Statistical guarantees for inverse problems

Hanne Kekkonen

Delft Institute of Applied Mathematics
Delft University of Technology

November 17, 2022

%
TUDelft



Outline

@ Introduction to inverse problems

© Bayesian inverse problems

e Consistency of nonparametric Bayesian methods

1/2%



Outline

@ Introduction to inverse problems

27/2%



Deblurring (deconvolution)




Computerised tomography (CT)
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Geodesic X-ray transform

Earthquake
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Many inverse problems arise from partial differential
equations

Elliptic PDEs: Given noisy measurements of G(f) = uy recover f > 0 in
the divergence form equation

V- (fVu) =gon O, u=00n00.

Time evolution equations: Given noisy measurements of G(f) = us
recover f > 0 in the heat equation

INu—0u—fu=0 onOx(0,T)
u=g on 00 x (0,T)
u(-,0) = u on O.



Electrical Impedance Tomography (EIT)

Applying electric voltages f at
the boundary leads to PDE

V-(cVv)=0 inQecR?
viga =f

Non-linear inverse problem:
Recover conductivity o from
boundary measurements

As(f) = 0%’|89
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Inverse problems are ill-posed

We want to recover the unknown f from a noisy measurement ;
m = Af + noise,
where A is a forward operator that usually causes loss of information.

Well-posedness as defined by Jacques Hadamard:

1. Existence: There exists at least one solution.
2. Uniqueness: There is at most one solution.

3. Stability: The solution depends continuously on data.

Inverse problems are ill-posed breaking at least one of the above
conditions.
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Naive reconstruction does not work for inverse problems

If A is invertible it is tempting to try 4" ~ A~™'m = f + A" 'noise.

w -

Blurry and noisy image Naive inversion

The problem is ill-posedness: ||A~noise|| ~ ||noisel| /¢ > ||u||, where A
is the smallest eigenvalue of A.

/2%



Outline

© Bayesian inverse problems

10/28R



Deterministic approach to inverse problems

Recover the f from m = Af + ¢, where € small and deterministic noise.

Tikhonov regularisation offers a stable solution to the problem

The classical way of solving inverse problems is minimising the
penalised least squares criterion

7 = argmin { a7 — m} + oR() }

The above can be understood as a balance between two requirements:
1. f should give a small residual Af —m,

2. The penalty R(f) should be small.

The regularisation parameter o > 0 can be used to "tune” the balance.

v

Note that the minimisation problem is non-convex when A is non-linear.
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Bayes formula combines data and a priori information

Reconstruct the most probable f from m = Af + ¢, with € random noise,
in light of

@ Measurement information: m|f ~ Py with density
p(m|f) = p(m — Af).

@ A priori information: f ~ IL,. with density m,,(f).

Bayes’ formula

We can update the prior, given a measurement, to a posterior distribution
using the Bayes’ formula:

W(f | m) X p(m |f)7rpr(f)

The result of Bayesian inversion is the posterior distribution 7 (f | m).
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The result of Bayesian inversion is the posterior
distribution, but typically one looks at point estimates

Maximum a posteriori
(MAP) estimate:

arg max 7(u|m)

Conditional mean
(CM) estimate:

/nuﬂ(u|m)du




Uncertainty quantification has many applications

Studying the whole posterior distribution instead of just a point estimate
offers us more information.

Uncertainty quantification
@ Confidence and credible sets

o E.g. Weather and climate
predictions

Using the whole posterior

@ Geological sensing

@ Bayesian search theory

Figure: Search for the wreckage of
Air France flight AF 447, Stone et
al.
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The measurement is always discrete but the unknown is
usually a continuous function

m € R*
fel?
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Computational solutions require a finite approximate model
for the unknown f

J. Kaipio & E. Somersalo,
Statistical and Computational
Inverse Problems, 2005 ©
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Avoid discretisation until the last possible moment

A.M. Stuart, Inverse problems: A
Bayesian perspective, 2010.

o The first-order wave equation is not
controllable to a given final state in
arbitrarily small time (finite speed of
propagation).

o Every finite difference spatial
discretisation gives rise to a linear
system of ordinary differential
equations which is controllable, in any
finite time, to a given final state.
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White noise does not belong to L?

Let ¢); form an orthonormal basis for L?. Then formally
o0
=D e
k=0

The Fourier coefficients of white noise satisfy (¢, ex) ~ N(0, 1), where
ex(t) = ™. Hence

oo o
Elel; =) El(s,e)fP =) 1=oc0.
k=0 k=0

For the white noise we have
@ ¢ € L? with probability zero,
@ ¢ € H™*, s > d/2, with probability one.
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Gaussian priors

2 -

.A ‘ HZ o H; ﬁ " H:

o W .

e Consider white noise ¢ ~ IT = N(0, ).

