From Hamiltonian Mechanics to Symplectic Geometry

Gabriele Benedetti

Mathematics Colloquium, VU Amsterdam

September 8, 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Newtonian Mechanics

Nature and nature's laws lay hid in night; God said "Let Newton be" and all was light. Alexander Pope

Newton's Law of Motion $m\ddot{q}(t)=F(q(t),\dot{q}(t)),\quad q(t)\in\mathbb{R}^3$ point mass. Examples

Central forces: $F(q) = f(|q|)\hat{q}$.

Gravitation: $f(r) = -Cr^{-2}$.

Elasticity: f(r) = -Cr.

"ceiiinosssttuv = Ut tensio, sic vis"

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三里 - のへで

Isaac Newton (1642–1727)

Robert Hooke? (1635-1703)

Closed orbits in central forces

Trajectories of gravitation and elastic force

Joseph Betrand (1873):

If $F(q) = f(|q|)\hat{q}$ is an attractive central force, where all bounded trajectories are closed, then either $f(r) = -Cr^{-2}$ or f(r) = -Cr.

Precession of Mercury's perihelion

Attraction of other planets + General Relativity.

Conservative Systems

Lagrange (*Mécanique Analytique*, 1788) If $F(q) = -\nabla U(q)$, then $m\ddot{q} = F(q, \dot{q}) \iff \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}} = \frac{\partial L}{\partial q}$ (EL) where $L(q, \dot{q}) := \frac{1}{2}m|\dot{q}|^2 - U(q)$ is called Lagrangian. Huygens' principle $H := \frac{1}{2}m|\dot{q}|^2 + U(q)$ is conserved in time.

Christiaan Huygens (1629–1695)

Joseph-Louis Lagrange (1736-1813)

Hamilton Equations

In the space of positions $q \in \mathbb{R}^n$ and momenta $p \in \mathbb{R}^n$, the motion is given by a single function H(q, p) (known as Hamiltonian):

$$\dot{q}=+rac{\partial H}{\partial p}, \quad \dot{p}=-rac{\partial H}{\partial q}.$$
 (Ham)

From Lagrange to Hamilton

- If $H = \frac{1}{2m}|p|^2 + U(q)$, then $p = m\dot{q}$ and (Ham) \iff (EL).
- Hamiltonian formalism is more general than the Lagrangian one. (If H is convex in p can define L by Legendre transformation)
- $\dot{H} = 0.$

William Hamilton (1805–1865)

Louis Legendre (1752–1797)

Hamilton Equations

In the space of positions $q \in \mathbb{R}^n$ and momenta $p \in \mathbb{R}^n$, the motion is given by a single function H(q, p) (known as Hamiltonian):

$$\dot{q}=+rac{\partial H}{\partial p}, \quad \dot{p}=-rac{\partial H}{\partial q}.$$
 (Ham)

From Lagrange to Hamilton

- If $H = \frac{1}{2m}|p|^2 + U(q)$, then $p = m\dot{q}$ and (Ham) \iff (EL).
- Hamiltonian formalism is more general than the Lagrangian one. (If H is convex in p can define L by Legendre transformation)
- $\dot{H} = 0.$

William Hamilton (1805-1865)

Adrien-Marie Legendre (1752–1833), left

Examples of Hamiltonian systems

- 1. Planetary motion (e.g. the 3-body problem);
- 2. Geodesics in curved space (e.g. on a football);
- 3. Charged particle in an electromagnetic potential;
- 4. Predator-prey models and zero-sum evolutionary games.

Hamiltonians 1,2,3 are of the type

$$H(q,p) = \frac{1}{2}|p - A(q)|_g^2 + U(q),$$

with g metric tensor, A vector potential, U scalar potential. Hamiltonian 4 is of the type

$$H(q,p) = \log q + \log p - aq - bp, \qquad a,b > 0.$$

A geometric perspective

Klein (Erlangen Program, 1872)

Geometry is the study of a group of transformations (symmetries) $G = \{\varphi : X \to X\}$ on a space X.

