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Coupled Oscillator Networks

Clocks Brain Power grids
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Coupled Metronomes are a Network Dynamical Systems

https://www.youtube.com/watch?v=T58lGKREubo
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Network Dynamical Systems

Network of oscillatory units: 2
⇢

, , . . .

�

Network structure (‘topology’):
Who interacts with whom?

Network interaction:
How does one oscillator influence
the other?

Network dynamics:
Collective dynamics of all nodes.

Q: How do structure and interactions shape the network dynamics?
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From Oscillators to Phase Oscillators

Weakly coupled nonlinear oscillators with state xk 2 RQ

ẋk = Fk(xk) + "
NX

j=1

Gkj(xj , xk).

#
Phase reduction, phase response curve (PRC) Z (�), interactions hkj(t)

#
Average over fast oscillations

#
(Averaged) Phase oscillator network with state ✓k 2 T = R/2⇡Z

✓̇k = !k +
NX

j=1

gkj(✓j � ✓k)

Interaction: Coupling functions gkj . Kuramoto model with gkj = sin.

Ashwin, Coombes, Nicks (2016). J Math Neuro, 6(1), 2.
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Modular Networks

1. Population

2. Populations

3. Populations
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Phase Reduction in Action

Consider N symmetric oscillators with zk 2 C close to a Hopf bifurcation

żk = F�(zk) + "G�(zk ; z1, . . . , zN).

Phase approximation, ✓k 2 T = R/2⇡Z, valid for t = O("�1��) is

✓̇k = !̃(✓, ") +
"

N

NX

j=1

g2(✓j � ✓k)

+
"

N2

NX

j,l=1

g3(✓j + ✓l � 2✓k)

+
"

N2

NX

j,l=1

g4(2✓j � ✓l � ✓k) +
"

N3

NX

j,l,m=1

g5(✓j + ✓l � ✓m � ✓k)

where !̃(✓, ") is a SN -symmetric function in the phases and

g2(�) = ⇠01 cos(�+ �0
1)

+ �⇠11 cos(�+ �1
1) + �⇠12 cos(2�+ �1

2),

g3(�) = �⇠13 cos(�+ �1
3), g4(�) = �⇠14 cos(�+ �1

4),

g5(�) = �⇠15 cos(�+ �1
5).

P Ashwin and A Rodrigues, Physica D 32:14–24, 2016
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Phase Reduction in Action

Consider N symmetric oscillators with zk 2 C close to a Hopf bifurcation
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What is Important?

First-Order Approximation

✓̇k = ! +
NX

j=1

sin(✓j � ✓k + ↵)

Kuramoto–Sakaguchi equations: Integrable with 2 degrees of freedom.

Second-Order Approximation

✓̇k = ! +
NX

j=1

sin(✓j � ✓k + ↵) + · · ·+
NX

j,l=1

sin(✓j + ✓l � 2✓k + ↵̂) + · · ·

Network dynamical system with higher-order interactions.

Advertisement! Review: CB, H. Harrington, E. Gross, and M. Schaub.
What are higher-order networks? To go to SIAM Review (any day).

F Battiston et al (2020). Physics Reports, 874, 1–92.
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✓̇k = ! +
NX

j=1

sin(✓j � ✓k + ↵)

Kuramoto–Sakaguchi equations: Integrable with 2 degrees of freedom.

Second-Order Approximation

✓̇k = ! +
NX

j=1

sin(✓j � ✓k + ↵) + · · ·+
NX

j,l=1

sin(✓j + ✓l � 2✓k + ↵̂) + · · ·

Network dynamical system with higher-order interactions.
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What are higher-order networks? To go to SIAM Review (any day).
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Symmetric Consequences

Invariant phase configurations

S = {✓1 = · · · = ✓N} = • D = {✓k+1 = ✓k + 2⇡/N} = �

Phase ordering is preserved

N = 3

✓1 = ✓3

✓ 1
=
✓ 2

✓
2 =

✓
3⌧

N = 4

P Ashwin, CB, and O Burylko, Front. Appl. Math. Stat. 2(7), 1–16, 2016.
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Phase Oscillators with Higher-Order Interactions

Q: Are there chaotic attractors with nonpairwise coupling?

