From Hamiltonian Mechanics to Symplectic Geometry

Gabriele Benedetti

Mathematics Colloquium, VU Amsterdam

September 8, 2021

Newtonian Mechanics

Nature and nature's laws lay hid in night; God said "Let Newton be" and all was light. Alexander Pope

Newton's Law of Motion

$$
m \ddot{q}(t)=F(q(t), \dot{q}(t)), \quad q(t) \in \mathbb{R}^{3} \text { point mass. }
$$

Examples

$$
\text { Central forces: } F(q)=f(|q|) \hat{q} .
$$

Gravitation: $f(r)=-\mathrm{Cr}^{-2}$.
Elasticity: $f(r)=-C r$.
"ceiiinosssttuv $=$ Ut tensio, sic vis"

Isaac Newton (1642-1727)

Robert Hooke? (1635-1703)

Closed orbits in central forces

Trajectories of gravitation and elastic force

Joseph Betrand (1873):
If $F(q)=f(|q|) \hat{q}$ is an attractive central force, where all bounded trajectories are closed, then either $f(r)=-\mathrm{Cr}^{-2}$ or $f(r)=-\mathrm{Cr}$.

Precession of Mercury's perihelion
Attraction of other planets + General Relativity.

Conservative Systems

Lagrange (Mécanique Analytique, 1788)
If $F(q)=-\nabla U(q)$, then

$$
\begin{equation*}
m \ddot{q}=F(q, \dot{q}) \quad \Longleftrightarrow \quad \frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}}=\frac{\partial L}{\partial q} \tag{EL}
\end{equation*}
$$

where $L(q, \dot{q}):=\frac{1}{2} m|\dot{q}|^{2}-U(q)$ is called Lagrangian.
Huygens' principle
$H:=\frac{1}{2} m|\dot{q}|^{2}+U(q)$ is conserved in time.

Christiaan Huygens (1629-1695)
Joseph-Louis Lagrange (1736-1813)

Hamilton Equations

In the space of positions $q \in \mathbb{R}^{n}$ and momenta $p \in \mathbb{R}^{n}$, the motion is given by a single function $H(q, p)$ (known as Hamiltonian):

$$
\begin{equation*}
\dot{q}=+\frac{\partial H}{\partial p}, \quad \dot{p}=-\frac{\partial H}{\partial q} . \tag{Ham}
\end{equation*}
$$

From Lagrange to Hamilton

- If $H=\frac{1}{2 m}|p|^{2}+U(q)$, then $p=m \dot{q}$ and (Ham) $\Longleftrightarrow(\mathrm{EL})$.
- Hamiltonian formalism is more general than the Lagrangian one. (If H is convex in p can define L by Legendre transformation)
- $\dot{H}=0$.

Hamilton Equations

In the space of positions $q \in \mathbb{R}^{n}$ and momenta $p \in \mathbb{R}^{n}$, the motion is given by a single function $H(q, p)$ (known as Hamiltonian):

$$
\begin{equation*}
\dot{q}=+\frac{\partial H}{\partial p}, \quad \dot{p}=-\frac{\partial H}{\partial q} . \tag{Ham}
\end{equation*}
$$

From Lagrange to Hamilton

- If $H=\frac{1}{2 m}|p|^{2}+U(q)$, then $p=m \dot{q}$ and (Ham) $\Longleftrightarrow(\mathrm{EL})$.
- Hamiltonian formalism is more general than the Lagrangian one. (If H is convex in p can define L by Legendre transformation)
- $\dot{H}=0$.

Examples of Hamiltonian systems

1. Planetary motion (e.g. the 3-body problem);
2. Geodesics in curved space (e.g. on a football);
3. Charged particle in an electromagnetic potential;
4. Predator-prey models and zero-sum evolutionary games.

Hamiltonians 1,2,3 are of the type

$$
H(q, p)=\frac{1}{2}|p-A(q)|_{g}^{2}+U(q)
$$

with g metric tensor, A vector potential, U scalar potential. Hamiltonian 4 is of the type

$$
H(q, p)=\log q+\log p-a q-b p, \quad a, b>0
$$

1.

2.

4.

A geometric perspective

Klein (Erlangen Program, 1872)

Geometry is the study of a group of transformations (symmetries) $G=\{\varphi: X \rightarrow X\}$ on a space X.

