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Trading spaces for algebras
The algebro-geometric duality

Algebra is but written geometry and geometry is but figured algebra.

Sophie Germain (1776-1831)

N
.
The duality between algebra and geometry dates back to the work of Descartes: coordinate system.
Algebraic geometry in the early XX century: Noether, Hilbert (Nullstellensatz, Basissatz):

polynomial equations <— algebraic variety

Brought forward by Grothendieck.
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Trading spaces for algebras
A topological duality
For X a compact Hausdorff space, consider

C(X):={f: X = C: f is continuous}.

The set C(X) comes with

m vector space structure: for f,g € C(X) and A € C
(M +8)(x) == X(x) +g(x),  VxEX;
m commutative product: for f,g € C(X):
(fe)(x) = f(x)g(x), VxeX;

m unit: the function identically equal to 1; and

m an involution * : C(X) — C(X) given by
*(x) = f(x).
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Commutative C*-algebras
There is a natural norm on the space C(X), given by
1l = sup [f(x)- 1)
xeX

with respect to which C(X) is a Banach *-algebra.

The norm satisfies

C(X) is a commutative C*-algebra.

Example
Let X consist of n-points. C(X) =~ C" with the usual vector space structure, coordinate-wise multiplication and

complex conjugation, and norm

I? = max{zz |i=1,...,n}

I(za, . 2n)
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Gelfand Duality

Any point P € X can be thought of as a functional
op: C(X)—C, op(f):=fF(P),

and it satisfies
op(fg) = op(f)op(g), op(l)=1,

i.e. op is a character (also, a pure state).

All characters on C(X) are of this form and the set of characters X(C(X)) is homeomorphic to X.

Theorem (Gelfand Duality)

Let A be a commutative unital C*-algebra. Then there is a *-isomorphism

of commutative C*-algebras.
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Noncommutative Topology

Definition

A C*-algebra is a Banach *-algebra A with the property that

for all a € A.

Some examples

m The algebra M;(C) of n x n complex matrices with conjugate transpose and the operator norm

[Al= " sup [lAx];
x€Cn,||x||=1

m The algebra B(H) of bounded operators on a Hilbert space, with operator adjoint, and operator norm

A= sup [|Ax|
x€H,||x]|=1
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Noncommutative Topology

B(H) is the prototypical example of C*-algebra.
Theorem (Gelfand—Naimark—Seagal)

Let A be a C*-algebra. Then there exist a Hilbert space H and an injective x-homomorphism m : A — B(H).
Every C*-algebra can be embedded into the bounded operators on a Hilbert space.
Idea

Motivated from Gelfand duality, look at noncommutative C*-algebras of operators as algebras of functions on

some noncommutative space.
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Trading spaces for algebras
The circle algebra
The circle:
St:={zeC|zz=1}.

The C*-algebra C(S?) is the closure of the Laurent polynomials

cled
=1

We represent C(S*) via multiplication operators on the Hilbert space
H = L%(S) ~ 3(z).

Under this isomorphism, multiplication by e27i¢

is mapped to the bilateral shift
U(en) = (en+1), U™(en) = ep—1.

C(S%) is the smallest C*-subalgebra of B(¢2(Z)) that contains the unitary U.
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Trading spaces for algebras
The Toeplitz algebra

Now instead consider the Hilbert space ¢2(N) and the shift operator
T(en) = (en+1)

Its adjoint is not invertible

en— n>1
T en) =4 "t "7,
n=0

The Toeplitz algebra T is the smallest C*-subalgebra of B(¢?(N)) that contains T. It is not commutative since

T*T =1dand TT* =1 — Pyey(7).
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Trading spaces for algebras
The Toeplitz extension

Elements of 7 commute up to compact operators:

0 — K(2(N)) — T —> C(5§') ——0.

o
The spectrum X(7) (defined as the set of pure states) is the disk D C C.

The algebra C(S?) is the "boundary" of a noncommutative disk.
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Trading spaces for algebras

The Noncommutative Geometry dictionary

Topology Operator algebra
topological space C*-algebra
point pure state

vector bundle

finitely generated projective module

topological K-theory

operator K-theory

Hermitian vector bundle

finitely generated projective Hilbert module

circle bundle

Cuntz—Pimsner algebra

sphere bundle

Subproduct Systems
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Classical and noncommutative circle bundles

Classical and noncommutative circle bundles
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Classical and noncommutative circle bundles
The Hopf bundle |

Principal circle bundle
Sley 83 Ty 62
Look at S3 inside C2:

s3 .= {(z1,22) € C? | Ziz1 + 222 = 1}.

