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The algebro-geometric duality

Algebra is but written geometry and geometry is but figured algebra.

Sophie Germain (1776–1831)

The duality between algebra and geometry dates back to the work of Descartes: coordinate system.

Algebraic geometry in the early XX century: Noether, Hilbert (Nullstellensatz, Basissatz):

polynomial equations←→ algebraic variety

Brought forward by Grothendieck.
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A topological duality

For X a compact Hausdorff space, consider

C(X ) := {f : X → C : f is continuous}.

The set C(X ) comes with

vector space structure: for f , g ∈ C(X ) and λ ∈ C

(λf + g)(x) := λf (x) + g(x), ∀x ∈ X ;

commutative product: for f , g ∈ C(X ):

(fg)(x) := f (x)g(x), ∀x ∈ X ;

unit: the function identically equal to 1; and

an involution ∗ : C(X )→ C(X ) given by

f ∗(x) := f (x).
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Commutative C*-algebras

There is a natural norm on the space C(X ), given by

‖f ‖ = sup
x∈X
|f (x)|. (1)

with respect to which C(X ) is a Banach *-algebra.

The norm satisfies

‖f ∗f ‖ = ‖f ‖2.

C(X ) is a commutative C∗-algebra.

Example

Let X consist of n-points. C(X ) ' Cn with the usual vector space structure, coordinate-wise multiplication and

complex conjugation, and norm

‖(z1, . . . zn)‖2 = max{zizi |i = 1, . . . , n}
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Gelfand Duality

Any point P ∈ X can be thought of as a functional

σP : C(X )→ C, σP(f ) := f (P),

and it satisfies

σP(fg) = σP(f )σP(g), σP(1) = 1,

i.e. σP is a character (also, a pure state).

All characters on C(X ) are of this form and the set of characters Σ(C(X )) is homeomorphic to X .

Theorem (Gelfand Duality)

Let A be a commutative unital C∗-algebra. Then there is a *-isomorphism

A ' C(Σ(A))

of commutative C∗-algebras.
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Noncommutative Topology

Definition

A C∗-algebra is a Banach *-algebra A with the property that

‖a∗a‖ = ‖a‖2 ,

for all a ∈ A.

Some examples

The algebra Mn(C) of n × n complex matrices with conjugate transpose and the operator norm

‖A‖ = sup
x∈Cn,‖x‖=1

‖Ax‖;

The algebra B(H) of bounded operators on a Hilbert space, with operator adjoint, and operator norm

‖A‖ = sup
x∈H,‖x‖=1

‖Ax‖;
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Noncommutative Topology

B(H) is the prototypical example of C∗-algebra.

Theorem (Gelfand–Naimark–Seagal)

Let A be a C∗-algebra. Then there exist a Hilbert space H and an injective ∗-homomorphism π : A→ B(H).

Every C∗-algebra can be embedded into the bounded operators on a Hilbert space.

Idea

Motivated from Gelfand duality, look at noncommutative C∗-algebras of operators as algebras of functions on

some noncommutative space.
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The circle algebra

The circle:

S1 := {z ∈ C | zz = 1} .

The C*-algebra C(S1) is the closure of the Laurent polynomials

C[ζ, ζ]

〈ζζ = 1〉
.

We represent C(S1) via multiplication operators on the Hilbert space

H = L2(S1) ' `2(Z).

Under this isomorphism, multiplication by e2πiθ is mapped to the bilateral shift

U(en) = (en+1), U∗(en) = en−1.

C(S1) is the smallest C∗-subalgebra of B(`2(Z)) that contains the unitary U.
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The Toeplitz algebra

Now instead consider the Hilbert space `2(N) and the shift operator

T (en) = (en+1)

Its adjoint is not invertible

T∗(en) =

en−1 n ≥ 1

0 n = 0
.

The Toeplitz algebra T is the smallest C∗-subalgebra of B(`2(N)) that contains T . It is not commutative since

T∗T = Id and TT∗ = 1− Pker(T∗).
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The Toeplitz extension

Elements of T commute up to compact operators:

0 // K(`2(N)) // T π // C(S1) // 0.

The spectrum Σ(T ) (defined as the set of pure states) is the disk D ⊆ C.

The algebra C(S1) is the "boundary" of a noncommutative disk.
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The Noncommutative Geometry dictionary

Topology Operator algebra

topological space C∗-algebra

point pure state

vector bundle finitely generated projective module

topological K-theory operator K-theory

Hermitian vector bundle finitely generated projective Hilbert module

circle bundle Cuntz–Pimsner algebra

sphere bundle Subproduct Systems
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1 Trading spaces for algebras

2 Classical and noncommutative circle bundles

3 Towards noncommutative sphere bundles: SU(2) subproduct sytstems
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The Hopf bundle I

Principal circle bundle

S1 ↪→ S3 π−→ S2

Look at S3 inside C2:

S3 := {(z1, z2) ∈ C2 | z1z1 + z2z2 = 1}.

Circle action defined component-wise: for every λ ∈ S1,

αλ(z1, z2) = (λz1, λz2).