Fix N = 4, � = 1, ⇠ = (�0.3, 0.3, 0.02, 0.8, 0.02) and parametrize

g2(�) = ⇠1 cos(�+ �1) + ⇠2 cos(2�+ �2), g3(�) = ⇠3 cos(�+ �3),

g4(�) = ⇠4 cos(�+ �4), g5(�) = ⇠5 cos(�+ �5).

Parameters

CB, P Ashwin, and A Rodrigues (2016). Chaos, 26(9), 94814.
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Q: Are there chaotic attractors with nonpairwise coupling?
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Parameters
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Phase Oscillators with Higher-Order Interactions

A: There chaotic attractors with nonpairwise coupling!

Fix N = 4, � = 1, ⇠ = (�0.3, 0.3, 0.02, 0.8, 0.02) and parametrize

g2(�) = ⇠1 cos(�+ �1) + ⇠2 cos(2�+ �2), g3(�) = ⇠3 cos(�+ �3),

g4(�) = ⇠4 cos(�+ �4), g5(�) = ⇠5 cos(�+ �5).

Parameters
� = (0.108, 0.27, 0, 1.5, 0).

CB, P Ashwin, and A Rodrigues (2016). Chaos, 26(9), 94814.
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Phase Oscillators with Higher-Order Interactions

A: There chaotic attractors with nonpairwise coupling!

Fix N = 4, � = 1, ⇠ = (�0.3, 0.3, 0.02, 0.8, 0.02) and parametrize

g2(�) = ⇠1 cos(�+ �1) + ⇠2 cos(2�+ �2), g3(�) = ⇠3 cos(�+ �3),

g4(�) = ⇠4 cos(�+ �4), g5(�) = ⇠5 cos(�+ �5).

Parameters
� = (0.154, 0.318, 0, 1.74, 0).

CB, P Ashwin, and A Rodrigues (2016). Chaos, 26(9), 94814.
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Phase Oscillators with Higher-Order Interactions

A: There chaotic attractors with nonpairwise coupling!

Fix N = 4, � = 1, ⇠ = (�0.3, 0.3, 0.02, 0.8, 0.02) and parametrize

g2(�) = ⇠1 cos(�+ �1) + ⇠2 cos(2�+ �2), g3(�) = ⇠3 cos(�+ �3),

g4(�) = ⇠4 cos(�+ �4), g5(�) = ⇠5 cos(�+ �5).

Parameters
� = (0.2, 0.316, 0, 1.73, 0).

CB, P Ashwin, and A Rodrigues (2016). Chaos, 26(9), 94814.
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Frequencies

Instantaneous frequency
✓̇k(t)

Asymptotic average frequency

⌦k = lim
T!1

1

T

Z T

0
✓̇k(t) dt

Identical all-to-all coupling, SN symmetry: for all k , j

⌦k = ⌦j .

No frequency separation for identical (1st order) phase oscillators.
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Modular Networks

1. Population

2. Populations

3. Populations
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Coupled Phase Oscillator Populations

Oscillator k in population � has phase

✓�,k 2 T.

1,1

1,2

2,1

2,2

Identical oscillators: can exchange any two oscillators while preserving
the equations of motion. Have !�,k = !.

Phase configurations

S = {✓�,1 = · · · = ✓�,N} D = {✓�,k+1 = ✓�,k + 2⇡/N}

Write

S,D SS, SD,DS,DD SSS, SSD, SDD, . . .
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Frequencies

Frequencies

✓̇�,k(t) ⌦�,k = lim
T!1

1

T

Z T

0
✓̇�,k(t) dt

Frequency synchrony in population �: for k 6= j

⌦�,k = ⌦�,j

Weak chimera characterized by localized frequency synchrony

⌦�,k = ⌦�,j for any � and j 6= k

⌦�,k 6= ⌦⌧,k for � 6= ⌧ .

Dynamics of identical oscillators show distinct frequencies.
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Dynamics with Localized Frequency Synchrony

Ashwin and Burylko: There is localized frequency synchrony for weakly
(globally and identically) coupled populations.

1. Two uncoupled populations: SD is invariant.

2. SD has localized frequency synchrony.

3. Persistence for small " > 0.

1,1

1,2

2,1

2,2

B and Ashwin: Generalization and larger populations.

P Ashwin and O Burylko (2015). Chaos, 25:13106.

CB and P Ashwin (2016). Nonlinearity, 29(5), 1468–1486.
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Dynamics with Localized Frequency Synchrony

Ashwin and Burylko: There is localized frequency synchrony for weakly
(globally and identically) coupled populations.

