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Thy hyperbolic plane
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Hyperbolic geometry was discovered and developed 150–200 years ago by

many scientist (Beltrami, Bolyai, Gauss, Lobachevsky, Klein, Taurinus...),

after around two thousend years of attempts to deduce Euclid’s fifth axiom

from the first four.

Some properties of the hyperbolic plane are:

1 Given a hyperbolic geodesic and a point outside of it, there are infinitely

many geodesics that pass through the latter and are parallel to the

former;

2 it has several models: the Poincaré disc D, the upper half plane U, the

hyperboloid, the Beltrami-Klein disc;

3 for D y U:

D ✓ C, U ✓ C;

the unit circle S
1
functions as a set of points at infinity for D, whereas

R := R [ {1} plays such role for U;

the hyperbolic geodesics are the segments of Euclidean circles that are

perpendicular to S
1
or R, respectively;

the hyperbolic circles are precisely the Euclidean circles that are fully

contained in D or U, respectively.
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Theorem
For D and U, the group of orientation-preserving isometries is precisely the

group of Riemann surface automorphisms of C := C [ {1} that preserve

D and U, respectively. That is,

Iso+(D) = {⌫ 2 Mob(C) | ⌫(D) = D} = PSU1,1

Iso+(U) = {⌫ 2 Mob(C) | ⌫(U) = U} = PSL2(R)

Theorem

Given two ordered triples of distinct points of C, say (z1, z2, z3) and

(w1, w2, w3), there exists exactly one Möbius transformation ⌫ 2 Mob(C)
such that

⌫(z1) = w1,

⌫(z2) = w2

and ⌫(z3) = w3.
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Teichmüller space
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Definition
An ideal polygon in D or U is an h-convex polygon whose vertices are points

at infinity.

Observation

Drawing an ideal polygon with n vertices/sides amounts to choosing a set

of n points from S
1
or R.

Definition
An ideal polygon with well-ordered vertices is an ordered tuple v =
(v1, . . . , vn) of points that appear in v in the clockwise sense of S

1
.
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Observation

Any given ideal polygon P with n vertices/sides underlies exactly n ideal

polygons with well-ordered vertices, one just has to choose a vertex of P
and designate it as the first vertex.

Question
Take an Euclidean polygon Cn with n vertices w1, . . . , wn, ordered in the

clockwise sense. How many esencially distinct hyperbolic metrics can we

impose on Cn that make it an ideal polygon (with well-ordered vertices)?
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Definition

The Teichmüller space of (Cn, w1) is

T (Cn, w1) := {v | v is an ideal polygon with n well-ordered vertices}/ Iso+(H)

Theorem

T (Cn, w1) ⇠= R
n�3
>0
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Definition

The decorated Teichmüller space of (Cn, w1) is

eT (Cn, w1) := {(v,h) | v = (v1, . . . , vn) is an ideal polygon

with n well-ordered vertices,

h = (h1, . . . , hn) is an n-tuple of horocycles,

with hj based at vj}/ Iso+(H)

Theorem
eT (Cn, w1) ⇠= R

2n�3
>0

Question

How to paremeterize eT (Cn, w1) in such a way that the 2n� 3 parameters

have the same nature?
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Observation

Fix a combinatorial diagonal (j, k), j < k, of (Cn, w1). For each
v 2 T (Cn, w1), (j, k) induces a hyperbolic geodesic [vj , vk]H connecting vj
and vk.
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Definition (Penner ˜2004)

Given any combinatorial diagonal (j, k), j < k, of Cn, the lambda length

of (v,h) = ((v1, . . . , vn), (h1, . . . , hn)) with respect to (j, k) as

�(j,k)(v,h) :=
p
e±`,

where:
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Thus, for each diagonal (j, k), j < k, of Cn, we have a function

�(j,k) : eT (Cn, w1) ! R>0 ✓ R

Theorem (Penner ˜2004)

For any given combinatorial triangulation T of Cn (including in T the n
boundary segments), the lambda lengths with respect to the diagonals be-

longing to T yield a bijection (actually, a di↵eomorphism)

�T : eT (Cn, w1) ! R
2n�3
>0

(v,h) 7! (�(j,k)(v,h))(j,k)2T .

Example
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Theorem (Penner ˜2004)

�(1,3)�(2,4) = �(1,2)�(3,4) + �(1,4)�(2,3)

Example

�(2,4) =
�(1,2)�(3,4)+�(1,4)�(2,3)

�(1,3)
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Theorem (Fock-Goncharov, Fomin-Shapiro-Thurston,
Fomin-Thurston, Gekhtman-Shapiro-Vainshtein, Penner)

All of the above remains true if instead of (Cn, w1) one takes a surface with

marked points.
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Cluster algebras
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The starting point is a pair (Q,x) consisting of a 2-acyclic quiver Q with

vertices 1, . . . , n, and an n-tuple x = (x1, . . . , xn) algebraically independent
over the ground field F . Any such pair is referred to as a seed, x is the

cluster of the seed, the elements x1, . . . , xn are the cluster variables of the

seed.

Definition (Sergey Fomin, Andrei Zelevinsky, ˜2002)

Given a seed (Q,x) and a vertex k of Q, the mutation of (Q,x) with
respect to k is the seed µk(Q,x) := (µk(Q), µk(x)), where:

(Quiver mutation in 3 steps)

1 for each pair j ! k ! i in Q, add
a a new arrow j ! i;

2 reverse the arrows incident to k;

3 remove oriented 2-cycles.

Result =: µk(Q)

(Cluster mutation)

µk(x) := (x1, . . . , xk�1, x
0
k, xk+1, . . . , xn)

x0
k :=

Q
j!k xj +

Q
k!i xi

xk
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Example (Quiver mutation)

Example (Seed mutation (:= quiver mutation + cluster mutation))
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Definition (Fomin-Zelevinsky ˜2002)

The cluster algebra associate to the seed (Q,x) is the F -algebra generated

by all the cluster variables that appear in the seeds obtained by applying

arbitrary mutation sequences to (Q,x).

Theorem (Penner ˜2004, Fomin-Thurston 2008–2012)

The lambda length coordinate ring of the decorated Teichmüller space

eT (Cn, w1) is a cluster algebra over F = R.

Theorem (Fomin-Thurston, 2008–2012)

More generally, for any surface with marked points, the lambda length

coordinate ring of its decorated Teichmüller space is a cluster algebra

over F = R.
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Bipartite graphs and perfect matchings
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Musiker-Schi✏er-Williams: reverse origami  bipartite graph G(⌧, �).
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Theorem (Musiker-Schi✏er-Williams, ˜2011)

For any combinatorial triangulation T or (Cn, w1) and any diagonal � /2 T :

�� =

P
P �(P )

mono(T, �)

where the sum runs over all perfect matchings P of G(T, �).
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Representations of quivers
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Definition
A representation M of a quiver Q assigns a C-vector space Mj to each

vertex j, and a C-linear transformation Ma : Mj ! Mk to each arrow

a : j ! k.

Each triangulation T has an associated quiver Q(T ). It is possible to asso-

ciate to � a representation M(T, �) of Q(T ).
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Thank you!
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