Example

 $X = \mathbb{R}^2$, $G = \{ \text{ rigid motions } \}$ or $G' = \{ \text{ affine transformations } \}$.

Symplectomorphisms

For us: $X = \mathbb{R}^n \times \mathbb{R}^n$, $G = \{\varphi = (Q, P) \mid \varphi \text{ preserves (Ham)}\}.$

 $\begin{cases} \dot{q} = + \frac{\partial H}{\partial p}, \\ \dot{p} = - \frac{\partial H}{\partial q}. \end{cases} \iff \begin{cases} \dot{Q} = + \frac{\partial H}{\partial P}, \\ \dot{P} = - \frac{\partial H}{\partial Q}. \end{cases}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Felix Klein (1849-1925)

Continuous symmetries

Solutions of (Ham) yield the Hamiltonian flow of H

$$\Phi^t_H: \mathbb{R}^{2n} \to \mathbb{R}^{2n}, \quad \Phi^t_H(q(0), p(0)) := (q(t), p(t)), \quad \forall t.$$

• $\Phi_H^t \in G, \forall t. (\Rightarrow G \text{ is infinite-dimensional!})$

Noether Theorem

$$\forall H_1, H_2: \quad H_1 \circ \Phi_{H_2}^t = H_1 \quad \forall t \implies H_2 \circ \Phi_{H_1}^t = H_2 \quad \forall t.$$

"Every continuous symmetry $\Phi_{H_2}^t$ yields a conserved quantity H_2 ."

Example

If *H* is invariant under rotations around an axis \hat{z} , the component $p \cdot \hat{z}$ of momentum is preserved.

Emmy Noether (1883-1935)

Enters symplectic geometry

The symplectic form is the differential two-form

$$\omega = \sum_{i=1}^n \mathrm{d} p_i \wedge \mathrm{d} q_i.$$

• $\varphi \in G \iff \varphi$ preserves ω .

Area measurements If $D_{\gamma}^2 \subset \mathbb{R}^{2n}$ is a disc bounded by a closed curve γ , then

$${\mathcal A}(\gamma):=\int_{D^2_\gamma}\omega$$

is the sum of the areas of the projections of D_{γ}^2 to (q_i, p_i) -planes.

・ロト ・ 同ト ・ ヨト ・ ヨト

Conservation of volume and eternal return

- $\frac{1}{n!}\omega^n = dvol_{2n}$ is the euclidean volume element.
- $\Rightarrow \ \ G \subset G' := \{F : \mathbb{R}^{2n} \to \mathbb{R}^{2n} \mid F \text{ preserves volume } \}.$

Joseph Liouville (1809–1882)

A symplectic cat [Arnold]

• If $D \subset \mathbb{R}^{2n}$ is compact and invariant for Φ_H^t , then almost every trajectory in D returns arbitrarily close to its initial condition.

Henri Poincaré (1854–1912)

Recurrence [Arnold]

Periodic orbits

• $\Sigma := H^{-1}(h) \subset \mathbb{R}^{2n}$ compact, regular energy hypersurface. It is invariant by Φ_{H} . Does it contain closed orbits?

- In general: No. (Ginzburg, 1995)
- If $\Sigma = \partial K$ with K convex body, then Yes! (Weinstein, 1978)

Maupertuis variational principle

 $\gamma \subset \Sigma$ is a closed orbit of $\Phi_H \iff \gamma$ is a stationary point for $\delta \mapsto A(\delta)$ on the space of closed loops $\delta \subset \Sigma$.

Viktor Ginzburg

Alan Weinstein

P. de Maupertuis (1698–1759)

Symplectic vs. volume-preserving

Question

How much more special is a symplectomorphism $\varphi \in G$ than a general volume-preserving map $F \in G'$ for n > 1?

