A non-commutative approach to the topology of circle and sphere bundles

Francesca Arici

VU Mathematics Colloquium December 9, 2020

F. Arici (Leiden), A non-commutative approach to the topology of circle and sphere bundles

The algebro-geometric duality

Algebra is but written geometry and geometry is but figured algebra.

Sophie Germain (1776-1831)

The duality between algebra and geometry dates back to the work of Descartes: coordinate system.

Algebraic geometry in the early XX century: Noether, Hilbert (Nullstellensatz, Basissatz):

polynomial equations \longleftrightarrow algebraic variety

Brought forward by Grothendieck.

A topological duality

For X a compact Hausdorff space, consider

 $C(X) := \{f : X \to \mathbb{C} : f \text{ is continuous}\}.$

The set C(X) comes with

• vector space structure: for $f,g \in C(X)$ and $\lambda \in \mathbb{C}$

$$(\lambda f + g)(x) := \lambda f(x) + g(x), \qquad \forall x \in X;$$

• commutative product: for
$$f, g \in C(X)$$
:

$$(fg)(x) := f(x)g(x), \quad \forall x \in X;$$

- unit: the function identically equal to 1; and
- an involution $*: C(X) \to C(X)$ given by

$$f^*(x):=\overline{f(x)}.$$

Commutative C*-algebras

There is a natural norm on the space C(X), given by

$$|f|| = \sup_{x \in X} |f(x)|.$$
 (1)

with respect to which C(X) is a Banach *-algebra.

The norm satisfies

$$\|f^*f\| = \|f\|^2.$$

C(X) is a commutative C^* -algebra.

Example

Let X consist of *n*-points. $C(X) \simeq \mathbb{C}^n$ with the usual vector space structure, coordinate-wise multiplication and complex conjugation, and norm

$$\|(z_1,\ldots,z_n)\|^2 = \max\{\overline{z_i}z_i \mid i=1,\ldots,n\}$$

Gelfand Duality

Any point $P \in X$ can be thought of as a functional

$$\sigma_P: C(X) o \mathbb{C}, \quad \sigma_P(f) := f(P),$$

and it satisfies

$$\sigma_P(fg) = \sigma_P(f)\sigma_P(g), \quad \sigma_P(1) = 1,$$

i.e. σ_P is a character (also, a pure state).

All characters on C(X) are of this form and the set of characters $\Sigma(C(X))$ is homeomorphic to X.

Theorem (Gelfand Duality)

Let A be a commutative unital C*-algebra. Then there is a *-isomorphism

$$A \simeq C(\Sigma(A))$$

of commutative C*-algebras.

Noncommutative Topology

Definition

A C*-algebra is a Banach *-algebra A with the property that

$$||a^*a|| = ||a||^2$$
,

for all $a \in A$.

Some examples

• The algebra $M_n(\mathbb{C})$ of $n \times n$ complex matrices with conjugate transpose and the operator norm

$$||A|| = \sup_{x \in \mathbb{C}^n, ||x|| = 1} ||Ax||;$$

• The algebra B(H) of bounded operators on a Hilbert space, with operator adjoint, and operator norm

$$||A|| = \sup_{x \in H, ||x|| = 1} ||Ax||;$$

Noncommutative Topology

B(H) is the prototypical example of C*-algebra.

Theorem (Gelfand-Naimark-Seagal)

Let A be a C^{*}-algebra. Then there exist a Hilbert space H and an injective *-homomorphism $\pi : A \to B(H)$.

Every C*-algebra can be embedded into the bounded operators on a Hilbert space.

Idea

Motivated from Gelfand duality, look at noncommutative C*-algebras of operators as algebras of functions on some *noncommutative space*.

The circle algebra

The circle:

$$S^1 := \{z \in \mathbb{C} \mid \overline{z}z = 1\}.$$

The C*-algebra $C(S^1)$ is the closure of the Laurent polynomials

 $rac{\mathbb{C}[\zeta,\overline{\zeta}]}{\langle\overline{\zeta}\zeta=1
angle}.$

We represent $C(S^1)$ via multiplication operators on the Hilbert space

 $H = L^2(S^1) \simeq \ell^2(\mathbb{Z}).$

Under this isomorphism, multiplication by $e^{2\pi \mathrm{i} \theta}$ is mapped to the bilateral shift

$$U(e_n) = (e_{n+1}), \quad U^*(e_n) = e_{n-1}.$$

 $C(S^1)$ is the smallest C*-subalgebra of $B(\ell^2(\mathbb{Z}))$ that contains the unitary U.

