
Synchrony and Phase Relations in 
Network Dynamics 

 
Ian Stewart, University of Warwick



Parts of this are joint work with: 

Fernando Antoneli 
Dinis Gökaydin 
Alessio Franci 

Martin Golubitsky 
Anastasia Bizyaeva 

Naomi Ehrich Leonard 



Network

 A directed graph whose nodes and arrows are assigned 'types'. 



Network

A directed graph whose nodes and arrows are assigned 'types'. 



Node Space

Assign to each node a state space / phase space / node space Rk. 

There are rules that require certain nodes to have the same node space. For 
technical reasons, this is not just 'same node type'. Same state type. 

Other nodes might have the same node space for 'accidental' reasons. For 
example, all node spaces might be R. 

The current convention is not quite the same as that in earlier literature. 
(For good reasons which I won't go into.) 



Admissible Maps / Vector Fields /ODEs

Dynamics that respects the network diagram and the classification into types. 

Node -> dynamical system 
Node type -> internal dynamic (roughly) 
Identical node symbols -> identical internal dynamics 
 (same formula, same parameters, only variables differ) 

Arrow -> coupling between systems (input/output) 
Arrow type -> type of coupling 
Identical arrow types -> same kind of coupling  
 (same formula, same parameters, only variables differ) 



Examples of  Admissible ODEs

x 1̇ =f(x1,x2) 
x 2̇ =f(x2,x1) 

x 1̇ =f(x1,x2) 
x 2̇ 
=g(x2,x1) 

x 1̇ =f(x1,x1) 
x 2̇ =f(x2,x1) 



x 1̇ =f(x1,x2,x3) 
x 2̇ =f(x2,x1,x3)
x 3̇ =f(x3,x1,x2)  

x 1̇ =f(x1,x3) 
x 2̇ =f(x2,x1)
x 3̇ =f(x3,x2)  

x 1̇ =f(x1,x1,x2) 
x 2̇ =f(x2,x1,x1)
x 3̇ =g(x3,x1,x2)  

means 'symmetric in these variables'convention: first variable is node variable

Examples of  Admissible ODEs



Example: Repressilator

Synthetic Gene Regulatory Network



Rotating wave of 1/3-period phase shifts

Phase pattern

Example: Repressilator



Synchrony and Phase Relations

x 1̇ =f(x1,x2,x3) 
x 2̇ =f(x2,x1,x3)
x 3̇ =f(x3,x1,x2)  
symmetry group D3 = S3

steady

periodic



Synchrony and Phase Relations: Symmetry

NO!Is it also necessary?

Symmetry is sufficient to induce certain synchrony and phase patterns

x  ̇=f(x1,x1) 
x  ̇=f(x2,x1)

trivial symmetry 

Consider the synchrony pattern {{1,2}} 

 x1(t) = x2(t) [= x(t)]  

x  ̇=f(x,x) 
x  ̇=f(x,x) 

If node space has dimension ≥ 2, this can 
have a periodic solution for suitable f



Synchrony Patterns and Cluster Dynamics

x 1̇ =f(x1,x1,x1) 
x 1̇ =f(x1,x1,x1)
x 3̇ =g(x3,x1,x1)  

x 1̇ =f(x1,x1,x1) 
x 2̇ =f(x2,x1,x1)
x 1̇ =g(x1,x1,x2)  

x 1̇ =f(x1,x1,x2) 
x 2̇ =f(x2,x1,x1)
x 3̇ =g(x3,x1,x2)  



x 1̇ =f(x1,x1,x1) 
x 3̇ =g(x3,x1,x1)  

x 1̇ =f(x1,x1,x1) 
x 2̇ =f(x2,x1,x1)
x 1̇ =g(x1,x1,x2)  

the first and third equations  
conflict — no solution

any solution of this ODE gives 
a solution of the original ODE with 
synchrony pattern {{1,2},{3}}

balanced 
colouring

unbalanced 
colouring

Synchrony Patterns and Cluster Dynamics



Let the set of nodes be C = {1,2 ..., n}. 
A colouring is: 
 A set of colours K and a map k: C -> K that assigns a colour k(c) to 
each node c. 
 A partition of the set C. Parts = nodes with same colour. 
 An equivalence relation on C. Nodes related iff same colour. 
All these are equivalent. 

A colouring is balanced if nodes of the same colour have colour-isomorphic 
input sets. 
 Input arrows correspond by a bijection, which preserves arrow-types 
and colours of tail nodes. 
 

Colourings and Balance



Synchrony Spaces

Synchrony Space / Synchrony Subspace 

Let            be a colouring. 

The synchrony space             is the space of all x = (xc) where c is in C, such 
that 
 c and d have the same colour implies xc = xd

These are the states of the network system that have the synchrony 
pattern defined by the colouring.



Basic Theorems on Balanced Colourings

A synchrony space              is invariant under every linear admissible map 
if and only if         is balanced.

The synchrony space           is flow-invariant (invariant under every 
admissible map) if and only if         is balanced.

A vector subspace may be invariant under every linear admissible map 
without being a synchrony space.

A vector subspace is flow-invariant if and only if it is           for some 
balanced coloring       .



Quotient Networks

Given an admissible ODE

x  ̇=f(x) 
We can restrict f to any balanced synchrony space           to obtain  a reduced ODE  

describing the dynamics of the synchronous clusters. [Restriction Theorem] 

Identifying            with coordinates from a set of representatives of the clusters, 
the reduced ODEs are precisely the admissible ODEs for the quotient network 
by        . [Lifting Theorem]

y  ̇=g(y) 



Quotient Network Example

x 1̇ =f(x1,x1,x1) 
x 3̇ =g(x3,x1,x1)  

x 1̇ =f(x1,x1,x2) 
x 2̇ =f(x2,x1,x1)
x 3̇ =g(x3,x1,x2)  

x 1̇ =f(x1,x1,x1) 
x 1̇ =f(x1,x1,x1)
x 3̇ =g(x3,x1,x1)  



Application to Bifurcations

We can use balanced colourings to seek solutions of an admissible ODE 
that have a given synchrony pattern. 