Strategy

Take the euclidean ball $B_a^{2n} := \{(q, p) \mid \pi(|q|^2 + |p|^2) \le a\}$. What can $\varphi(B_a^{2n})$ be? Compare with the infinite cylinder

$$Z_b := B_b^2 imes \mathbb{R}^{2n-2} = \{\pi(q_1^2 + p_1^2) \le b\}.$$

- For a > b we can find $F \in G'$ such that $F(B_a^{2n}) \subset Z_b$.
- Can we find $\varphi \in G$ with same property?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Non-squeezing Theorem

Gromov (1985)

If a>b, then $arphi(B^{2n}_a) \not\subset Z_b$, $\forall \, arphi \in G$. Equivalently,

$$\forall a > 0, \quad \operatorname{vol}_2(\operatorname{Proj}_2[\varphi(B_a^{2n})]) \ge a, \quad \forall \varphi \in G.$$

Symplectic uncertainty principle

If we know total momentum and position up to some error, we cannot find a change of coordinates φ improving our knowledge of momentum and position in a given direction.

Mikhail Gromov (1943–)

2-dim. shadow of a symplectic ball [de Gosson]

How large is the shadow of a symplectic ball? Let 1 < k < n. What do we know about $\operatorname{vol}_{2k}(\operatorname{Proj}_{2k}[\varphi(B_a^{2n})])$? Non-linear squeezing (Abbondandolo–Matveyev, 2013)

For all $\varepsilon > 0$ there exists $\varphi_{\varepsilon} \in G$ with

 $\operatorname{vol}_{2k}\left(\operatorname{Proj}_{2k}[\varphi_{\varepsilon}(B_{a}^{2n})]\right) < \varepsilon.$

Linear non-squeezing (Abbondandolo–B., 2020) If $\varphi \in G$ is C^3 -close to a linear symplectomorphism, then

$$\operatorname{vol}_{2k}\left(\operatorname{Proj}_{2k}[\varphi(B_a^{2n})]\right) \geq \frac{a^k}{k!} = \operatorname{vol}_{2k}(B_a^{2k}).$$

Alberto Abbondandolo

Embedding ellipsoids into balls

For $a \geq 1$, consider the ellipsoid $E_{1,a} \subset \mathbb{R}^4$ given by

$$E_{1,a} = \left\{ \pi(|q_1|^2 + |p_1|^2) + \frac{\pi}{a}(|q_2|^2 + |p_2|^2) \le 1 \right\}.$$

Define $\sigma(a) := \inf \left\{ b > 0 \mid \exists \varphi \in G, \ \varphi(E_{1,a}) \subset B_b^4 \right\} \ge \sqrt{a}.$
McDuff–Schlenk (2012)

For (¹⁷/₆)² ≤ a: σ(a) = √a;
For τ⁴ ≤ a ≤ (¹⁷/₆)²: σ(a) has transition behavior (τ = ^{1+√5}/₂);
For 1 ≤ a ≤ τ⁴: σ(a) is an infinite staircase (inner corners at a = ^{F_{2k+3}}/_{F^{2k+1}} and outer corners at a = ^{F_{2k+5}}/_{F_{2k+1}} accumulating at a = τ⁴). F_k is the k-th Fibonacci number.

Dusa McDuff

Felix Schlenk

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Graph of $\sigma(a)$

The graph of $\sigma(a)$ (in blue) sitting on top of the graph of \sqrt{a} . On the *a*-axis the three different regimes.

Capacities

Definition

A symplectic capacity assigns to every subset $S \subset \mathbb{R}^{2n}$ a number $c(S) \in [0,\infty]$ such that

1.
$$c(S_1) \leq c(S_2), \forall S_1 \subset S_2;$$

2. $c(\varphi(S)) = c(S), \forall S \forall \varphi \in G;$
3. $c(rS) = r^2 c(S), \forall r > 0;$
4. $c(B_a^{2n}) = a = c(Z_a).$

Remark

- By 1. and 2. capacities obstruct symplectic embeddings.
- Gromov's non-squeezing \iff Existence of a capacity.
- Consider ellipsoid $E_{a_1,\ldots,a_n} \subset \mathbb{R}^{2n}$ with $a_1 \leq \ldots \leq a_n$.
 - Then: $B^{2n}(a_1) \subset E_{a_1,\ldots,a_n} \subset Z_{a_1}$.
 - Thus: $c(E_{a_1,\ldots,a_n}) = a_1$ for all capacities c.
- If 0 < c(B_a²ⁿ) ≤ c(Z_a) < +∞ instead of 4., then c is called generalized symplectic capacity.