The Toeplitz algebra

Now instead consider the Hilbert space $\ell^2(\mathbb{N})$ and the shift operator

$$T(e_n) = (e_{n+1})$$

Its adjoint is not invertible

$$T^*(e_n) = egin{cases} e_{n-1} & n \geq 1 \ 0 & n = 0 \end{cases}.$$

The Toeplitz algebra \mathcal{T} is the smallest C*-subalgebra of $B(\ell^2(\mathbb{N}))$ that contains \mathcal{T} . It is not commutative since

 $T^*T = \text{Id and } TT^* = 1 - P_{\text{ker}(T^*)}.$

The Toeplitz extension

Elements of ${\mathcal T}$ commute up to compact operators:

$$0 \longrightarrow \mathcal{K}(\ell^{2}(\mathbb{N})) \longrightarrow \mathcal{T} \stackrel{\pi}{\longrightarrow} C(S^{1}) \longrightarrow 0.$$

The spectrum $\Sigma(\mathcal{T})$ (defined as the set of pure states) is the disk $\mathbb{D} \subseteq \mathbb{C}$.

The algebra $C(S^1)$ is the "boundary" of a noncommutative disk.

The Noncommutative Geometry dictionary

Topology	Operator algebra
topological space	C*-algebra
point	pure state
vector bundle	finitely generated projective module
topological K-theory	operator K-theory
Hermitian vector bundle	finitely generated projective Hilbert module
circle bundle	Cuntz–Pimsner algebra
sphere bundle	Subproduct Systems

1 Trading spaces for algebras

2 Classical and noncommutative circle bundles

3 Towards noncommutative sphere bundles: SU(2) subproduct sytstems

The Hopf bundle I

Principal circle bundle

$$S^1 \hookrightarrow S^3 \xrightarrow{\pi} S^2$$

Look at S^3 inside \mathbb{C}^2 :

$$S^3 := \{(z_1, z_2) \in \mathbb{C}^2 \mid \overline{z_1}z_1 + \overline{z_2}z_2 = 1\}.$$

Circle action defined component-wise: for every $\lambda \in S^1$,

$$\alpha_{\lambda}(z_1, z_2) = (\lambda z_1, \lambda z_2).$$

The orbit space is the two sphere S^2 .

In physics: connections on the Hopf bundle describe magnetic monopole potentials.

Peter-Weyl decomposition

The Hopf projection $\pi:S^3\to S^2$ dualises to an inclusion of C*-algebras

(

 $C(S^2) \stackrel{\iota}{\hookrightarrow} C(S^3).$

Circle action on $C(S^3)$, such that $C(S^2)$ is the fixed point algebra. The coordinate algebra

$$\mathbb{C}(S^3) \supseteq \mathcal{O}(S^3) := rac{\mathbb{C}[z_1, z_2, \overline{z_1}, \overline{z_2}]}{\langle \overline{z_1} z_1 + \overline{z_2} z_2 = 1
angle}$$

admits a vector space decomposition

$$\mathcal{O}(S^3)\simeq igoplus_{n\in\mathbb{Z}}\mathcal{L}_n$$

where each \mathcal{L}_n is the space of elements of $\mathcal{O}(S^3)$ that transform under the circle action as

(

$$\phi \mapsto \lambda^{-n} \phi, \qquad \forall \lambda \in S^1$$

Peter-Weyl decomposition

Each \mathcal{L}_n is a bimodule over $\mathcal{L}_0 \simeq \mathcal{O}(S^2)$ and it is finitely generated projective.

The condition that the bundle is principal translates into the algebraic condition that the grading

$$\mathcal{O}(S^3)\simeq igoplus_{n\in\mathbb{Z}}\mathcal{L}_n$$

is strong, i.e.

$$\mathcal{L}_n \otimes_{\mathcal{L}_0} \mathcal{L}_m \simeq \mathcal{L}_{n+m}$$

This is in turn equivalent to invertibility of the module \mathcal{L}_1 :

$$\mathcal{L}_{\mathbf{1}} \otimes_{\mathcal{L}_{\mathbf{0}}} \mathcal{L}_{-1} \simeq \mathcal{L}_{\mathbf{0}} \simeq \mathcal{L}_{-1} \otimes_{\mathcal{L}_{\mathbf{0}}} \mathcal{L}_{\mathbf{1}}.$$

The Peter–Weyl decomposition allows to decompose the coordinate algebra of a circle bundle into *sums of powers of line bundles* and to characterise principal circle bundles. Many C*-algebras have this structure.

