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Coupled Oscillator Networks
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Coupled Metronomes are a Network Dynamical Systems

https://www.youtube.com/watch?v=T581GKREubo
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Network Dynamical Systems
N : . \
etwork of oscillatory units: @ € /‘_

O— —> Network structure (‘topology’):

\ T Who interacts with whom?
@ Network interaction:
How does one oscillator influence
\ the other?
>0 Network dynamics:

Collective dynamics of all nodes.

<

Q: How do structure and interactions shape the network dynamics?
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From Oscillators to Phase Oscillators

Weakly coupled nonlinear oscillators with state x, € R®

N
Xk = Fk(Xk) -+ EZ ij(Xj,Xk).

j=1
!

Phase reduction, phase response curve (PRC) Z(¢), interactions hy;(t)

!

Average over fast oscillations

!
(Averaged) Phase oscillator network with state 6, € T = R/27Z

N
O = wi+ > _ & (60 — Ok)

j=1

Interaction: Coupling functions g;;. Kuramoto model with gy; = sin.

Ashwin, Coombes, Nicks (2016). J Math Neuro, 6(1), 2.
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Modular Networks

1. Population
2. Populations

3. Populations
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Phase Reduction in Action

Consider N symmetric oscillators with z, € C close to a Hopf bifurcation

Z) = FA(Zk) -+ €G)\(Zk; Z1, ... ,ZN).
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Phase Reduction in Action

Consider N symmetric oscillators with z, € C close to a Hopf bifurcation

Z) = FA(Zk) -+ 6G)\(Zk; Z1, ... ,ZN).
Phase approximation, 8, € T = R/27Z, valid for t = O(¢7tA 1) is

N
. - g
0 = (0,¢) + N Z;gz(ej — 04)
J:

where &(6, ) is a Sy-symmetric function in the phases and

g2(¢) = & cos(¢ + x31)

P Ashwin and A Rodrigues, Physica D 32:14-24, 2016
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Phase Reduction in Action

Consider N symmetric oscillators with z, € C close to a Hopf bifurcation

= Fa(zk) + eGx(2zx; z1, - - -, Zn)-

Phase approximation, 8, € T = R/27Z, valid for t = O(¢ 71\ "?) is

0 = &(0,¢) + Zgze—ek Zg30+9/—29k)
/=1
c N
N2 .lzlg4(29j—9/_9k)+m .lzlg5(0j—|—9/—9m—(9k)
= J,l,m=

where &(6, ) is a Sy-symmetric function in the phases and

g2(¢) = &1 cos(¢ + x7) + A&j cos(¢ + x1) + A& cos(2¢ + x3),
g3(9) = A3 cos(d + x3),  &a(9) = A&y cos(¢ + xz),
g5(¢) = A5 cos(¢ + xz)-

P Ashwin and A Rodrigues, Physica D 32:14-24, 2016
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What is Important?

First-Order Approximation

N
ék :w—l—Zsin(ej—Hk—i—oz)

j=1

Kuramoto—Sakaguchi equations: Integrable with 2 degrees of freedom.

Second-Order Approximation

N N
O =w+ Y sin(0j— Ok +a)+---+ Y _sin(0; + 6, — 20, + &) + - --

Network dynamical system with higher-order interactions.

F Battiston et al (2020). Physics Reports, 874, 1-92.
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What is Important?

First-Order Approximation

N
ék :w—l—Zsin(QJ—Hk—i—oz)

j=1

Kuramoto—Sakaguchi equations: Integrable with 2 degrees of freedom.

Second-Order Approximation

N N
O =w+ Y sin(0j— Ok +a)+---+ Y _sin(0; + 6, — 20, + &) + - --

J=1 J,I=1
Network dynamical system with higher-order interactions.

Advertisement! Review: CB, H. Harrington, E. Gross, and M. Schaub.
What are higher-order networks? To go to SIAM Review (any day).

F Battiston et al (2020). Physics Reports, 874, 1-92.
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Symmetric Consequences

Invariant phase configurations

Phase ordering is preserved

N —

P Ashwin, CB, and O Burylko, Front. Appl. Math. Stat. 2(7), 1-16, 2016.
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Phase Oscillators with Higher-Order Interactions

(QQ: Are there chaotic attractors with nonpairwise coupling?