The orbit space is the two sphere S2.

In physics: connections on the Hopf bundle describe magnetic monopole potentials.
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Peter–Weyl decomposition

The Hopf projection π : S3 → S2 dualises to an inclusion of C∗-algebras

C(S2)
ι
↪→ C(S3).

Circle action on C(S3), such that C(S2) is the fixed point algebra. The coordinate algebra

C(S3) ⊇ O(S3) :=
C[z1, z2, z1, z2]

〈z1z1 + z2z2 = 1〉

admits a vector space decomposition

O(S3) '
⊕
n∈Z
Ln

where each Ln is the space of elements of O(S3) that transform under the circle action as

φ 7→ λ−nφ, ∀λ ∈ S1
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Peter–Weyl decomposition

Each Ln is a bimodule over L0 ' O(S2) and it is finitely generated projective.

The condition that the bundle is principal translates into the algebraic condition that the grading

O(S3) '
⊕
n∈Z
Ln

is strong, i.e.

Ln ⊗L0 Lm ' Ln+m.

This is in turn equivalent to invertibility of the module L1:

L1 ⊗L0 L−1 ' L0 ' L−1 ⊗L0 L1.

The Peter–Weyl decomposition allows to decompose the coordinate algebra of a circle bundle into sums of

powers of line bundles and to characterise principal circle bundles. Many C∗-algebras have this structure.
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Hilbert modules

Hilbert modules generalize the notion of Hilbert space with the field C replaced by a C∗-algebra B.

A Hilbert module is a pair (E , 〈 , 〉B), where

E is a right B-module with an Hermitian B-valued inner product; and

E is complete in the norm

‖ξ‖2 := ‖〈ξ, ξ〉B‖2.

Operations on Hilbert modules: direct sums, tensor products.

The adjointable operators

End∗(E) := {T : E → E | ∃T∗ : E → E : 〈Tξ, η〉 = 〈ξ,T∗η〉},

form a C∗-algebra.
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Noncommutative line bundles

Define the C∗-algebraic dual

E∗ := {λξ, ξ ∈ E | λξ(η) = 〈ξ, η〉} ⊆ Hom∗(E ,B).

Let E be a finitely generated projective Hilbert bimodule over a unital C∗-algebra B.

We say that E is a self-Morita equivalence over B if

E ⊗B E∗ ' B ' E∗ ⊗B E .

Example

Let B = C(X ). Then E = Γ(L), the module of sections of a Hermitian line bundle L→ X is a self-Morita

equivalence over B.

F. Arici (Leiden), A non-commutative approach to the topology of circle and sphere bundles 15 / 27



Trading spaces for algebras Classical and noncommutative circle bundles Towards noncommutative sphere bundles: SU(2) subproduct sytstems

The Toeplitz algebra

Out of internal tensor products, construct

F(E) := B ⊕
⊕
n≥1

E⊗n

For every ξ ∈ E define the shift operators by

Tη(ξ1 ⊗ · · · ξn) = η ⊗ ξ1 ⊗ · · · ξn, Tηb = η · b.

They are adjointable operators on F(E).

Definition

The Toeplitz algebra TE is the smallest C∗-subalgebra of End∗(F(E)) that contains all the shifts.
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The Cuntz–Pimsner Algebra

If E is a self-Morita equivalence bimodule, we can define the two-sided Fock module

FZ(E) :=
⊕
n∈Z

E (n)

where E (n) := E⊗n for n > 0, E (0) = B and E (n) := (E∗)⊗n for n < 0.

On FZ(E) we consider bilateral shift operators Sξ, ξ ∈ E .

Definition

The Cuntz–Pimsner algebra of E , denoted OE , is the smallest C∗-subalgebra of End∗(FZ(E)) which contains

all the bilateral shift operators.

We have an exact sequence of C∗-algebras

0 // K(F(E)) // TE
π // OE

// 0.
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Cuntz–Pimsner algebras as quantum circle bundles

Both TE and OE come endowed with a circle action.

We denote by OγE the fixed point algebra for this action.

Proposition (A.–Rennie)

E is a self-Morita equivalence bimodule if and only if OγE ' B.

Theorem (A.–Kaad–Landi)

Pimsner algebras of self-Morita equivalences are quantum principal circle bundles.

Examples: q-deformations
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Cuntz–Pimsner algebras as quantum circle bundles

The six-term exact sequence in operator K-theory

K0(A)
1−[X ]−−−−−→ K0(A)

j∗−−−−−→ K0(OX )

[∂]

x y[∂] ,

K1(OX ) ←−−−−−
j∗

K1(A) ←−−−−−
1−[X ]

K1(A)

is a noncommutative analogue of the topological K-theory Gysin sequence for a circle bundle P → X coming

from the Hermitian line bunlde L.

K0(X )
1−[L]−−−−−→ K0(X )

j∗−−−−−→ K0(P)

[∂]

x y[∂] ,

K1(P) ←−−−−−
j∗

K1(X ) ←−−−−−
1−[L]

K1(X )
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Extending the Toeplitz extension

0 // K(`2(N)) // T π // C(S1) // 0.

