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Network

A directed graph whose nodes and arrows are assigned 'types’.
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Node Space

Assign to each node a state space / phase space / node space Rk,

There are rules that require certain nodes to have the same node space. For
technical reasons, this is not just 'same node type'. Same state type.

Other nodes might have the same node space for 'accidental’' reasons. For
example, all node spaces might be R.

The current convention is not quite the same as that in earlier literature.
(For good reasons which | won't go into.)



Admissible Maps / Vector Fields /ODEs

Dynamics that respects the network diagram and the classification into types.

Node -> dynamical system
Node type -> internal dynamic (roughly)
Identical node symbols -> identical internal dynamics
(same formula, same parameters, only variables differ)

Arrow -> coupling between systems (input/output)
Arrow type -> type of coupling
Identical arrow types -> same kind of coupling
(same formula, same parameters, only variables differ)



Examples of Admissible ODEs
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X.1 =f(X1 !X1)
X.2 =f(X21X1)



Examples of Admissible ODEs
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X'y =Xy, X5,X3) X"y =f(X{,X3) X 4 =f(x1,x:1,x2)
X 5 =f(X5,X4,X3) X 5 =f(X5,X4) X 5 =F(X5,X1,X4)
X 5 =f(X3,X1,X) X5 =f(X5,X5) X 53 =0(X3,X1,X5)

convention: first variable is node variable means 'symmetric in these variables'




Example: Repressilator

Synthetic Gene Regulatory Network
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Example: Repressilator

Rotating wave of 1/3-period phase shifts

Phase pattern
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Synchrony and Phase Relations: Symmetry

Symmetry is sufficient to induce certain synchrony and phase patterns

Is it also necessary? NO! Consider the synchrony pattern {{1,2}}

m Xl(t) = Xz(t) [= x(t)]

@ - @ X =f(x,X)

X" =f(X;,X;) x =f(x,X)
X =f(Xp,X;)

If node space has dimension 2 2, this can

o have a periodic solution for suitable f
trivial symmetry



Synchrony Patterns and Cluster Dynamics
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X'y =fx X, %) Xy =HXGXx) X =F(xg,xg,,)
X o =f(Xp,X(,X,) X5 =f(X,X,X) X', =f(%0,X7, X, )
X'3 =0(Xg,X1,X5) X'z =Q(Xg,X4,Xq) X'y =g(X;,Xy,Xp)



Synchrony Patterns and Cluster Dynamics
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X 4 =1(X1,X1,%4)
X'g =0 (X3,X1,X1)

any solution of this ODE gives
a solution of the original ODE with
synchrony pattern {{1,2},{3}}
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x:1 =f(x1_,_x__1,>> @%

X5 =f(X5,X1,X4)  unbalanced
X'y =09(X4,X1,X5) colouring

the first and third equations
conflict — no solution



Colourings and Balance

Let the set of nodes be C={1,2 ..., n}.
A colouring is:
A set of colours K and a map k: C -> K that assigns a colour k(c) to
each node c.
A partition of the set C. Parts = nodes with same colour.
An equivalence relation on C. Nodes related iff same colour.
All these are equivalent.

A colouring is balanced if nodes of the same colour have colour-isomorphic

input sets.
Input arrows correspond by a bijection, which preserves arrow-types
and colours of tail nodes.



Synchrony Spaces
Synchrony Space / Synchrony Subspace

Let g be acolouring.

The synchrony space AM is the space of all x = (x_) where cis in C, such

that
c and d have the same colour implies x_= X,

These are the states of the network system that have the synchrony
pattern defined by the colouring.



Basic Theorems on Balanced Colourings

A synchrony space AM is invariant under every linear admissible map
if and only if >« is balanced.

The synchrony space AM is flow-invariant (invariant under every
admissible map) if and only if g is balanced.

A vector subspace is flow-invariant if and only if it is /\__for some
balanced coloring g .

A vector subspace may be invariant under every linear admissible map
without being a synchrony space.