CB, P Ashwin, and A Rodrigues (2016). Chaos, 26(9), 94814.
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Phase Oscillators with Higher-Order Interactions

(QQ: Are there chaotic attractors with nonpairwise coupling?

Fix N=4, A=1, £ =(-0.3,0.3,0.02,0.8,0.02) and parametrize

g2(¢) = &1 cos(d + x1) +&2cos(2¢ + x2),  g3(¢) = &3 cos(¢ + x3),
ga(¢) = &a cos(¢p + xa), gs5(¢) = & cos(¢ + xs).

CB, P Ashwin, and A Rodrigues (2016). Chaos, 26(9), 94814.
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Phase Oscillators with Higher-Order Interactions

A: There chaotic attractors with nonpairwise coupling!

Fix N=4, A=1, £ =(-0.3,0.3,0.02,0.8,0.02) and parametrize

g2(¢) = &1 cos(¢ + x1) + &2cos(2¢ + x2), g3(¢) = &3 cos(¢ + x3),
ga(@) = &acos(¢ + xa), g5(¢) = &s cos(p + xs).

Parameters
x = (0.108,0.27,0,1.5,0).

CB, P Ashwin, and A Rodrigues (2016). Chaos, 26(9), 94814.
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Phase Oscillators with Higher-Order Interactions

A: There chaotic attractors with nonpairwise coupling!

Fix N=4, A=1, £ =(-0.3,0.3,0.02,0.8,0.02) and parametrize

g2(¢) = &1 cos(¢ + x1) + &2cos(2¢ + x2), g3(¢) = &3 cos(¢ + x3),
ga(@) = &acos(¢ + xa), g5(¢) = &s cos(p + xs).

Parameters
x = (0.154,0.318,0,1.74,0).

CB, P Ashwin, and A Rodrigues (2016). Chaos, 26(9), 94814.
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Phase Oscillators with Higher-Order Interactions

A: There chaotic attractors with nonpairwise coupling!

Fix N=4, A=1, £ =(-0.3,0.3,0.02,0.8,0.02) and parametrize

g2(¢) = &1 cos(¢ + x1) + &2cos(2¢ + x2), g3(¢) = &3 cos(¢ + x3),
ga(@) = &acos(¢ + xa), g5(¢) = &s cos(p + xs).

Parameters
x = (0.2,0.316,0,1.73,0).

CB, P Ashwin, and A Rodrigues (2016). Chaos, 26(9), 94814.
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Frequencies

Instantaneous frequency _
Oi(t)

Asymptotic average frequency

1 [T
Q= lim — Qk(t)dt

T—o0 T 0

Identical all-to-all coupling, Sy symmetry: for all k,j
Q= Q.

No frequency separation for identical (1st order) phase oscillators.
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Modular Networks

1. Population
2. Populations

3. Populations
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Coupled Phase Oscillator Populations

1,1 2,1
Oscillator k in population ¢ has phase ® ®

O, €T.
7 1,2‘ ‘2,2

Identical oscillators: can exchange any two oscillators while preserving
the equations of motion. Have w, x = w.

Phase configurations

S={0,1="=0on} D = {05 k1 = Ok + 27/ N}

Write
S,D SS,SD, DS, DD SSS, SSD, SDD, . ..

Chris Bick Coupled Oscillator Networks



Frequencies

Frequencies

. 1 7.
Qg,k(t) Qs = lim ? Hg,k(t)dt

’ T—0oc0 0

Frequency synchrony in population o: for k =

Qa,k — Qa,j

Weak chimera characterized by localized frequency synchrony

Qo = Q0 j for any o and j # k
Qa,k 75 QT,k for o # T.

Dynamics of identical oscillators show distinct frequencies.
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Dynamics with Localized Frequency Synchrony

Ashwin and Burylko: There is localized frequency synchrony for weakly
(globally and identically) coupled populations.

1,1 2,1
1. Two uncoupled populations: SD is invariant. [ ) o
2. SD has localized frequency synchrony. | |
3. Persistence for small € > 0. 12. .22

P Ashwin and O Burylko (2015). Chaos, 25:13106.
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Dynamics with Localized Frequency Synchrony

Ashwin and Burylko: There is localized frequency synchrony for weakly
(globally and identically) coupled populations.