Example
$X=\mathbb{R}^{2}, G=\{$ rigid motions $\}$ or $G^{\prime}=\{$ affine transformations $\}$.
Symplectomorphisms
For us: $X=\mathbb{R}^{n} \times \mathbb{R}^{n}, G=\{\varphi=(Q, P) \mid \varphi$ preserves (Ham) $\}$.

$$
\left\{\begin{array} { l }
{ \dot { q } = + \frac { \partial H } { \partial p } , } \\
{ \dot { p } = - \frac { \partial H } { \partial q } . }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\dot{Q}=+\frac{\partial H}{\partial P}, \\
\dot{P}=-\frac{\partial H}{\partial Q} .
\end{array}\right.\right.
$$

Continuous symmetries

Solutions of (Ham) yield the Hamiltonian flow of H

$$
\Phi_{H}^{t}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}, \quad \Phi_{H}^{t}(q(0), p(0)):=(q(t), p(t)), \quad \forall t .
$$

- $\Phi_{H}^{t} \in G, \forall t .(\Rightarrow G$ is infinite-dimensional! $)$

Noether Theorem

$\forall H_{1}, H_{2}: \quad H_{1} \circ \Phi_{H_{2}}^{t}=H_{1} \quad \forall t \quad \Longrightarrow \quad H_{2} \circ \Phi_{H_{1}}^{t}=H_{2} \quad \forall t$.

> "Every continuous symmetry $\Phi_{H_{2}}^{t}$ yields a conserved quantity $H_{2} . "$

Example

If H is invariant under rotations around an axis \hat{z}, the component $p \cdot \hat{z}$ of momentum is preserved.

[^0]
Enters symplectic geometry

The symplectic form is the differential two-form

$$
\omega=\sum_{i=1}^{n} \mathrm{~d} p_{i} \wedge \mathrm{~d} q_{i}
$$

- $\varphi \in G \Longleftrightarrow \varphi$ preserves ω.

Area measurements
If $D_{\gamma}^{2} \subset \mathbb{R}^{2 n}$ is a disc bounded by a closed curve γ, then

$$
A(\gamma):=\int_{D_{\gamma}^{2}} \omega
$$

is the sum of the areas of the projections of D_{γ}^{2} to $\left(q_{i}, p_{i}\right)$-planes.

Conservation of volume and eternal return

- $\frac{1}{n!} \omega^{n}=\operatorname{dvol}_{2 n}$ is the euclidean volume element.
$\Rightarrow G \subset G^{\prime}:=\left\{F: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n} \mid F\right.$ preserves volume $\}$.

Joseph Liouville (1809-1882)

A symplectic cat [Arnold]

- If $D \subset \mathbb{R}^{2 n}$ is compact and invariant for Φ_{H}^{t}, then almost every trajectory in D returns arbitrarily close to its initial condition.

Henri Poincaré (1854-1912)

Recurrence [Arnold]

Periodic orbits

- $\Sigma:=H^{-1}(h) \subset \mathbb{R}^{2 n}$ compact, regular energy hypersurface. It is invariant by Φ_{H}. Does it contain closed orbits?
- In general: No. (Ginzburg, 1995)
- If $\Sigma=\partial K$ with K convex body, then Yes! (Weinstein, 1978)

Maupertuis variational principle

$\gamma \subset \Sigma$ is a closed orbit of $\Phi_{H} \Longleftrightarrow \gamma$ is a stationary point for $\delta \mapsto A(\delta)$ on the space of closed loops $\delta \subset \Sigma$.

Viktor Ginzburg

Alan Weinstein

P. de Maupertuis (1698-1759)

Symplectic vs. volume-preserving

Question

How much more special is a symplectomorphism $\varphi \in G$ than a general volume-preserving map $F \in G^{\prime}$ for $n>1$?

Strategy

Take the euclidean ball $B_{a}^{2 n}:=\left\{(q, p) \mid \pi\left(|q|^{2}+|p|^{2}\right) \leq a\right\}$.
What can $\varphi\left(B_{a}^{2 n}\right)$ be? Compare with the infinite cylinder

$$
Z_{b}:=B_{b}^{2} \times \mathbb{R}^{2 n-2}=\left\{\pi\left(q_{1}^{2}+p_{1}^{2}\right) \leq b\right\} .
$$

- For $a>b$ we can find $F \in G^{\prime}$ such that $F\left(B_{a}^{2 n}\right) \subset Z_{b}$.
- Can we find $\varphi \in G$ with same property?