1. Two uncoupled populations: SD is invariant.

2. SD has localized frequency synchrony.

3. Persistence for small " > 0.
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B and Ashwin: Generalization and larger populations.
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O
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P Ashwin and O Burylko (2015). Chaos, 25:13106. CB and P Ashwin (2016). Nonlinearity, 29(5), 1468–1486.
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Modular Networks

1. Population

2. Populations

3. Populations
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Neuroscience

Neuron
1186

Figure 2. Example Sequences from Behavior
(RUN) and Subsequent Sleep (POST)

(A–B) Determination of POS spatial sequence
experienced by RAT1 in RUN. (A) Lap-by-lap
rasters of all ten cells that had place fields in
POS direction laps (i.e., rat running in direc-
tion of increasing position values). For each
cell, laps 1–30 are stacked from bottom to
top. (B) Smoothed place fields (colored lines)
of these ten cells. Vertical bars mark the posi-
tions of the peaks of the smoothed fields.
Smoothed firing rate (Hz) at these peaks
shown to the right. Nonuniform time axis be-
low shows time within average lap when
above positions were passed. (C) A popula-
tion burst from RAT1 POST SWS, showing six
cells in a row firing in the same order as the
POS sequence from RUN (B). Note difference
in timescale. (D–F) More examples of RAT1
POST SWS population bursts that match the
RUN POS sequence. (G) Same as (B), except
for RAT2 POS (rat running in direction of in-
creasing position values). (H–J) RAT2 POST
SWS population bursts that match the RUN
POS sequence (G). Words extracted from ac-
tivity in (C)–(F) and (H)–(J) using max_isi ! 50
ms and max_gap ! 100 ms in upper left cor-
ner of each panel (with cell 10 represented in
words by the letter A). Bar ! 50 ms.

The final results consist of a match/trial ratio and Z probability matches (the exception is max_isi ! 0. It
results in very little POST low-probability matching be-score for pairs, triplets, and low-probability words in

PRE and POST SWS. This analysis was repeated for a cause if multispike bursts from individual cells are
treated as multiple letters, they tend to interrupt se-range of max_isi and max_gap values (with the con-

straint that max_isi " max_gap, since max_isi # quence matches). The peak low-probability match/trial
ratio for POST (35/270 ! 0.13, i.e., 35 matches out ofmax_gap would have allowed a single letter to represent

activity that extended into the following word) (Figure 270 words that could have had a low-probability match
compared to 270/24 ! 11 expected matches, Z $ 7.2,4) (note that Z % 0 [Z # 0]) corresponds to fewer [more]

matches than expected based on chance). PRE SWS p % 4E&9, Figure 4B) occurs around max_isi ! 50 ms
and max_gap ! 100 ms, suggesting that these may beactivity shows no significant similarity to RUN se-

quences for all parameter values, while POST SWS ac- the best values for decoding CA1 pyramidal cell activity
in SWS. These values parse the activity into words suchtivity shows significant similarity for a wide range of

values. This suggests that the sequential spatial experi- that the resulting mean interword interval is 804 ms, a
number consistent with the hippocampal EEG sharp-ence was encoded during RUN. Furthermore, the most

significant matching in POST occurs for longer, lower- wave/ripple occurrence rate of approximately 0.5–1 Hz

Neuron
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Figure 2. Example Sequences from Behavior
(RUN) and Subsequent Sleep (POST)

(A–B) Determination of POS spatial sequence
experienced by RAT1 in RUN. (A) Lap-by-lap
rasters of all ten cells that had place fields in
POS direction laps (i.e., rat running in direc-
tion of increasing position values). For each
cell, laps 1–30 are stacked from bottom to
top. (B) Smoothed place fields (colored lines)
of these ten cells. Vertical bars mark the posi-
tions of the peaks of the smoothed fields.
Smoothed firing rate (Hz) at these peaks
shown to the right. Nonuniform time axis be-
low shows time within average lap when
above positions were passed. (C) A popula-
tion burst from RAT1 POST SWS, showing six
cells in a row firing in the same order as the
POS sequence from RUN (B). Note difference
in timescale. (D–F) More examples of RAT1
POST SWS population bursts that match the
RUN POS sequence. (G) Same as (B), except
for RAT2 POS (rat running in direction of in-
creasing position values). (H–J) RAT2 POST
SWS population bursts that match the RUN
POS sequence (G). Words extracted from ac-
tivity in (C)–(F) and (H)–(J) using max_isi ! 50
ms and max_gap ! 100 ms in upper left cor-
ner of each panel (with cell 10 represented in
words by the letter A). Bar ! 50 ms.