F e e
T w

Time t
P Ashwin and O Burylko (2015). Chaos, 25:13106. CB and P Ashwin (2016). Nonlinearity, 29(5), 1468-1486.
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Modular Networks

1. Population
2. Populations

3. Populations

Chris Bick Coupled Oscillator Networks



Neuroscience

A
10
9
8
7
ERl DIRECTION OF MOTION B>
4
3
2
1 £y
& D 50 100 150 200 250 cm
H
8 134568
6  —
=5
8 4
3
2
1

Lee and Wilson (2002). Neuron, 36(6), 1183-1194.
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“Neuroscience”

032

031

81’2 WWMM

O11 State of @ :

Qg,k c [0, 27T)

Oscillator

Time ¢t
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“Neuroscience”
—_—

032
031

S
& 022
— —_—
$ 021 ?
@)

. WMNWM

0

1,1 State of @ :

9,7,/( c [0,27T)
Time ¢

(Q: Can one observe transitions of frequencies over time?
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“Neuroscience”

2 0y - 0\.
E 021 A I
01,2
b1 . , State of @ :
0 50 100 150 200 250 g, c[0,2n)
Time t

A: Yes, one may observe transitions of frequencies.
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How to Get Transitions

Transitions induced by Heteroclinics Orbits
1. Have a finite collection of saddles A,. \O/

2. Suppose that the unstable manifold of A, has /
a nontrivial intersection with the stable
manifold of Aq;1—there are heteroclinic

connections.
3. Impose additional stability conditions.

Dynamics: Transitions from one saddle to the e
next along the cycle/network. \
Robust heteroclinic cycles/networks may arise in

g 9

» Lotka—Volterra type systems,
» Systems with symmetries.

Field (1996). Lectures on Bifurcations, Dynamics and Symmetry.
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Coupled Populations with Higher-Order Interactions

Phase reduction, g higher harmonics, g3, 84, 85 one harmonic

Q Q
Oe=w+> B0 —0)+>  &0;+0—20)
j=1 j,l=1
Q Q
+Y &0 -0-0)+ ) 85(0; + 0) — O — 0i)
j,1=1 J,I,m=1

CB (2018). Phys Rev E, 97(5), 050201(R).
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Coupled Populations with Higher-Order Interactions

Phase reduction, g higher harmonics, g3, 84, 85 one harmonic

Q
=w + Z a(Jk)A (9 — Qk) + Z a(IJk)§3(9j + 6, — 29k)

j,I=1

+Za(’f">“ 20; — 6, — Z 2 ") 50 + 0 — O — O4)

j,1=1 j,l,m=1

CB (2018). Phys Rev E, 97(5), 050201(R).
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Coupled Populations with Higher-Order Interactions

Phase reduction, g higher harmonics, g3, 84, 85 one harmonic

Q Q
=w Z a3 82(0; = 0:) + D 35" 8s(0) + 0, - 201)

ji=1

—|—Za(ljk)A 20; — 6, — Z a5 (0 + 0 — O, — 04)

j,1=1 j,l,m=1

Special case: M = 3 populations of N = 2 oscillators, j =3 — k

éa,k =5sin(0,j — O5k + @) + rsin(2(05 — 05k + )
— Kcos(O0y—11 —0o—12+ 05 — 05k + @)
— Kcos(Op—12 —0o—11+ 05 — 05k + )
+ KCOS(190+1,1 — 90+1,2 + Qa,j — 90,/( + Oz)
+ Kcos(lpt12 — 05411+ 00 — Ok + @)

The system is TM equivariant: one phase-shift symmetry per population.

CB (2018). Phys Rev E, 97(5), 050201(R).
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Transitions of Localized Frequency Synchrony

Theorem /SS\D <_§DD
For M = 3 populations with N = 2,3 oscillators, DSD <> DDD [
there are coupling parameters such that there is a v A
robust and dissipative heteroclinic cycle between §SS « »SDS

.. . e ~ /
distinct patterns of localized frequency synchrony. DSS — DDS
|dea of proof

1. No coupling: Separate frequencies of S, D. Dy for N = 3:

2. Ensure stability of DSS, DDS, .. ..

3. Heteroclinic connections, e.g., in DyS.

DS for N = 2:

CB (2018). Phys Rev E, 97(5), 050201(R). CB (2019) J Nonlin Sci, 29(6):2547-2570.
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Heteroclinic Cycles in Action!