Quotient Networks

Given an admissible ODE
X =f(x)
We can restrict f to any balanced synchrony space /\ __ to obtain a reduced ODE

y =g(y)

describing the dynamics of the synchronous clusters. [Restriction Theorem]

Identifying AN with coordinates from a set of representatives of the clusters,
the reduced ODEs are precisely the admissible ODEs for the quotient network
by >q . [Lifting Theorem]



Quotient Network Example

X', =f(x1_,_x_1x2) X'y =H(x.X%) X =f(X{,X1,X4)
X.2 =f(X25X1!X1) X.1 =f(X1!X1=X1) X.3 =g(X3,X1,X1)
X3 =0(X3,X1,Xp) X3 =0(Xg,Xq,X4)



Application to Bifurcations

We can use balanced colourings to seek solutions of an admissible ODE
that have a given synchrony pattern.

Restrict to the synchrony space, solve there.

This leads to a variety of bifurcation theorems, asserting the existence of
such solutions in a 1-parameter family

X, =f(X,\)

of ODEs, as the parameter A varies.



Synchronised Periodic Orbits
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Left: rotating wave. Middle: Double frequency in nodes 2 and 4. Right: Double frequency in node 5.



Synchronised Chaos
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Left: Time series for chaotic attractor with Z, symmetry. Middle: Phase plane with nodes 1,3,5 and
nodes 2,4 exhibiting symmetry on average. Right: Double frequency in node 5.



Orbit Colourings
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Synchrony patterns in a bidirectional ring of six nodes. Colors indicate synchronous clusters. The trivial
pattern, in which all six nodes have distinct colors, is omitted.



Orbit Colourings and Exotic Colourings

Left: 12-node bidirectional ring with NN and NNN coupling, assumed identical.
Middle: Orbit coloring by Z..

Right: Balanced coloring that is not an orbit coloring.



Orbit Colourings and Exotic Colourings

Exotic 2-colour pattern in NN lattice,
either Z2 or its mod-8k reduction
(any k).

This colouring remains balanced for
longer-range connections. Arrow-
type given by group orbits under 22
semidirect product with D,.




Linear Lattices
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Linear Lattices

Theorem 26.4. Let k > 2. Every balanced k-coloring on the bidirectional linear lattice
with NN connections is obtained by repeating one of the following sequences of colors

periodically. (Omil zero and negative terms (k—1), (k—2) for k < 3. When k = 2 lypes
(a) and (b) are the same.)

(a)lz . (k—2)(k—1) k [period k]

(b) 12 ... (k=2) (k=1 k(k—=1) (k=2) ...2 [period 2k — 2]
€12 ... (k=2 (k-1 kk(k-1)(k—2) ...2 [period 2k — 1]
d)112...(k—2)(k—-1)kk(k—1)(k—2) ...2 [period 2k]



Linear Lattices
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Figure 26.5: The four possible quotient networks for balanced k-colorings of Z. In each network, all
nodes have distinct colors 1, 2,..., k.




'Random’ Patterns
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Figure 27.1: Synchrony subspaces of a 2-color 64 x 64 periodic array. Left: The regular pattern. Right:
Interchanges on a random selection of 25 diagonals.
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Square Lattice
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Square lattice with NN coupling.
bidirectional coupling: all couplings identical. Right: Gray diagonal lines indicate NNN couplings.

S

Squares show nodes.

I A

I

A [

Line segments indicate



Hexagonal Lattice
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Figure 27.6: Left: Hexagonal lattice with NN coupling.
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Circles show nodes. Line segments indicate

bidirectional coupling; all couplings identical. Right: Gray diagonal lines indicate NNN couplings.



Square Lattice — Balanced Colourings (Yunjiao Wang & Marty Golubitsky)

Theorem 27.3. For a square lattice with NN coupling, the balanced 2-colorings, up to
symmetry, are the eight doubly periodic patterns in Figure 27.9, together with two infinite
families generated from Figure 27.10 by interchanging black and white on diagonals along
which black and white nodes alternate.




Doubly Periodic Quotients — Square Lattice

Figure 28.1: Left: Balanced 5-coloring of Z? with NN coupling. Right: Balanced 4-coloring of Z? with
NN coupling obtained by merging red and orange colors.
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Figure 28.2: Left Quosient Z2/va of Z2 by the 5 coloring has S5 symmetry and is all to all connected.
Right: Any colering on Z# /04, such as this one, is balanced, so lifts to a balanced colering of Z¢ with the
same lattice periodicity.