The final results consist of a match/trial ratio and Z probability matches (the exception is max_isi ! 0. It
results in very little POST low-probability matching be-score for pairs, triplets, and low-probability words in

PRE and POST SWS. This analysis was repeated for a cause if multispike bursts from individual cells are
treated as multiple letters, they tend to interrupt se-range of max_isi and max_gap values (with the con-

straint that max_isi " max_gap, since max_isi # quence matches). The peak low-probability match/trial
ratio for POST (35/270 ! 0.13, i.e., 35 matches out ofmax_gap would have allowed a single letter to represent

activity that extended into the following word) (Figure 270 words that could have had a low-probability match
compared to 270/24 ! 11 expected matches, Z $ 7.2,4) (note that Z % 0 [Z # 0]) corresponds to fewer [more]

matches than expected based on chance). PRE SWS p % 4E&9, Figure 4B) occurs around max_isi ! 50 ms
and max_gap ! 100 ms, suggesting that these may beactivity shows no significant similarity to RUN se-

quences for all parameter values, while POST SWS ac- the best values for decoding CA1 pyramidal cell activity
in SWS. These values parse the activity into words suchtivity shows significant similarity for a wide range of

values. This suggests that the sequential spatial experi- that the resulting mean interword interval is 804 ms, a
number consistent with the hippocampal EEG sharp-ence was encoded during RUN. Furthermore, the most

significant matching in POST occurs for longer, lower- wave/ripple occurrence rate of approximately 0.5–1 Hz

Lee and Wilson (2002). Neuron, 36(6), 1183–1194.
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“Neuroscience”

�!

θ1,1

θ1,2

θ2,1

θ2,2

θ3,1

θ3,2

0 50 100 150 200 250

O
sc
ill
at
or

Time t

State of :

✓�,k 2 [0, 2⇡)

A: Yes, one may observe transitions of frequencies.

�!
?
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How to Get Transitions

Transitions induced by Heteroclinics Orbits

1. Have a finite collection of saddles Aq.

2. Suppose that the unstable manifold of Aq has
a nontrivial intersection with the stable
manifold of Aq+1—there are heteroclinic
connections.

3. Impose additional stability conditions.

Dynamics: Transitions from one saddle to the
next along the cycle/network.

Robust heteroclinic cycles/networks may arise in

I Lotka–Volterra type systems,

I Systems with symmetries.

Field (1996). Lectures on Bifurcations, Dynamics and Symmetry.
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Coupled Populations with Higher-Order Interactions

Phase reduction, ĝ2 higher harmonics, ĝ3, ĝ4, ĝ5 one harmonic

✓̇k = ! +
QX

j=1

a
(jk)
2

ĝ2(✓j � ✓k) +
QX

j,l=1

a
(l jk)
3

ĝ3(✓j + ✓l � 2✓k)

+
QX

j,l=1

a
(l jk)
4

ĝ4(2✓j � ✓l � ✓k) +
QX

j,l,m=1

a
(mljk)
5

ĝ5(✓j + ✓l � ✓m � ✓k)

Special case: M = 3 populations of N = 2 oscillators, j = 3� k

✓̇�,k = sin(✓�,j � ✓�,k + ↵) + r sin(2(✓�,j � ✓�,k + ↵))

� K cos(✓��1,1 � ✓��1,2 + ✓�,j � ✓�,k + ↵)

� K cos(✓��1,2 � ✓��1,1 + ✓�,j � ✓�,k + ↵)

+ K cos(✓�+1,1 � ✓�+1,2 + ✓�,j � ✓�,k + ↵)

+ K cos(✓�+1,2 � ✓�+1,1 + ✓�,j � ✓�,k + ↵)

The system is TM equivariant: one phase-shift symmetry per population.

