e. an equation of the form $y^{2}=f(x)$, where $f(x) \in K[x]$ has degree 3 . The point at infinity is always a rational point.

$$
E: y^{2}=(x+1)(x+2)(x+3) \text { is an elliptic curve. }
$$

Reduction types of elliptic curves - I

Let E be a curve given by a Weierstrass equation over a number field K. Write:

$$
E: y^{2}=x^{3}+a x+b \quad a, b \in K
$$

Reduction types of elliptic curves - I

Let E be a curve given by a Weierstrass equation over a number field K. Write:

$$
E: y^{2}=x^{3}+a x+b \quad a, b \in K
$$

Let $\Delta=-16\left(4 a^{3}+27 b^{2}\right)$ be the discriminant of the curve, then $\Delta \neq 0$ if and only if $x^{3}+a x+b$ has three different roots over an algebraic closure of K, if and only if E is smooth.

Reduction types of elliptic curves - I

Let E be a curve given by a Weierstrass equation over a number field K. Write:

$$
E: y^{2}=x^{3}+a x+b \quad a, b \in K
$$

Let $\Delta=-16\left(4 a^{3}+27 b^{2}\right)$ be the discriminant of the curve, then $\Delta \neq 0$ if and only if $x^{3}+a x+b$ has three different roots over an algebraic closure of K, if and only if E is smooth. Otherwise, E is either:

Nodal curve: two roots coincide ($a \neq 0$).

Cuspidal curve: the three roots coincide $(a=0)$.

Reduction types of elliptic curves - II

Let \mathfrak{p} be a prime of K (not dividing 2,3), and let $v_{\mathfrak{p}}$ be the \mathfrak{p}-adic valuation. Fix a Weierstrass equation for E where $v_{\mathfrak{p}}(a), v_{\mathfrak{p}}(b) \geq 0$ and $v_{\mathfrak{p}}(\Delta)$ is minimal.

Reduction types of elliptic curves - II

Let \mathfrak{p} be a prime of K (not dividing 2,3), and let $v_{\mathfrak{p}}$ be the \mathfrak{p}-adic valuation. Fix a Weierstrass equation for E where $v_{\mathfrak{p}}(a), v_{\mathfrak{p}}(b) \geq 0$ and $v_{\mathfrak{p}}(\Delta)$ is minimal. The reduction of E at \mathfrak{p} is the curve with equation

$$
y^{2}=x^{3}+\bar{a} x+\bar{b}
$$

over the residue field of K at \mathfrak{p}, where ${ }^{-}$is the reduction modulo \mathfrak{p} map.

Reduction types of elliptic curves - II

Let \mathfrak{p} be a prime of K (not dividing 2,3), and let $v_{\mathfrak{p}}$ be the \mathfrak{p}-adic valuation. Fix a Weierstrass equation for E where $v_{\mathfrak{p}}(a), v_{\mathfrak{p}}(b) \geq 0$ and $v_{\mathfrak{p}}(\Delta)$ is minimal. The reduction of E at \mathfrak{p} is the curve with equation

$$
y^{2}=x^{3}+\bar{a} x+\bar{b}
$$

over the residue field of K at \mathfrak{p}, where ${ }^{-}$is the reduction modulo \mathfrak{p} map.

Definition

We say E has good reduction if the reduced curve is smooth, multiplicative reduction if it has a node, additive reduction if it has a cusp.

Reduction types of elliptic curves - III

Theorem (Tate '75)

- E has good reduction at \mathfrak{p} iff $\mathfrak{p} \nmid \Delta$.
- E has bad multiplicative reduction iff $\mathfrak{p} \mid \Delta$ and $\mathfrak{p} \nmid a$.
- E has bad additive reduction iff $\mathfrak{p} \mid \Delta$ and $\mathfrak{p} \mid a$.

Reduction types of elliptic curves - III

Theorem (Tate '75)

- E has good reduction at \mathfrak{p} iff $\mathfrak{p} \nmid \Delta$.
- E has bad multiplicative reduction iff $\mathfrak{p} \mid \Delta$ and $\mathfrak{p} \nmid a$.
- E has bad additive reduction iff $\mathfrak{p} \mid \Delta$ and $\mathfrak{p} \mid$ a.

An elliptic curve with additive reduction acquires either good or multiplicative reduction at \mathfrak{p} over a finite extension of K. The other two reduction types are "stable".