Circle action defined component-wise: for every A € S,
ax(z1, 22) = (Az1, Az2).
The orbit space is the two sphere S2.

In physics: connections on the Hopf bundle describe magnetic monopole potentials.
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Classical and noncommutative circle bundles

Peter—Weyl decomposition

The Hopf projection 7 : S3 — S2 dualises to an inclusion of C*-algebras
C(5%) <& C(53).
Circle action on C(S3), such that C(S?) is the fixed point algebra. The coordinate algebra

C(S3) ) 0(53) _: (C[21722751272]
- C (matnn=1)

admits a vector space decomposition
o(s*) ~EPLn
n€eZ

where each L, is the space of elements of O(S3) that transform under the circle action as

b= AT, Ve st
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Classical and noncommutative circle bundles

Peter—Weyl decomposition

Each L, is a bimodule over Lo ~ O(5?) and it is finitely generated projective.

The condition that the bundle is principal translates into the algebraic condition that the grading

o)~ P L,

n€Z

is strong, i.e.
L:n ®£0 Lm ~ £n+m-

This is in turn equivalent to invertibility of the module £1:
L1®@ro L1~Lo~L 1R, L1

The Peter—-Weyl decomposition allows to decompose the coordinate algebra of a circle bundle into sums of

powers of line bundles and to characterise principal circle bundles. Many C*-algebras have this structure.
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Classical and noncommutative circle bundles
Hilbert modules

Hilbert modules generalize the notion of Hilbert space with the field C replaced by a C*-algebra B.
A Hilbert module is a pair (E,{, )g), where

m E is a right B-module with an Hermitian B-valued inner product; and

m E is complete in the norm

€112 = 1K€, 8%

Operations on Hilbert modules: direct sums, tensor products.
The adjointable operators
End*(E) :={T:E— E|3T*:E— E:(T&n) =Ty},

form a C*-algebra.
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Noncommutative line bundles

Define the C*-algebraic dual
E* :={X¢, € € E | A¢(n) = (&,m} C Hom™(E, B).
Let E be a finitely generated projective Hilbert bimodule over a unital C*-algebra B.
We say that E is a self~-Morita equivalence over B if
EQgE*~B~E*R®gE.

Example

Let B = C(X). Then E = T(L), the module of sections of a Hermitian line bundle L — X is a self-Morita

equivalence over B.
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The Toeplitz algebra

Out of internal tensor products, construct

F(E):=BaPHE®"

n>1
For every £ € E define the shift operators by
Th(6a® &) =n®&®- &, Tyb=mn-b.

They are adjointable operators on F(E).
Definition

The Toeplitz algebra T is the smallest C*-subalgebra of End*(F(E)) that contains all the shifts.
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The Cuntz-Pimsner Algebra

If E is a self-Morita equivalence bimodule, we can define the two-sided Fock module

Fu(E) = PE™

neZ

where E(") := E®" for n > 0, EO©) = B and E(" := (E*)®" for n < 0.
On Fz(E) we consider bilateral shift operators S¢, £ € E.

Definition

The Cuntz—Pimsner algebra of E, denoted Of, is the smallest C*-subalgebra of End*(Fz(E)) which contains

all the bilateral shift operators.

We have an exact sequence of C*-algebras

0 —— K(F(E)) TE Of 0.
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Cuntz—Pimsner algebras as quantum circle bundles

Both 7g and O come endowed with a circle action.

We denote by OZ the fixed point algebra for this action.
Proposition (A.—Rennie)

E is a self-Morita equivalence bimodule if and only if OZ ~ B.

Theorem (A.—Kaad-Landi)

Pimsner algebras of self-Morita equivalences are quantum principal circle bundles.

Examples: g-deformations




Classical and noncommutative circle bundles

Cuntz—Pimsner algebras as quantum circle bundles

The six-term exact sequence in operator K-theory

Ko(A) —1, Ko(A) —2— Ko(Ox)

ol | e

Ki(Ox) e Ki(A) 41— Ki(A)

is a noncommutative analogue of the topological K-theory Gysin sequence for a circle bundle P — X coming
from the Hermitian line bunlde L.

Kox) 1 kox) —— Ko(P)
or| |@r
K}(P) «—— KY(X) K(X)

Jj* 1—[L]
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Towards noncommutative sphere bundles: SU(2) subproduct sytstems
Extending the Toeplitz extension

0 — K(2(N)) —> T — > C(S') — 0.