Non-squeezing Theorem

Gromov (1985)

If $a>b$, then $\varphi\left(B_{a}^{2 n}\right) \not \subset Z_{b}, \forall \varphi \in G$. Equivalently,

$$
\forall a>0, \quad \operatorname{vol}_{2}\left(\operatorname{Proj}_{2}\left[\varphi\left(B_{a}^{2 n}\right)\right]\right) \geq a, \quad \forall \varphi \in G .
$$

Symplectic uncertainty principle

If we know total momentum and position up to some error, we cannot find a change of coordinates φ improving our knowledge of momentum and position in a given direction.

Mikhail Gromov (1943-)

2-dim. shadow of a symplectic ball [de Gosson]

How large is the shadow of a symplectic ball?
Let $1<k<n$. What do we know about $\operatorname{vol}_{2 k}\left(\operatorname{Proj}_{2 k}\left[\varphi\left(B_{a}^{2 n}\right)\right]\right)$?
Non-linear squeezing (Abbondandolo-Matveyev, 2013)
For all $\varepsilon>0$ there exists $\varphi_{\varepsilon} \in G$ with

$$
\operatorname{vol}_{2 k}\left(\operatorname{Proj}_{2 k}\left[\varphi_{\varepsilon}\left(B_{a}^{2 n}\right)\right]\right)<\varepsilon
$$

Linear non-squeezing (Abbondandolo-B., 2020)
If $\varphi \in G$ is C^{3}-close to a linear symplectomorphism, then

$$
\operatorname{vol}_{2 k}\left(\operatorname{Proj}_{2 k}\left[\varphi\left(B_{a}^{2 n}\right)\right]\right) \geq \frac{a^{k}}{k!}=\operatorname{vol}_{2 k}\left(B_{a}^{2 k}\right)
$$

Alberto Abbondandolo

Embedding ellipsoids into balls

For $a \geq 1$, consider the ellipsoid $E_{1, a} \subset \mathbb{R}^{4}$ given by

$$
E_{1, a}=\left\{\pi\left(\left|q_{1}\right|^{2}+\left|p_{1}\right|^{2}\right)+\frac{\pi}{a}\left(\left|q_{2}\right|^{2}+\left|p_{2}\right|^{2}\right) \leq 1\right\} .
$$

Define $\sigma(a):=\inf \left\{b>0 \mid \exists \varphi \in G, \varphi\left(E_{1, a}\right) \subset B_{b}^{4}\right\} \geq \sqrt{a}$.
McDuff-Schlenk (2012)

- For $\left(\frac{17}{6}\right)^{2} \leq a$:
$\sigma(a)=\sqrt{a} ;$
- For $\tau^{4} \leq a \leq\left(\frac{17}{6}\right)^{2}: \quad \sigma(a)$ has transition behavior $\left(\tau=\frac{1+\sqrt{5}}{2}\right)$;
- For $1 \leq a \leq \tau^{4}$: $\quad \sigma(a)$ is an infinite staircase
(inner corners at $a=\frac{F_{2 k+3}^{2}}{F_{2 k+1}^{2}}$ and outer corners at $a=\frac{F_{2 k+5}}{F_{2 k+1}}$
accumulating at $a=\tau^{4}$). F_{k} is the k-th Fibonacci number.

Dusa McDuff

Felix Schlenk

Graph of $\sigma(a)$

The graph of $\sigma(a)$ (in blue) sitting on top of the graph of \sqrt{a}.
On the a-axis the three different regimes.

Capacities

Definition

A symplectic capacity assigns to every subset $S \subset \mathbb{R}^{2 n}$ a number $c(S) \in[0, \infty]$ such that

1. $c\left(S_{1}\right) \leq c\left(S_{2}\right), \forall S_{1} \subset S_{2}$;
2. $c(\varphi(S))=c(S), \forall S \forall \varphi \in G$;
3. $c(r S)=r^{2} c(S), \forall r>0$;
4. $c\left(B_{a}^{2 n}\right)=a=c\left(Z_{a}\right)$.

Remark

- By 1. and 2. capacities obstruct symplectic embeddings.
- Gromov's non-squeezing \Longleftrightarrow Existence of a capacity.
- Consider ellipsoid $E_{a_{1}, \ldots, a_{n}} \subset \mathbb{R}^{2 n}$ with $a_{1} \leq \ldots \leq a_{n}$.
- Then: $B^{2 n}\left(a_{1}\right) \subset E_{a_{1}, \ldots, a_{n}} \subset Z_{a_{1}}$.
- Thus: $c\left(E_{a_{1}, \ldots, a_{n}}\right)=a_{1}$ for all capacities c.
- If $0<c\left(B_{a}^{2 n}\right) \leq c\left(Z_{a}\right)<+\infty$ instead of 4 ., then c is called generalized symplectic capacity.