Hilbert modules

Hilbert modules generalize the notion of Hilbert space with the field \mathbb{C} replaced by a C*-algebra *B*. A Hilbert module is a pair (*E*, \langle , \rangle_B), where

- \blacksquare E is a right B-module with an Hermitian B-valued inner product; and
- E is complete in the norm

 $\|\xi\|^2 := \|\langle \xi, \xi \rangle_B\|^2.$

Operations on Hilbert modules: direct sums, tensor products.

The adjointable operators

$$\mathrm{End}^*(\mathcal{E}):=\{\mathcal{T}:\mathcal{E}
ightarrow\mathcal{E}\mid \exists \mathcal{T}^*:\mathcal{E}
ightarrow\mathcal{E}:\langle \mathcal{T}\xi,\eta
angle=\langle\xi,\mathcal{T}^*\eta
angle\},$$

form a C*-algebra.

Noncommutative line bundles

Define the C*-algebraic dual

$$E^* := \{\lambda_{\xi}, \xi \in E \mid \lambda_{\xi}(\eta) = \langle \xi, \eta \rangle\} \subseteq \operatorname{Hom}^*(E, B).$$

Let *E* be a finitely generated projective Hilbert bimodule over a unital C*-algebra *B*. We say that *E* is a *self-Morita equivalence* over *B* if

 $E \otimes_B E^* \simeq B \simeq E^* \otimes_B E.$

Example

Let B = C(X). Then $E = \Gamma(L)$, the module of sections of a Hermitian line bundle $L \to X$ is a self-Morita equivalence over B.

The Toeplitz algebra

Out of internal tensor products, construct

$$\mathcal{F}(E) := B \oplus \bigoplus_{n \ge 1} E^{\otimes n}$$

For every $\xi \in E$ define the *shift operators* by

$$T_{\eta}(\xi_1 \otimes \cdots \otimes \xi_n) = \eta \otimes \xi_1 \otimes \cdots \otimes \xi_n, \quad T_{\eta}b = \eta \cdot b.$$

They are adjointable operators on $\mathcal{F}(E)$.

Definition

The Toeplitz algebra \mathcal{T}_E is the smallest C*-subalgebra of $\operatorname{End}^*(\mathcal{F}(E))$ that contains all the shifts.

The Cuntz-Pimsner Algebra

If E is a self-Morita equivalence bimodule, we can define the two-sided Fock module

$$\mathcal{F}_{\mathbb{Z}}(E) := \bigoplus_{n \in \mathbb{Z}} E^{(n)}$$

where
$$E^{(n)} := E^{\otimes n}$$
 for $n > 0$, $E^{(0)} = B$ and $E^{(n)} := (E^*)^{\otimes n}$ for $n < 0$.
On $\mathcal{F}_{\mathbb{Z}}(E)$ we consider bilateral shift operators $S_{\mathcal{E}}, \xi \in E$.

Definition

The *Cuntz–Pimsner algebra* of *E*, denoted \mathcal{O}_E , is the smallest C^* -subalgebra of $\operatorname{End}^*(\mathcal{F}_{\mathbb{Z}}(E))$ which contains all the bilateral shift operators.

We have an exact sequence of $\mathsf{C}^*\text{-}\mathsf{algebras}$

$$0 \longrightarrow \mathcal{K}(\mathcal{F}(E)) \longrightarrow \mathcal{T}_E \xrightarrow{\pi} \mathcal{O}_E \longrightarrow 0.$$

Cuntz-Pimsner algebras as quantum circle bundles

Both \mathcal{T}_E and \mathcal{O}_E come endowed with a circle action. We denote by \mathcal{O}_E^{γ} the fixed point algebra for this action.

Proposition (A.-Rennie)

E is a self-Morita equivalence bimodule if and only if $\mathcal{O}_{\mathsf{F}}^{\gamma} \simeq \mathsf{B}$.

Theorem (A.–Kaad–Landi)

Pimsner algebras of self-Morita equivalences are quantum principal circle bundles.