Reduction types of elliptic curves - III

Theorem (Tate '75)

- E has good reduction at \mathfrak{p} iff $\mathfrak{p} \nmid \Delta$.
- E has bad multiplicative reduction iff $\mathfrak{p} \mid \Delta$ and $\mathfrak{p} \nmid a$.
- E has bad additive reduction iff $\mathfrak{p} \mid \Delta$ and $\mathfrak{p} \mid$ a.

An elliptic curve with additive reduction acquires either good or multiplicative reduction at \mathfrak{p} over a finite extension of K. The other two reduction types are "stable".
The j-invariant of E is $j=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}$.

Reduction types of elliptic curves - III

Theorem (Tate '75)

- E has good reduction at \mathfrak{p} iff $\mathfrak{p} \nmid \Delta$.
- E has bad multiplicative reduction iff $\mathfrak{p} \mid \Delta$ and $\mathfrak{p} \nmid a$.
- E has bad additive reduction iff $\mathfrak{p} \mid \Delta$ and $\mathfrak{p} \mid$ a.

An elliptic curve with additive reduction acquires either good or multiplicative reduction at \mathfrak{p} over a finite extension of K. The other two reduction types are "stable".
The j-invariant of E is $j=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}$.

Fact

E has potentially good reduction if and only if $v_{p}(j) \geq 0$.

Stable reduction: a definition

We say that an algebraic curve has semistable reduction if its only singular points are ordinary double, i.e.

Stable reduction: a definition

We say that an algebraic curve has semistable reduction if its only singular points are ordinary double, i.e.

Among the semistable reduction models of a curve, we call stable model one such that each irreducible component of genus 0 intersects the rest of the reduction in at least three points.

Curves of genus > 1

Algebraic curves of genus greater than 1 are either:

- hyperelliptic, i.e. 2 -sheet covers of the projective line with $2 g+2$ ramified points (possibly including the point at infinity): these are given by $y^{2}=f(x)$ with $\operatorname{deg}(f) \in\{2 g+1,2 g+2\}$. Or:
- non-hyperelliptic, in which case they are embedded into the ($g-1$)-dimensional projective space.

Theorem (Stable Reduction Theorem, Deligne and Mumford '69)

Every curve of genus $g>1$ admits a unique stable model over a finite extension of the field of definition.

Genus 2 curves

Genus 2 curves are always hyperelliptic, thus given by $C: y^{2}=f(x)$, $\operatorname{deg}(f) \in\{5,6\}$. The stable reduction types of such curves are 7 , namely good reduction and the following bad types:

Genus 2 curves

Genus 2 curves are always hyperelliptic, thus given by C : $y^{2}=f(x)$, $\operatorname{deg}(f) \in\{5,6\}$. The stable reduction types of such curves are 7 , namely good reduction and the following bad types:

The role of the j-invariant is played by the four Igusa invariants $I_{2}, I_{4}, I_{6}, I_{10}=\Delta$.

Theorem (Liu '93)

- C has good reduction iff $\mathfrak{p} \nmid \Delta$.
- C has potentially good reduction iff $i v_{\mathfrak{p}}\left(I_{10}\right) \leq 5 v_{\mathfrak{p}}\left(I_{2 i}\right)$.
- The valuations of I_{2}, \ldots, I_{10} determine the type of the reduction.

Genus 3 curves

Genus 3 curves are either hyperelliptic or plane quartics.

- The 9 invariants associated to hyperelliptic curves are called Shioda invariants. Reduction types can be determined using the ramification points, in terms of these invariants (by work of Favereau, based on Dokchitser-Dokchitser-Maistret-Morgan).
- The 13 invariants associated to plane quartics are the Dixmier-Ohno invariants. One way to classify these curves is in terms of their automorphism group.

Automorphisms of a plane quartic

Automorphisms of a plane quartic

Picard curves

These are Picard curves: $y^{3}=f(x)$, where $\operatorname{deg}(f)=4$.
This is solved by the work about the reduction of superelliptic curves by Bouw and Wewers, that is, for curves of the shape

$$
y^{m}=f(x)
$$

Picard curves

These are Picard curves: $y^{3}=f(x)$, where $\operatorname{deg}(f)=4$.
This is solved by the work about the reduction of superelliptic curves by Bouw and Wewers, that is, for curves of the shape

$$
y^{m}=f(x)
$$

The main idea for studying hyperelliptic and superelliptic curves is to use a Galois cover $C \rightarrow \mathbb{P}^{1}$ and study the reduction of the ramification points.