We often writ —1el?).
eo enwrlew(a)forl?lctl”yexp( sllellz2)

Note that TI(L?) = 0 and II(H*) = 1, for s > d/2.

L? characterises the directions in which the centred Gaussian
measure II can be shifted to obtain an equivalent Gaussian measure.

L? is called the Cameron—Martin space for I1.
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Bayesian approach to inverse problems

We want to recover the unknown f from a noisy measurement m;

m=Af +e¢.

o Consider observing data m drawn at random from some unknown
probability distribution P]’ﬁ , and sample size n.

@ Specify a prior distribution II for the unknown f and assume
m|f ~ Pf.
@ Using Bayes’ theorem the prior distribution can be updated to a
posterior distribution

flm ~T0(- | m).
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e Consistency of nonparametric Bayesian methods
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Consistency of the Bayesian solution

The natural next step is to consider the consistency of a solution.
e Convergence of a point estimator to the ‘true’ f1.

@ Contraction of the posterior distribution; Do we have, as the noise
level e — 0,

f P
H(f = (If = fM] = 0c [ M) — /1 0,

for some posterior contraction rate . — 0.

- Usually this also guarantees that the posterior mean converges to f1.

- We can also study if the rate is optimal

_inf sup IE;”W — £ ~ ginimax
f=fM) fer -

@ Coverage of the credible sets.
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Some contraction results for linear inverse problems

Singular value decomposition based

@ Knapik, van der Vaart & van Zanten (2011); Mutually
diagonalisable operators

@ Ray (2013); Non-conjugate rate adaptive sequence setting

@ Knapik, Szabd, van der Vaart, van Zanten (2016); Adaptive priors

General smoothness requirements

@ Agapiou, Larsson & Stuart (2013); Mildly ill-posed problems

@ Kekkonen, Lassas & Siltanen (2016); Pseudodifferential operators
@ Knapik & Salomond (2018); Modulus of continuity
@ Agapiou, Dashti & Helin (2021); p-exponential priors

o Agapiou & Mathé (2021); Truncated Gaussian series priors
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Some contraction results for non-linear inverse problems

Consider measurements
mi:Af(Xi)+Wi, i=1,...,N, WiNN(O,l),
and

P
I(f 2 |If —£T)) > ow | (mi, Xo)oy) =771 0.

Results using scaled Gaussian process priors

@ Monard, Nickl, Paternain (2021); Non-linear X-rays, oy ~ N~ 7.

@ Abraham, Nickl (2019); Calderén problem, dy ~ (log N)~7.

@ Giordano, Nickl (2020); Divergence form, §y ~ N7,

@ Kekkonen (2021): Heat equation with absorption term, oy ~ N~ 7.

R. NicKl, Bayesian Non-linear Statistical Inverse Problems, 2022
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Do credible sets quantify frequentist uncertainty?

0 E
-1 0.5 0 0.5 1 -1 0.5 0 0.5 1

Correctly specified prior Prior misspecified on the boundary

Monard, Nickl & Paternain, The Annals of Statistics, 2019

Optimal contraction does not guarantee correct coverage!
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If f € R? credible sets have correct coverage

Do we have for C = C(M)

H(f € C!M) ~095 = P (fT € C(MT)) ~ 0.957

Bernstein—von Mises Theorem (BvM)

For large sample size n, with fy; being the maximum likelihood
estimator,

R 1 B
(- | M) %N(fML& ;I(fT) 1), for M NP%,

whenever fT € F C R? and the prior II has positive density on F, and
the inverse Fisher information I(f") is invertible.
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BvM guarantees confident credible sets

The contraction rate of the posterior distribution near fT is
e, > La P
H(f: IF —f1]Re > —|M) S0 asLyn = oo
n

For a fixed d and large n computing posterior probabilities is roughly the
same as computing them from N (f MLE, 1y (f T)_l).

n
Cost.I(f€Cy M) =095 = Psu(fl€C,)—0095

(Bayesian credible set) (Frequentist confident set)

1
|Chlpa = OP/-T ( ﬁ) (Optimal diameter)



Consistency of nonparametric Bayesian methods

e If f is a function the BvM theorem does not hold in the L? sense:
Cox (1993), and Diaconis & Freedman (1999).

@ Castillo and Nickl (2013, 2014) showed for direct models that,
while BvM results do not hold in L2, they can hold in larger spaces,
such as Sobolev spaces H™*, with s > d/2.

@ Coverage of the credible sets; Bernstein von Mises type theorems.
Castillo & Nickl (2013, 2014), Ray (2014), Monard, Nickl &
Paternain (2019), Nickl (2018), Nickl & Sohl (2019), Giordano &
Kekkonen (2020).
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