Examples: q-deformations

Cuntz–Pimsner algebras as quantum circle bundles

The six-term exact sequence in operator K-theory

$$\begin{array}{cccc} \kappa_{0}(A) & \xrightarrow{1-[X]} & \kappa_{0}(A) & \xrightarrow{j_{*}} & \kappa_{0}(\mathcal{O}_{X}) \\ & & & & \downarrow^{[\partial]} \uparrow & & & \downarrow^{[\partial]} & , \\ & & & \kappa_{1}(\mathcal{O}_{X}) & \xleftarrow{j_{*}} & \kappa_{1}(A) & \xleftarrow{1-[X]} & \kappa_{1}(A) \end{array}$$

is a noncommutative analogue of the **topological** K-theory Gysin sequence for a circle bundle $P \rightarrow X$ coming from the Hermitian line bundle *L*.

1 Trading spaces for algebras

2 Classical and noncommutative circle bundles

3 Towards noncommutative sphere bundles: SU(2) subproduct sytstems

Extending the Toeplitz extension

$$0 \longrightarrow \mathcal{K}(\ell^{2}(\mathbb{N})) \longrightarrow \mathcal{T} \stackrel{\pi}{\longrightarrow} C(S^{1}) \longrightarrow 0.$$

Cuntz Pimsner algebras of (injective) C*-correspondences. Arveson's Toeplitz extensions for odd-dimensional spheres.

$$0 \longrightarrow \mathcal{K}(F(E)) \xrightarrow{j} \mathcal{T}_E \xrightarrow{\pi} \mathcal{O}_E \longrightarrow 0.$$

$$0 \longrightarrow \mathcal{K}(H_d^2) \xrightarrow{j} \mathcal{T}_d \xrightarrow{\pi} C(S^{2d-1}) \longrightarrow 0.$$

All these are examples of the *defining extensions* for Cuntz–Pimsner algebras of **subproduct systems** (Shalit and Solel 2009, Viselter 2012).

The Toeplitz extensions for odd spheres

Let $d \in \mathbb{N}_0$, and z_0, \ldots, z_{d-1} commuting variables, and consider the space of polynomials $\mathbb{C}[z_0, \ldots, z_{d-1}]$. For $z = (z_0, \ldots, z_{d-1})$ and every multi-index $\alpha = (\alpha_0, \ldots, \alpha_{d-1}) \in \mathbb{N}_0^d$ we write

$$z^{\alpha} = z_0^{\alpha_0} \cdots z_{d-1}^{\alpha_{d-1}}.$$

The Drury–Arveson space H^2_d is a completion of the polynomials $\mathbb{C}[z_0, \ldots, z_{d-1}]$, w.r.t. the inner product

$$\langle z^{lpha}, z^{eta}
angle = \delta_{lpha, eta} rac{lpha !}{|lpha !|}$$

It can be identified with the space of holomorphic functions $f : \mathbb{B}^d \subseteq \mathbb{C}^d \to \mathbb{C}$ which have a power series $f(z) = \sum_{\alpha} c_{\alpha} z^{\alpha}$ satisfying

$$\|f\|_d^2 := \sum_{\alpha} |c_{\alpha}|^2 rac{lpha!}{|lpha!|} < \infty.$$

Clearly, $H^2_d \simeq \mathbb{F}_{\mathrm{sym}}(\mathbb{C}^d) := \bigoplus_{n \ge 0} \operatorname{Sym}^n(\mathbb{C}^d)$, the *d*-symmetric Fock space.

The Toeplitz extensions for odd spheres

On H_d^2 , we consider the *d*-shift, a *d*-tuple of multiplication operators given by

$$Mz = (M_{z_0}, \ldots, M_{z_{d-1}}).$$

Through $H_d^2 \simeq \mathbb{F}_{sym}(\mathbb{C}^d)$, the shift operator is identified with a compression of the shift on the full Fock space, that we denote by $T = (T_0, \ldots, T_{d-1})$.

The *d*-shift satisfies the following properties:

- T is commuting: $T_i T_j = T_j T_i$.
- $\sum_{i=0}^{d-1} T_i T_i^* = 1 P_{\mathbb{C}}$
- T is essentially normal:

$$T_i^* T_j - T_j T_i^* = (1 + N)^{-1} (\delta_{ij} 1 - T_j T_i^*),$$

where N is the number operator: $N\xi = n\xi$ for $\xi \in \text{Sym}^n(\mathbb{C}^d)$.