Automorphisms of a plane quartic

Ciani quartics

A plane quartic Y with $\operatorname{Aut}(Y) \supseteq V_{4}$ admits a model of the form:

$$
Y: \quad A x^{4}+B y^{4}+C z^{4}+a y^{2} z^{2}+b x^{2} z^{2}+c x^{2} y^{2}=0 .
$$

Here, the elements of V_{4} act on Y as

$$
(x: y: z) \mapsto(\pm x: \pm y: z)
$$

and the cover $f: Y \rightarrow X=Y / V_{4}$ is Galois, with 6 ramification points.

Ciani quartics

A plane quartic Y with $\operatorname{Aut}(Y) \supseteq V_{4}$ admits a model of the form:

$$
Y: \quad A x^{4}+B y^{4}+C z^{4}+a y^{2} z^{2}+b x^{2} z^{2}+c x^{2} y^{2}=0 .
$$

Here, the elements of V_{4} act on Y as

$$
(x: y: z) \mapsto(\pm x: \pm y: z)
$$

and the cover $f: Y \rightarrow X=Y / V_{4}$ is Galois, with 6 ramification points.
The ring of invariants of such curves Y is generated by

$$
\begin{array}{ll}
I_{3}=A B C, & I_{3}^{\prime \prime}=\Delta(X) \\
I_{3}^{\prime}=A \Delta_{a}+B \Delta_{b}+C \Delta_{c}, & I_{6}=\Delta_{a} \Delta_{b} \Delta_{c}
\end{array}
$$

with $\Delta_{a}=a^{2}-4 B C, \Delta_{b}=b^{2}-4 A C, \Delta_{c}=c^{2}-4 A B$.

Stable reduction for covers

The Stable Reduction Theorem has a Galois covers analogue. It states that there exists a unique minimal semistable model of the marked curve X (markings are ramification points), and its special fiber \bar{X} is a tree of projective lines. Every irreducible component of \bar{X} contains at least 3 points which are either marked or singular points of \bar{X}.

Stable reduction for covers

The Stable Reduction Theorem has a Galois covers analogue. It states that there exists a unique minimal semistable model of the marked curve X (markings are ramification points), and its special fiber \bar{X} is a tree of projective lines. Every irreducible component of \bar{X} contains at least 3 points which are either marked or singular points of \bar{X}.

Strategy

- Determine all the possibilities for \bar{X}.
- Use "reverse-engineering" to determine the corresponding stable reductions.
- Make this explicit to classify stable reduction types in terms of $I_{3}, I_{3}^{\prime}, I_{3}^{\prime \prime}, I_{6}$.

Possible graphs of \bar{X}

Step 1: combinatorial conditions

The action of V_{4} on the ramification points is represented by an "acceptable labeling" on the marked curve \bar{X}. For every such labeling, there exists a unique cover $\bar{f}: \bar{Y} \rightarrow \bar{X}$ and it determines the stable reduction of Y.

Step 1: combinatorial conditions

The action of V_{4} on the ramification points is represented by an "acceptable labeling" on the marked curve \bar{X}. For every such labeling, there exists a unique cover $\bar{f}: \bar{Y} \rightarrow \bar{X}$ and it determines the stable reduction of Y.
Let D be the set of marked points and S be the set of singular points on \bar{X}. Let $\sigma_{1}, \sigma_{2}, \sigma_{3}$ denote the non-trivial elements of V_{4}. Then, a labeling $I: \bar{D} \cup S \rightarrow\{$ id $, 1,2,3\}$ satisfies:

- \# $I^{-1}(i) \cap \bar{D}=2$ for each i.
- On every component $X_{i}: \prod_{x \in X_{i}} \sigma_{l(x)}=\mathrm{id}$.

An example

An example

An example

Fact

There are 20 such decorated graphs.

Step 2: reverse engineering (and combinatorics)

We compute the stable reduction of Y from the labeling of \bar{X} as follows.

Step 2: reverse engineering (and combinatorics)

Step 2: reverse engineering (and combinatorics)

Step 2: reverse engineering (and combinatorics)

Theorem

Let Y be a Ciani curve. Then there are 13 different possibilities for the type of stable reduction of Y.

Possible stable bad reductions of a Ciani curve

Thank you for your attention! Questions?

[^0]: ${ }^{1}$ Complex curves are Riemann surfaces.

