
Statistical guarantees for inverse problems

Hanne Kekkonen

Delft Institute of Applied Mathematics
Delft University of Technology

November 17, 2022



Outline

1 Introduction to inverse problems

2 Bayesian inverse problems

3 Consistency of nonparametric Bayesian methods

1 / 28



Outline

1 Introduction to inverse problems

2 Bayesian inverse problems

3 Consistency of nonparametric Bayesian methods

2 / 28



Deblurring (deconvolution)

m(x) = (Af )(x) =

∫
R2

a(x− y)f (y)dy
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Computerised tomography (CT)

M(θ, s) = (Gu)(θ, s) =

∫
x·θ=s

f (x)dx
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Geodesic X-ray transform

m(γ) = (Af )(γ) =

∫
f (γ(t))dt
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Many inverse problems arise from partial differential
equations

Elliptic PDEs: Given noisy measurements of G(f ) = uf recover f > 0 in
the divergence form equation

∇ · (f∇u) = g on O, u = 0 on ∂O.

Time evolution equations: Given noisy measurements of G(f ) = uf

recover f > 0 in the heat equation
1
2∆xu− ∂tu− f u = 0 on O × (0,T)

u = g on ∂O × (0,T)

u(·, 0) = u0 on O.
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Electrical Impedance Tomography (EIT)

Applying electric voltages f at
the boundary leads to PDE

∇ · (σ∇v) = 0 in Ω ∈ R2

v|∂Ω = f

Non-linear inverse problem:
Recover conductivity σ from
boundary measurements
Λσ(f ) = σ ∂v

∂~n |∂Ω
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Inverse problems are ill-posed

We want to recover the unknown f from a noisy measurement m;

m = Af + noise,

where A is a forward operator that usually causes loss of information.

Well-posedness as defined by Jacques Hadamard:

1. Existence: There exists at least one solution.

2. Uniqueness: There is at most one solution.

3. Stability: The solution depends continuously on data.

Inverse problems are ill-posed breaking at least one of the above
conditions.
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Naive reconstruction does not work for inverse problems

If A is invertible it is tempting to try f naive ≈ A−1m = f + A−1noise.

Blurry and noisy image Naive inversion

The problem is ill-posedness: ‖A−1noise‖ ≈ ‖noise‖/λk � ‖u‖, where λk
is the smallest eigenvalue of A.
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Deterministic approach to inverse problems

Recover the f from m = Af + ε, where ε small and deterministic noise.

Tikhonov regularisation offers a stable solution to the problem
The classical way of solving inverse problems is minimising the
penalised least squares criterion

f̃ = arg min
f

{
‖Af − m‖2

2 + αR(f )
}

The above can be understood as a balance between two requirements:

1. f̃ should give a small residual Af̃ − m,

2. The penalty R(̃f ) should be small.

The regularisation parameter α > 0 can be used to ”tune” the balance.

Note that the minimisation problem is non-convex when A is non-linear.
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Bayes formula combines data and a priori information

Reconstruct the most probable f from m = Af + ε, with ε random noise,
in light of

Measurement information: m | f ∼ Pf with density
ρ(m | f ) = ρε(m− Af ).

A priori information: f ∼ Πpr with density πpr(f ).

Bayes’ formula
We can update the prior, given a measurement, to a posterior distribution
using the Bayes’ formula:

π(f |m) ∝ ρ(m | f )πpr(f )

The result of Bayesian inversion is the posterior distribution π(f | m).
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The result of Bayesian inversion is the posterior
distribution, but typically one looks at point estimates

Maximum a posteriori
(MAP) estimate:
argmax

u∈Rn
π(u |m)

Conditional mean
(CM) estimate:∫
Rn

u π(u |m) du
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Uncertainty quantification has many applications

Studying the whole posterior distribution instead of just a point estimate
offers us more information.

Uncertainty quantification

Confidence and credible sets

E.g. Weather and climate
predictions

Using the whole posterior

Geological sensing

Bayesian search theory
Figure: Search for the wreckage of
Air France flight AF 447, Stone et
al.
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The measurement is always discrete but the unknown is
usually a continuous function

m ∈ R4

f ∈ L2
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Computational solutions require a finite approximate model
for the unknown f

m ∈ R24

f ∈ R440

J. Kaipio & E. Somersalo,
Statistical and Computational
Inverse Problems, 2005
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Avoid discretisation until the last possible moment

A.M. Stuart, Inverse problems: A
Bayesian perspective, 2010.

The first-order wave equation is not
controllable to a given final state in
arbitrarily small time (finite speed of
propagation).

Every finite difference spatial
discretisation gives rise to a linear
system of ordinary differential
equations which is controllable, in any
finite time, to a given final state.
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White noise does not belong to L2

Let ψj form an orthonormal basis for L2. Then formally

ε =

∞∑
k=0

〈ε, ψk〉ψk.

The Fourier coefficients of white noise satisfy 〈ε, ek〉 ∼ N(0, 1), where
ek(t) = eikt. Hence

E‖ε‖2
2 =

∞∑
k=0

E|〈ε, ek〉|2 =

∞∑
k=0

1 =∞.