The Toeplitz extensions for odd spheres

Theorem (Arveson 1998)

Let $\mathbb{T}_d = C^*(1, T)$ be the C*-algebra generated by the d-shift. We have an exact sequence of C*-algebras

$$0 \longrightarrow \mathcal{K}(H_d^2) \longrightarrow \mathbb{T}_d \longrightarrow \mathcal{C}(S^{2d-1}) \longrightarrow 0 , \qquad (2)$$

where $C(S^{2d-1})$ is the commutative C^* -algebra of continuous functions on the (2d-1)-sphere $S^{2d-1} = \partial \mathbb{B}^d \subseteq \mathbb{C}^d$.

Odd-dimensional sphere as "boundaries" of a noncommutative C*-algebras of operators. Example of a *subproduct system* extension.

Subproduct sytems from SU(2)-representations

Work in progress with J. Kaad (SDU Odense)

For a given $n \ge 0$, consider the *irreducible* representation $\rho_n : SU(2) \to U(L_n)$. Where $L_n = (\mathbb{C}^2)^{\otimes_S n}$. We define the determinant of the representation:

$$\det(\tau,H) = \{\xi \in H \otimes H \mid (\tau(g) \otimes \tau(g))\xi = \xi \quad \forall g \in SU(2)\}.$$

We inductively construct a family of Hilbert spaces where

•
$$E_0 = \mathbb{C};$$

$$\bullet E_1 = L_n;$$

•
$$E_m := K_m^{\perp} \subseteq (L_n)^{\otimes m}$$
, where

$$\mathcal{K}_m = \sum_{i=0}^{m-2} \mathcal{L}_n^{\otimes i} \otimes \mathcal{D} \otimes \mathcal{L}_n^{\otimes (m-i-2)}, \qquad \mathcal{D} := \det(\rho_n, \mathcal{L}_n).$$

Subproduct sytems from SU(2)-representations

We construct the Fock space $F_E := \bigoplus_{m>0} E_m(\rho_n, L_n)$.

We let $\{e_i\}_{i=0}^n$ denote the orthonormal basis for L_n and consider the associated Toeplitz operators:

$$T_i := T_{e_i} : F_E \to F_E \quad T_i(\zeta) := \iota_{1,m}^*(e_i \otimes \zeta), \quad \zeta \in E_m(\rho_n, L_n).$$

where $\iota_{1,m}: E_{m+1} \to E_1 \otimes E_m$, for $m \in \mathbb{N}_0$.

Definition

The Toeplitz algebra of the subproduct system $\mathbb{T}_{\mathcal{E}}$ the unital C^{*}-algebra generated by the Toeplitz operators.

It comes with a natural SU(2)-action so that we have an equivariant SU(2)-extension of C*-algebras:

$$0 \longrightarrow \mathbb{K}(F_E) \longrightarrow \mathbb{T}_E \xrightarrow{q} \mathbb{O}_E \longrightarrow 0.$$
(3)

Subproduct sytems from SU(2)-representations

Theorem (A–Kaad 2020)

Let \mathbb{T}_E be the Toeplitz algebra of the SU(2)-product system of an irreducible representation. Then \mathbb{T}_E and \mathbb{C} are KK-equivalent (i.e. the same in K-theory and K-homology) in an SU(2)-equivariant way.

We have Gysin-type exact sequence

$$0 \longrightarrow K_{1}(\mathbb{O}) \xrightarrow{([F] \bar{\otimes}_{\mathbb{K}(F)} \cdot) \circ \partial} K_{0}(\mathbb{C}) \xrightarrow{1_{\mathbb{C}} - [L_{n}] + [\det(\rho_{n}, L_{n})]} K_{0}(\mathbb{C}) \xrightarrow{i_{*}} K_{0}(\mathbb{O}) \longrightarrow 0$$

for every $n \in \mathbb{N}$.

Note that the Euler class comprises of three terms, as we would expect classically!

- C*-algebras provide an elegant setting for problems in geometry and topology.
- Within the NCG dictionary, Cuntz–Pimsner algebras are a model for circle bundles.
- Cuntz-Pimsner algebas of subproduct systems are suitable to encode spherical symmetries.