Capacity against volume

How much do c(S) and $vol_{2n}(S)$ differ for $S \subset \mathbb{R}^{2n}$? Definition: The *c*-systolic ratio of $S \subset \mathbb{R}^{2n}$ is defined by

$$\rho_c(S) := \frac{c(S)^n}{\operatorname{vol}_{2n}(S)}.$$

Note: $\rho_c(E_{a_1,...,a_n}) \leq n!$. Equality $\iff E_{a_1,...,a_n} = B^{2n}(a)$. Viterbo conjecture (2000): If $K \subset \mathbb{R}^{2n}$ is a convex body, then

$$\rho_c(K) \leq n! \qquad \Big[\rho_c(K) = n! \iff \varphi(K) = B^{2n}(a)\Big].$$

Artstein-Avidan–Milman–Ostrover (2008): $\exists C > 0, \rho_c(K) \leq Cn!$.

Claude Viterbo

Capacities from periodic orbits

Ekeland–Hofer–Zehnder (80s)

There exists a capacity c_{EHZ} such that for all convex bodies K:

 $c_{EHZ}(K) := \min \{ A(\gamma) \mid \gamma \text{ closed orbit of (Ham) on } \partial K = H^{-1}(h) \}.$

Question: Does the Viterbo conjecture hold for $c = c_{EHZ}$?

Local systolic inequality (Abbondandolo–B., 2020) Viterbo conjecture is true if $c = c_{EHZ}$ and K is C^3 -close to $B^{2n}(a)$.

Ivar Ekeland

Helmut Hofer

Eduard Zehnder

Playing billiards

Take $\mathcal{K} = \mathcal{K}_1 \times \mathcal{K}_2$ with $\mathcal{K}_1, \mathcal{K}_2 \subset \mathbb{R}^n$ centrally symmetric convex bodies (\mathcal{K}_i is the unit ball of a norm $\|\cdot\|_{\mathcal{K}_i}$).

- The Hamiltonian flow on ∂K is obtained by playing billiard in the table \mathcal{K}_1 using the reflection law of \mathcal{K}_2 .
- $c_{EHZ}(\mathcal{K}_1 \times \mathcal{K}_2) = " \| \cdot \|_{\mathcal{K}_2}$ -length of the shortest closed billiard trajectory in \mathcal{K}_1 ".

Artstein-Avidan–Karasev–Ostrover (2014): $c_{EHZ}(\mathcal{K} \times \mathcal{K}^o) = 4$, where \mathcal{K}^o is the polar dual of \mathcal{K} . As a consequence:

$$\rho_{EHZ}(\mathcal{K} \times \mathcal{K}^o) = \frac{4^n}{\operatorname{vol}_n(\mathcal{K})\operatorname{vol}_n(\mathcal{K}^o)}$$

Billiard game and orbit of length 4.

How round is a convex body?

Let $\mathcal{K} \subset \mathbb{R}^n$ centrally symmetric convex body. Can we measure its pointness or roundness? Let $M(\mathcal{K}) := \operatorname{vol}_n(\mathcal{K}) \operatorname{vol}_n(\mathcal{K}^o)$.

Mahler conjecture (1939):

$$\frac{4^n}{n!}=M([0,1]^n)\leq M(\mathcal{K})\leq M(\mathcal{B}^n).$$

- Blaschke–Santaló (1917, 1949): M(K) ≤ M(Bⁿ) holds. Equality only for K = Bⁿ.
- M([0,1]ⁿ) ≤ M(K) is still open. Viterbo ⇒ Mahler. Proven for n = 2 (Mahler), for n = 3 (Iriyeh–Shibata, 2020).

Kurt Mahler (1903-1988)

(日) (日) (日) (日) (日) (日) (日) (日)