CB (2018). Phys Rev E, 97(5), 050201(R).
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Coupled Populations with Higher-Order Interactions

Phase reduction, ĝ2 higher harmonics, ĝ3, ĝ4, ĝ5 one harmonic
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3 ĝ3(✓j + ✓l � 2✓k)

+
QX

j,l=1

a
(l jk)
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� K cos(✓��1,2 � ✓��1,1 + ✓�,j � ✓�,k + ↵)

+ K cos(✓�+1,1 � ✓�+1,2 + ✓�,j � ✓�,k + ↵)

+ K cos(✓�+1,2 � ✓�+1,1 + ✓�,j � ✓�,k + ↵)

The system is TM equivariant: one phase-shift symmetry per population.

CB (2018). Phys Rev E, 97(5), 050201(R).
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Transitions of Localized Frequency Synchrony

Theorem
For M = 3 populations with N = 2, 3 oscillators,

there are coupling parameters such that there is a

robust and dissipative heteroclinic cycle between

distinct patterns of localized frequency synchrony.

Idea of proof
1. No coupling: Separate frequencies of S,D.

2. Ensure stability of DSS,DDS, . . . .

3. Heteroclinic connections, e.g., in D S.

D S for N = 2:

SSD SDD

DSD DDD

SSS SDS

DSS DDS

D S for N = 3:

CB (2018). Phys Rev E, 97(5), 050201(R). CB (2019) J Nonlin Sci, 29(6):2547–2570.
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Heteroclinic Cycles in Action!

Dynamics of M = 3 populations of N = 2, 3 oscillators.
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(b)

Project (J. Mujica, VU): Bifurcations of heteroclinic cycles under
forced symmetry breaking.

Project (T. Böhle, TUM): Dynamics of the mean-field limit.

CB (2019) J Nonlin Sci, 29(6):2547–2570.
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From Heteroclinic Cycles to Networks

Dynamics of M = 4 populations of N = 2 oscillators.

Theorem
Coupled populations of phase oscillators support the heteroclinic network

between distinct patterns of frequency synchrony below which contains

two cycles.

DSSD DSSS DSDS

SSSD DDSS SSDS

SDSD SDSS SDDS

CB and A Lohse (2019) J Nonlin Sci, 29(6):2571–2600.
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More Action!

Dynamics of M = 4 populations of N = 2 oscillators.
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CB and A Lohse (2019) J Nonlin Sci, 29(6):2571–2600.
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Modular Networks

1. Population

2. Populations

3. Populations

4. Back to the Real World
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Phase Reduction

Weakly coupled nonlinear oscillators

#

Phase oscillator network
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Synchronization Engineering

Nonlinear oscillator network with state xk

ẋk = F (xk) + "
NX

j=1

Gkj(xj , xk)

"
Calculate feedback parameters for h(x) to match phase reduction.

"
Apply (delayed) feedback pk(x) to oscillators with known PRC Z (�)

ẋk = F (xk) + Kpk(x) pk(t) =
NX

j=1

Kkjh(x(t � ⌧))

"
Phase oscillator network with state ✓k

✓̇k = ! +
NX

j=1

gkj(✓j � ✓k)

H Kori, C G Rusin, I Z Kiss, and J L Hudson (2008). Chaos, 18(2), 26111
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Experiments

Pairwise Interactions

C R W 

Rind 

Potentiostat 

Interface 

𝑉𝑗 = 𝑉0 + δ𝑉 𝑗  

a b 

experimental setup with no coupling, K ¼ 0, and potential
set to V0 ¼ 1160 mV, the electrodissolution process is
oscillatory with a natural frequency of about 0.45 Hz.
During the experiment, a 2–3 mHz difference in natural
frequencies between the electrodes was maintained.
Initial trials allows us to determine the feedback param-

eters to get the desired coupling functions (1) using the same
strategy as in the numerical simulations. Employing pure
first- and second-order feedback gains, we set k1 ¼ 0.22,
k2 ¼ 2.0 V−1, and τ1 ¼ τ2 ¼ τ ¼ 0. With these parameters,
we determined the phase interaction function (using a self-
feedback method [24]). Figure 3(a) shows that the exper-
imental phase interaction function gEx approximates the
desired interaction function (1) with r ¼ −0.4 and α ¼ 0
very well. In terms of Fourier coefficients, we obtained