Restrict to the synchrony space, solve there. 

This leads to a variety of bifurcation theorems, asserting the existence of 
such solutions in a 1-parameter family  

of ODEs, as the parameter λ varies. 

x 1̇ =f(x,λ) 



Synchronised Periodic Orbits

Left: rotating wave. Middle: Double frequency in nodes 2 and 4. Right: Double frequency in node 5.

quotient:
3-node,
symmetry
D3 = S3

node 1

node 2

node 3

node 4

node 5



Synchronised Chaos

Left: Time series for chaotic attractor with Z2 symmetry. Middle: Phase plane with nodes 1,3,5 and 
nodes 2,4 exhibiting symmetry on average. Right: Double frequency in node 5.



Orbit Colourings

Synchrony patterns in a bidirectional ring of six nodes. Colors indicate synchronous clusters. The trivial  
pattern, in which all six nodes have distinct colors, is omitted.



Orbit Colourings and Exotic Colourings

Left: 12-node bidirectional ring with NN and NNN  coupling, assumed identical. 
Middle: Orbit coloring by Z6.  
Right: Balanced coloring that is not an orbit coloring.



Orbit Colourings and Exotic Colourings

Exotic 2-colour pattern in NN lattice, 
either Z2 or its mod-8k reduction 
(any k). 

This colouring remains balanced for 
longer-range connections. Arrow-
type given by group orbits under Z2 
semidirect product with D4.



Linear Lattices

Unidirectional

Bidirectional



Linear Lattices

Unidirectional

Bidirectional



Linear Lattices



'Random' Patterns



Square Lattice



Hexagonal Lattice



Square Lattice — Balanced Colourings (Yunjiao Wang & Marty Golubitsky)



Doubly Periodic Quotients – Square Lattice



Doubly Periodic Quotients – Square Lattice



Doubly Periodic Quotients – Square Lattice



Exotic Periodic Pattern



Square NN Lattice – Hyperoctahedral Group



Opinion Networks

Some models of opinion making are based on a network whose nodes form 
an m x n array. Arrows come in four types: 
Node arrows — 'internal' node symbol. 
Row arrows — all-to-all connected in each row, with identical arrow types. 
Column arrows — ditto for columns. 
Diagonal arrows — connect nodes in different rows and different columns. 



Opinion Networks

Columns correspond to  
options j for various choices. 

Rows correspond to agents i  
who assign preferences xij  
to option j. 

These networks have  
symmetry group Sm x Sn. 



Opinion Networks

Consider bifurcations from consensus states to dissensus ones. 

According to equivariant dynamics, these are governed by the irreducible 
representations of the symmetry group. 

Here there are four of these: 

V1 :  All entries xij equal. 

V2 :  All rows the same with row-sum 0. 

V3 :  All columns the same with column-sum 0. 

V4 :  All row-sums and column-sums 0. 



Opinion Networks

Look for steady-state bifurcations from states in V1. 
According to equivariant dynamics, generically the kernel of the Jacobian at 
the bifurcation point is an absolutely irreducible representation of the 
symmetry group. All Vj are absolutely irreducible, and we are looking for 
bifurcations with kernel V4.

Warning 

With network constraints (admissible ODE) this theorem need not apply.  
In this case, however, it does.  

(The linear admissible maps are the same as the linear equivariant maps.)



Opinion Networks

Equivariant Branching Lemma: Generically there is a bifurcating branch for 
each axial subgroup H. This means that the fixed-point space of H intersects 
V4 in a 1-dimensional space. 

Disadvantages: 
1 This is difficult. Complicated group theory. 
2 It omits exotic colourings, not given by fixed-point spaces.



Opinion Networks

It is possible to classify all balanced colourings, modulo the classification of 
Latin rectangles. 

We can then read off the classification of the axial balanced colourings. 

Instead, we use the network structure. 

There is an analogue of the Equivariant Branching Lemma, in which axial 
subgroups are replaced by axial balanced colourings. In this case, these are 
the balanced colourings such that             intersects V4 in a 1-dimensional 
space.



Opinion Networks

I1

I2

I3

J1 J2 J3 J4

A coloring is balanced for Gmn 
provided it is balanced when 
`diagonal' arrows are deleted 
and `node' internal arrows are 
ignored.

A Latin rectangle is an a x b array of coloured nodes, such that:
(a) Each colour appears at least once in every row and every column.
(b) Each row is balanced.
(c) Each column is balanced.



Opinion Networks

Latin rectangle with 3 colors.

This is not a Latin rectangle. 
It satisfies (b) and (c) but not (a).



Opinion Networks



Opinion Networks

Theorem

A colouring of Gmn is balanced if and only if it is conjugate under
Sm x Sn to a tiling by rectangles, meeting along edges, such that:

 
(a) Each rectangle is a Latin rectangle.
 

(b) Distinct rectangles have disjoint sets of colours.



Opinion Networks



Opinion Networks



Opinion Networks: 2xn axial colourings



Opinion Networks: 3xn axial colourings



Opinion Networks: 4xn axial colourings

Can be done, but I'll omit it. However, there are (lots of) exotic colourings for 
n large enough.



Opinion Networks: m x n axial colourings

There is a classification in terms of minimal Latin rectangles. A finite set of 
these generates all possible axial colourings, up to conjugacy.  

The minimal Latin rectangles can be computed by efficient algorithms.
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