Cuntz Pimsner algebras of (injective) Arveson's Toeplitz extensions for odd-dimensional
C*-correspondences. spheres.
0 —> K(F(E)) —2> T — "> Of 0. 0 K(H2) —> Ty — "> C(5%@-1) — 0.

All these are examples of the defining extensions for Cuntz—Pimsner algebras of subproduct systems (> )
(Shalit and Solel 2009, Viselter 2012).
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The Toeplitz extensions for odd spheres

Let d € Np, and z, ..., z4—1 commuting variables, and consider the space of polynomials C[z, ..., z4_1].
For z = (zo, ..., zy—1) and every multi-index a = (a,...,aq4_1) € Ng we write
o _ _og Qd—1
2% =275z,
The Drury—Arveson space Hs is a completion of the polynomials C|z, ..., z4_1], w.r.t. the inner product

o By — 5 O
<Z y Z >_6a,ﬂ|a!‘

It can be identified with the space of holomorphic functions f : BY C C? — C which have a power series

f(z) =3, caz® satisfying
> 5 al
IF13 1= 3 el 57 < oo
«@

Clearly, H2 ~ Feym(C?) := Dn>o Sym"(C?), the d-symmetric Fock space.
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The Toeplitz extensions for odd spheres

On Hg, we consider the d-shift, a d-tuple of multiplication operators given by

Mz = (MZ(M LR Mzd—1)'

Through H2 ~ Fgym (C?), the shift operator is identified with a compression of the shift on the full Fock space,
that we denote by T = (To,..., Tg—1).
The d-shift satisfies the following properties:

m T is commuting: T;T; = T;T;.
s YT T =1 P
m T is essentially normal:
T'T =TT =1+ N) Y61~ T;T)),

where N is the number operator: N¢ = n¢ for £ € Sym"(C?).
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The Toeplitz extensions for odd spheres

Theorem (Arveson 1998)

Let Ty = C*(1, T) be the C*-algebra generated by the d-shift. We have an exact sequence of C*-algebras

0 K(H3) Ty C(5%9-1) ——=o0, 2)

where C(S29=1) is the commutative C*-algebra of continuous functions on the (2d — 1)-sphere
S2d-1 — 9B9 C C“.

Odd-dimensional sphere as "boundaries" of a noncommutative C*-algebras of operators.

Example of a subproduct system extension.
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Subproduct sytems from SU(2)-representations

Work in progress with J. Kaad (SDU Odense)

For a given n > 0, consider the irreducible representation p, : SU(2) — U(L,). Where L, = (C2)®sn.

We define the determinant of the representation:
det(r,H)={¢ e HRH | (t(g) ® 7(g))¢ =& Vg € SU(2)}.

We inductively construct a family of Hilbert spaces where
m Eg =C;
m E; = Lp;
m Ep = K C(Ly)®™, where

m—2
Km= > LE@Do L™ "2 D= det(pn, Ln).
i=0
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Subproduct sytems from SU(2)-representations

We construct the Fock space Fg := @,,~q Em(pn, Ln)-

We let {ej}J’.’:O denote the orthonormal basis for L, and consider the associated Toeplitz operators:
Ti=Te:Fe— Fe Ti(¢) =11 m(e®C), ¢ € Emlpn,Ln).

where t1,m : Emy1 — E1®Em, for m € No.

Definition

The Toeplitz algebra of the subproduct system Tg the unital C*-algebra generated by the Toeplitz operators.

It comes with a natural SU(2)-action so that we have an equivariant SU(2)-extension of C*-algebras:
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Subproduct sytems from SU(2)-representations

Theorem (A-Kaad 2020)

Let Tg be the Toeplitz algebra of the SU(2)-product system of an irreducible representation. Then Tg and C
are KK-equivalent (i.e. the same in K-theory and K-homology) in an SU(2)-equivariant way.

We have Gysin-type exact sequence

([F1®k(Fy-)od 1c—[Lp]+[det(pn,Ln i
0 K1(0) X Ko(C) ettt detomtal)l 0y 5 Ko(0) ——> 0

for every n € N.

Note that the Euler class comprises of three terms, as we would expect classically!
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Outlook

m C*-algebras provide an elegant setting for problems in geometry and topology.

m Within the NCG dictionary, Cuntz—Pimsner algebras are a model for circle bundles.

m Cuntz—Pimsner algebas of subproduct systems are suitable to encode spherical symmetries.