For the white noise we have

ε ∈ L2 with probability zero,

ε ∈ H−s, s > d/2, with probability one.
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Gaussian priors

Consider white noise ε ∼ Π = N (0, I).

We often write π(ε) ∝
formally

exp(−1
2‖ε‖

2
L2).

Note that Π(L2) = 0 and Π(H−s) = 1, for s > d/2.

L2 characterises the directions in which the centred Gaussian
measure Π can be shifted to obtain an equivalent Gaussian measure.

L2 is called the Cameron–Martin space for Π.
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Bayesian approach to inverse problems

We want to recover the unknown f from a noisy measurement m;

m = Af + ε.

Consider observing data m drawn at random from some unknown
probability distribution Pm

f † , and sample size n.

Specify a prior distribution Π for the unknown f and assume

m | f ∼ Pm
f .

Using Bayes’ theorem the prior distribution can be updated to a
posterior distribution

f |m ∼ Π(· |m).

20 / 28



Outline

1 Introduction to inverse problems

2 Bayesian inverse problems

3 Consistency of nonparametric Bayesian methods

21 / 28



Consistency of the Bayesian solution

The natural next step is to consider the consistency of a solution.

Convergence of a point estimator to the ‘true’ f †.

Contraction of the posterior distribution; Do we have, as the noise
level ε→ 0,

Π(f : ‖f − f †‖ ≥ δε |Mε)→
PM

f† 0,

for some posterior contraction rate δε → 0.

- Usually this also guarantees that the posterior mean converges to f †.
- We can also study if the rate is optimal

inf
f̂=f̂ (M)

sup
f∈F

EM
f ‖f̂ − f‖ ' δminimax

ε .

Coverage of the credible sets.
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Some contraction results for linear inverse problems

Singular value decomposition based
Knapik, van der Vaart & van Zanten (2011); Mutually
diagonalisable operators

Ray (2013); Non-conjugate rate adaptive sequence setting

Knapik, Szabó, van der Vaart, van Zanten (2016); Adaptive priors

General smoothness requirements
Agapiou, Larsson & Stuart (2013); Mildly ill-posed problems

Kekkonen, Lassas & Siltanen (2016); Pseudodifferential operators

Knapik & Salomond (2018); Modulus of continuity

Agapiou, Dashti & Helin (2021); p-exponential priors

Agapiou & Mathé (2021); Truncated Gaussian series priors
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Some contraction results for non-linear inverse problems

Consider measurements

mi = Af (Xi) + wi, i = 1, ...,N, wi ∼ N (0, 1),

and

Π(f : ‖f − f †‖ ≥ δN | (mi,Xi)
N
i=1)→PM

f† 0.

Results using scaled Gaussian process priors
Monard, Nickl, Paternain (2021); Non-linear X-rays, δN ≈ N−γ .

Abraham, Nickl (2019); Calderón problem, δN ≈ (log N)−γ .

Giordano, Nickl (2020); Divergence form, δN ≈ N−γ .

Kekkonen (2021): Heat equation with absorption term, δN ≈ N−γ .

R. Nickl, Bayesian Non-linear Statistical Inverse Problems, 2022
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Do credible sets quantify frequentist uncertainty?

Correctly specified prior Prior misspecified on the boundary

Monard, Nickl & Paternain, The Annals of Statistics, 2019

Optimal contraction does not guarantee correct coverage!
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If f ∈ Rd credible sets have correct coverage

Do we have for C = C(M)

Π
(

f ∈ C |M
)
≈ 0.95 ⇔ PM

f †

(
f † ∈ C(M†)

)
≈ 0.95?

Bernstein–von Mises Theorem (BvM)

For large sample size n, with f̂MLE being the maximum likelihood
estimator,

Π(· |M) ≈ N
(

f̂ MLE,
1
n

I(f †)−1
)
, for M ∼ PM

f † ,

whenever f † ∈ F ⊂ Rd and the prior Π has positive density on F , and
the inverse Fisher information I(f †) is invertible.
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BvM guarantees confident credible sets

The contraction rate of the posterior distribution near f † is

Π
(

f : ‖f − f †‖2
Rd ≥

L2
n

n
|M
)
→PM

f† 0 as Ln, n→∞

For a fixed d and large n computing posterior probabilities is roughly the
same as computing them from N

(
f̂ MLE,

1
n I(f †)−1

)
.

Cn s.t. Π
(
f ∈ Cn |M

)
= 0.95 =⇒ Pf †

(
f † ∈ Cn

)
→ 0.95

(Bayesian credible set) (Frequentist confident set)

|Cn|Rd = OPf†

( 1√
n

)
(Optimal diameter)
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Consistency of nonparametric Bayesian methods

If f is a function the BvM theorem does not hold in the L2 sense:
Cox (1993), and Diaconis & Freedman (1999).

Castillo and Nickl (2013, 2014) showed for direct models that,
while BvM results do not hold in L2, they can hold in larger spaces,
such as Sobolev spaces H−s, with s > d/2.

Coverage of the credible sets; Bernstein von Mises type theorems.
Castillo & Nickl (2013, 2014), Ray (2014), Monard, Nickl &
Paternain (2019), Nickl (2018), Nickl & Söhl (2019), Giordano &
Kekkonen (2020).
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