Capacity against volume

How much do $c(S)$ and $\operatorname{vol}_{2 n}(S)$ differ for $S \subset \mathbb{R}^{2 n}$?
Definition: The c-systolic ratio of $S \subset \mathbb{R}^{2 n}$ is defined by

$$
\rho_{c}(S):=\frac{c(S)^{n}}{\operatorname{vol}_{2 n}(S)}
$$

Note: $\rho_{c}\left(E_{a_{1}, \ldots, a_{n}}\right) \leq n!$. Equality $\Longleftrightarrow E_{a_{1}, \ldots, a_{n}}=B^{2 n}(a)$.
Viterbo conjecture (2000): If $K \subset \mathbb{R}^{2 n}$ is a convex body, then

$$
\rho_{c}(K) \leq n!\quad\left[\rho_{c}(K)=n!\Longleftrightarrow \varphi(K)=B^{2 n}(a)\right] .
$$

Artstein-Avidan-Milman-Ostrover (2008): $\exists C>0, \rho_{c}(K) \leq C n!$.

Claude Viterbo

Ellipsoids approximating K

Capacities from periodic orbits

Ekeland-Hofer-Zehnder (80s)
There exists a capacity $c_{E H Z}$ such that for all convex bodies K :
$c_{E H Z}(K):=\min \left\{A(\gamma) \mid \gamma\right.$ closed orbit of (Ham) on $\left.\partial K=H^{-1}(h)\right\}$.
Question: Does the Viterbo conjecture hold for $c=c_{E H Z}$?
Local systolic inequality (Abbondandolo-B., 2020)
Viterbo conjecture is true if $c=c_{E H Z}$ and K is C^{3}-close to $B^{2 n}(a)$.

Ivar Ekeland

Helmut Hofer

Eduard Zehnder

Playing billiards

Take $K=\mathcal{K}_{1} \times \mathcal{K}_{2}$ with $\mathcal{K}_{1}, \mathcal{K}_{2} \subset \mathbb{R}^{n}$ centrally symmetric convex bodies (\mathcal{K}_{i} is the unit ball of a norm $\|\cdot\|_{\mathcal{K}_{i}}$).

- The Hamiltonian flow on ∂K is obtained by playing billiard in the table \mathcal{K}_{1} using the reflection law of \mathcal{K}_{2}.
- $c_{E H Z}\left(\mathcal{K}_{1} \times \mathcal{K}_{2}\right)="\|\cdot\|_{\mathcal{K}_{2}}$-length of the shortest closed billiard trajectory in $\mathcal{K}_{1}{ }^{\prime \prime}$.

Artstein-Avidan-Karasev-Ostrover (2014): $c_{E H Z}\left(\mathcal{K} \times \mathcal{K}^{\circ}\right)=4$, where \mathcal{K}° is the polar dual of \mathcal{K}. As a consequence:

$$
\rho_{E H Z}\left(\mathcal{K} \times \mathcal{K}^{0}\right)=\frac{4^{n}}{\operatorname{vol}_{n}(\mathcal{K}) \operatorname{vol}_{n}\left(\mathcal{K}^{\circ}\right)}
$$

Billiard game and orbit of length 4.

How round is a convex body?

Let $\mathcal{K} \subset \mathbb{R}^{n}$ centrally symmetric convex body. Can we measure its pointness or roundness? Let $M(\mathcal{K}):=\operatorname{vol}_{n}(\mathcal{K}) \operatorname{vol}_{n}\left(\mathcal{K}^{0}\right)$.
Mahler conjecture (1939):

$$
\frac{4^{n}}{n!}=M\left([0,1]^{n}\right) \leq M(\mathcal{K}) \leq M\left(B^{n}\right)
$$

- Blaschke-Santaló $(1917,1949): M(\mathcal{K}) \leq M\left(B^{n}\right)$ holds. Equality only for $\mathcal{K}=B^{n}$.
- $M\left([0,1]^{n}\right) \leq M(\mathcal{K})$ is still open. Viterbo \Rightarrow Mahler.

Proven for $n=2$ (Mahler), for $n=3$ (Iriyeh-Shibata, 2020).

Kurt Mahler (1903-1988)

[^0]: Emmy Noether (1883-1935)