ḡExðϕÞ ¼ −0.012 cosðϕÞ þ 0.051 sinðϕÞ
þ 0.003 cosð2ϕÞ − 0.021 sinð2ϕÞ; ð10Þ

which shows that there are weak cosine and strong first and
second harmonic sinusoidal components with r ¼ −0.41.
Adding a global delay of τ ¼ 0.51 s, the uncoupled pop-
ulations, ε ¼ 0, exhibited bistability between in-phase and
antiphase oscillatory states forK ¼ 0.52 (see Supplemental
Material [26]). This choice of parameters corresponds to a
phase shift ofα ¼ 1.44 in the phasemodel, is expected to fall
within the chimera regime, and was used in all the following
experiments. Before the experiments, the phases of oscil-
lators in populations 1 and 2 were set to anti- and in-phase
configurations, respectively, to provide appropriate initial
conditions for the weak chimera.
We observed weak chimeras in the experimental setup

for a range of coupling parameters ε ≥ 0. First note that, if

there are no interpopulation connections, ε ¼ 0, there is a
very large dynamically induced frequency difference of
about 18 mHz between population 1 in an antiphase and
population 2 in an in-phase configuration; see Figs. 3(c)
and 3(d). When the coupling between the populations was
increased to ε ¼ 0.1, the populations remain approximately
in the anti- and in-phase configurations [see Fig. 3(b)] but
now exhibited oscillations due to the interaction between
populations. Importantly, the two populations exhibited
phase drifting behavior relative to each other; this state thus
represents a weak chimera state. As is shown in Fig. 3(c),
the frequency difference between the populations in the
chimera state is much larger (about 9 times) than the
frequency difference without interpopulation coupling. We
observed a chimera state for a large interpopulation
coupling strength up to ε ¼ 0.5; see Figs. 3(c) and 3(d).
As ε was increased, the amplitude of the phase difference
oscillations of the synchronized population increased. With
strong interpopulation coupling at ε ¼ 0.8, the weak
chimera breaks down and the two populations became
phase locked (see Supplemental Material [26]).
Discussion.—We showed that a simple network of two

populations of two elements, coupled through a linear and
quadratic amplification with a delay of half the period, can
generate very robust chimera patterns with strong phase
slipping behavior between the populations. The induced
chimeras do not rely on amplitude dynamics (e.g., from
chaotic [34] or amplitude [35] clusters). Similar dynamics
are expected with any nonlinear oscillatory system with a
phase interaction function that has strong first harmonic
and weak second harmonic components. While oscillations
very close to a Hopf bifurcation typically have dominant
first harmonics in the interaction functions, second

(a) (b)

(c) (d)

FIG. 3. Experimental weak chi-
mera; V0 ¼ 1160 mV, Rind ≃ 1 kΩ.
(a) Experimentally determined
(points) and desired (line) interaction
function for τ¼ 0, r¼−0.4; K¼0.35.
(b) Phase difference time series of
population 1 (ϕ1;2 − ϕ1;1) and popu-
lation 2 (ϕ2;2 − ϕ2;1) and between
the populations (ϕ2;2 − ϕ1;1) of a
weak chimera; K ¼ 0.52, ε ¼ 0.1.
(c) Differences of frequencies (aver-
aged over populations) between pop-
ulations without coupling, K ¼ 0
(circles) and at various ε values, K ¼
0.52 (squares). (d) The frequencies of
the populations at various ε values
(squares ¼ population 1, circles ¼
population 2) at K ¼ 0.52.

PRL 119, 168301 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

20 OCTOBER 2017

168301-4

Nonpairwise Interactions

Project (B. Liefting, Exeter). Generalization of Synchronization
Engineering to Networks with Higher-Order Interactions.

CB, M Sebek, and I Z Kiss (2017). Phys Rev Lett, 119(16), 168301.
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Conclusions and outlook

Conclusions
! Higher-order interactions yield interesting phase dynamics.

! Identical oscillators can give rise to distinct frequencies through
network interactions.

! Transitions of frequencies can arise through heteroclinic cycles
and networks.

! Describe such phenomena mathematically but can be seen in
experiments

Outlook (i.e., more questions)

? Experimental realization of frequency transitions?

? Rigorous analysis of what happens as symmetries are broken.
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Thank you for your attention!

References
Get in touch!

Funding

I Marie Curie FP7: GECO—Dynamics of Phase
Oscillator Networks with Generalized Coupling

I TUM–IAS Hans Fischer Fellowship

I EPSRC: Higher-order interactions and heteroclinic
network dynamics (started Mon)

Contact
e-mail: c.bick@vu.nl twitter: @BickMath

web: http://ex.ac.uk/bick

Chris Bick Coupled Oscillator Networks