Cuntz Pimsner algebras of (injective)

C∗-correspondences.

0 // K(F (E))
j // TE

π // OE
// 0.

Arveson’s Toeplitz extensions for odd-dimensional

spheres.

0 // K(H2
d )

j // Td
π // C(S2d−1) // 0.

All these are examples of the defining extensions for Cuntz–Pimsner algebras of subproduct systems
(Shalit and Solel 2009, Viselter 2012).
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The Toeplitz extensions for odd spheres

Let d ∈ N0, and z0, . . . , zd−1 commuting variables, and consider the space of polynomials C[z0, . . . , zd−1].

For z = (z0, ..., zd−1) and every multi-index α = (α0, . . . , αd−1) ∈ Nd
0 we write

zα = zα0
0 · · · z

αd−1
d−1 .

The Drury–Arveson space H2
d is a completion of the polynomials C[z0, . . . , zd−1], w.r.t. the inner product

〈zα, zβ〉 = δα,β
α!

|α!|

It can be identified with the space of holomorphic functions f : Bd ⊆ Cd → C which have a power series

f (z) =
∑
α cαzα satisfying

‖f ‖2d :=
∑
α

|cα|2
α!

|α!|
<∞.

Clearly, H2
d ' Fsym(Cd ) :=

⊕
n≥0 Symn(Cd ), the d-symmetric Fock space.
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The Toeplitz extensions for odd spheres

On H2
d , we consider the d-shift, a d-tuple of multiplication operators given by

Mz = (Mz0 , . . . ,Mzd−1 ).

Through H2
d ' Fsym(Cd ), the shift operator is identified with a compression of the shift on the full Fock space,

that we denote by T = (T0, . . . ,Td−1).

The d-shift satisfies the following properties:

T is commuting: TiTj = TjTi .∑d−1
i=0 TiT

∗
i = 1− PC

T is essentially normal:

T∗i Tj − TjT
∗
i = (1 + N)−1(δij1− TjT

∗
i ),

where N is the number operator: Nξ = nξ for ξ ∈ Symn(Cd ).
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The Toeplitz extensions for odd spheres

Theorem (Arveson 1998)

Let Td = C∗(1,T ) be the C∗-algebra generated by the d-shift. We have an exact sequence of C∗-algebras

0 // K(H2
d ) // Td

// C(S2d−1) // 0 , (2)

where C(S2d−1) is the commutative C∗-algebra of continuous functions on the (2d − 1)-sphere

S2d−1 = ∂Bd ⊆ Cd .

Odd-dimensional sphere as "boundaries" of a noncommutative C∗-algebras of operators.

Example of a subproduct system extension.
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Subproduct sytems from SU(2)-representations

Work in progress with J. Kaad (SDU Odense)

For a given n ≥ 0, consider the irreducible representation ρn : SU(2)→ U(Ln). Where Ln = (C2)⊗Sn.

We define the determinant of the representation:

det(τ,H) = {ξ ∈ H ⊗ H |
(
τ(g)⊗ τ(g)

)
ξ = ξ ∀g ∈ SU(2)}.

We inductively construct a family of Hilbert spaces where

E0 = C;

E1 = Ln;

Em := K⊥m ⊆ (Ln)⊗m, where

Km =

m−2∑
i=0

L⊗i
n ⊗ D ⊗ L

⊗(m−i−2)
n , D := det(ρn, Ln).
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Subproduct sytems from SU(2)-representations

We construct the Fock space FE :=
⊕

m≥0 Em(ρn, Ln).

We let {ej}nj=0 denote the orthonormal basis for Ln and consider the associated Toeplitz operators:

Ti := Tei : FE → FE Ti (ζ) := ι∗1,m(ei ⊗ ζ), ζ ∈ Em(ρn, Ln).

where ι1,m : Em+1 → E1⊗Em, for m ∈ N0.

Definition

The Toeplitz algebra of the subproduct system TE the unital C∗-algebra generated by the Toeplitz operators.

It comes with a natural SU(2)-action so that we have an equivariant SU(2)-extension of C∗-algebras:

0 // K(FE ) // TE
q // OE

// 0. (3)
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Subproduct sytems from SU(2)-representations

Theorem (A–Kaad 2020)

Let TE be the Toeplitz algebra of the SU(2)-product system of an irreducible representation. Then TE and C
are KK -equivalent (i.e. the same in K-theory and K-homology) in an SU(2)-equivariant way.

We have Gysin-type exact sequence

0 // K1(O)
([F ]⊗̂K(F )·)◦∂ // K0(C)

1C−[Ln ]+[det(ρn,Ln)] // K0(C)
i∗ // K0(O) // 0

for every n ∈ N.

Note that the Euler class comprises of three terms, as we would expect classically!
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Outlook

C∗-algebras provide an elegant setting for problems in geometry and topology.

Within the NCG dictionary, Cuntz–Pimsner algebras are a model for circle bundles.

Cuntz–Pimsner algebas of subproduct systems are suitable to encode spherical symmetries.
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