Dynamics of M = 3 populations of N = 2, 3 oscillators.

B i

3 OJH\HHHHH

0 200 400 600 0 200 400 600
Time ¢

Time ¢
Project (J. Mujica, VU): Bifurcations of heteroclinic cycles under
forced symmetry breaking.

Project (T. Bohle, TUM): Dynamics of the mean-field limit.

CB (2019) J Nonlin Sci, 29(6):2547-2570.
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From Heteroclinic Cycles to Networks

Dynamics of M = 4 populations of N = 2 oscillators.

Theorem

Coupled populations of phase oscillators support the heteroclinic network
between distinct patterns of frequency synchrony below which contains
two cycles.

....... > SDSD «——— SDSS ———— SDDS ¢

CB and A Lohse (2019) J Nonlin Sci, 29(6):2571-2600.
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Dynamics of M = 4 populations of N = 2 oscillators.

| /’J |

HHHHHHH \/ P .
HHHHHH/
| | .

/ IHHHHHH i HH | H
“"”""WI ‘IIIIHIIII 'Il H”” \\” \H

il Il
, W ,H\‘\‘HHH\HHI ‘ ’\’H\\IH\W\‘\‘\‘\‘\W\‘\ﬁ ‘\‘\W\‘\W\W\’\’\’\’\’\’\’\’\’\’\’\‘
A LAY AR DR TATANARASAVARARAN

400 600 800 1000

Time ¢

Oscillator

e

CB and A Lohse (2019) J Nonlin Sci, 29(6):2571-2600.
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Modular Networks

1. Population
2. Populations

3. Populations
4. Back to the Real World
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Phase Reduction

Weakly coupled nonlinear oscillators

l

Phase oscillator network
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Synchronization Engineering

Nonlinear oscillator network with state xx

N
5= F(x) + 2 G, xi)
=1

/]\

Calculate feedback parameters for h(x) to match phase reduction.

/l\
Apply (delayed) feedback pg(x) to oscillators with known PRC Z(¢)

xk = F(xi) + Kpk(x) p(t) = Z Kiih(x(t — 7))

/I\

Phase oscillator network with state 6

N
O = w+ ngj(ej — 6k)

Jj=1
H Kori, C G Rusin, | Z Kiss, and J L Hudson (2008). Chaos, 18(2), 26111
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Experiments

Pairwise Interactions

~

=)
~
(e}
=

-
-

—

:‘\ :“\ :“\ :‘\| :‘ : e
sfh e
a - 1 “ 1 “ 1 “ 1 ‘l :_¢2,2_¢2,1
~ah 1 ! ! 1 1 . \ J
= 1 1 1 1
L1 Y 1 |
%3 vy : 1 : ‘\ : ‘\ : ‘| : ‘| ! “ :
<4 L T S T L
2 -: v ' ‘o ‘o ' ‘| : [
1 b ‘\ ! Y Y ‘i i !
' ' Yy ‘Y ‘i !
160 ] i Y Yy “l “: Vo
] 1 Y ‘|A | — gun
o T
200 300 400 500 600
Time (s)

Nonpairwise Interactions

Project (B. Liefting, Exeter). Generalization of Synchronization
Engineering to Networks with Higher-Order Interactions.

CB, M Sebek, and | Z Kiss (2017). Phys Rev Lett, 119(16), 168301.
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Conclusions and outlook

Conclusions
I Higher-order interactions yield interesting phase dynamics.

I Identical oscillators can give rise to distinct frequencies through
network interactions.

I Transitions of frequencies can arise through heteroclinic cycles
and networks.

I' Describe such phenomena mathematically but can be seen in
experiments

Outlook (i.e., more questions)
? Experimental realization of frequency transitions?

? Rigorous analysis of what happens as symmetries are broken.
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Thank you for your attention!
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