Doubly Periodic Quotients — Square Lattice
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Figure 28.13: Staircase tilings by rectangles. Black disc is at the origin. Left: H-tiling, with tiles aligned
in horizontal rows, showing parameters (a,b,c). Right: V-tiling, with tiles aligned in vertical columns.
Thin lines between circles indicate bidirectional arrows.



Doubly Periodic Quotients — Square Lattice

reference | (a,b,c) ant(G) | order comments

(a) (5,1,2) Ss 120 symmetric group of degree 5

(b) (6,1,2) O x Z, |48 full octahedral group = 84 x Zo
(c) (8.1.3)) | SytZ, | 1152  exceptional member of family (f)
(d) (10,1,3) | S5 x Zo | 240 not wreath product

(e) (4.4.0) Zo18s | 384 hyperoctahedral group Bs

(f) (a,1,¢) | Z21 D0 | @242 a>6even, c=% 1

() (a,2,2) ZotD, | a2l @ >4 and even

Table 28.1: Classification of rank-2 sublattices of £ = Z? whose quotient networks have exotic automor-

phisms.



Exotic Periodic Pattern
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Figure 28.16: Case b = 41, a = 1. Left: Horizontal 4-cycles shown in red. vertical 4-cycles in hlne. The
other 4-cycles are standard., Hight: How the nodes and the red and blue 4-cyvcles transform under c.
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Square NN Lattice - Hyperoctahedral Group

O

Figure 28.17: Left: Isomorphism between the quotient network for (4,4,0) and the edge-graph of the
hypercube. Right: Quotient network viewed along a main diagonal to illustrate 120° rotational symmetry.
Nodes 0, 3,9, 10 coincide at the central red node. Dotted edges connect outer nodes to one of these central
nodes. Each solid edge connecting to the central node joins to exactly one of nodes 0, 3,9, 10 according
to the left-hand figure. Colors indicate the component 3-cycles of a.



Opinion Networks

Some models of opinion making are based on a network whose nodes form
an m x n array. Arrows come in four types:

Node arrows — 'internal’ node symbol.

Row arrows — all-to-all connected in each row, with identical arrow types.
Column arrows — ditto for columns.

Diagonal arrows — connect nodes in different rows and different columns.
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Opinion Networks

Issue 1
ssue 2
ssue 3
ssue 4

Columns correspond to

options j for various choices.

voter 1 1
Rows correspond to agents i
who assign preferences x; ~
ez (9) (3) () (7

These networks have
symmetry group S_ xS . voter 3 @ @ @ @



Opinion Networks

Consider bifurcations from consensus states to dissensus ones.

According to equivariant dynamics, these are governed by the irreducible
representations of the symmetry group.

Here there are four of these:

V, : All entries x; equal.
V, : All rows the same with row-sum 0.
V, : All columns the same with column-sum O.

V, : All row-sums and column-sums O.



Opinion Networks

Look for steady-state bifurcations from states in V.

According to equivariant dynamics, generically the kernel of the Jacobian at
the bifurcation point is an absolutely irreducible representation of the
symmetry group. All V, are absolutely irreducible, and we are looking for

bifurcations with kernel V,.

Warning

With network constraints (admissible ODE) this theorem need not apply.
In this case, however, it does.

(The linear admissible maps are the same as the linear equivariant maps.)



Opinion Networks

Equivariant Branching Lemma: Generically there is a bifurcating branch for
each axial subgroup H. This means that the fixed-point space of H intersects
V4 in a 1-dimensional space.

Disadvantages:
1 This is difficult. Complicated group theory.
2 It omits exotic colourings, not given by fixed-point spaces.

B @O

.
~

o



Opinion Networks

Instead, we use the network structure.

There is an analogue of the Equivariant Branching Lemma, in which axial
subgroups are replaced by axial balanced colourings. In this case, these are
the balanced colourings such that AN intersects V, in a 1-dimensional

space.

It is possible to classify all balanced colourings, modulo the classification of
Latin rectangles.

We can then read off the classification of the axial balanced colourings.



Opinion Networks

J, J, R

| OO 0O 0O0O000O00

A coloring is balanced for G, OO0 00000000
provided it is balanced when L OO OO0 OO0 00
‘diagonal' arrows are deleted OO OO0 0O00O0o
and ‘node’internal arrows are |, () O O OO OO O OO
ignored. OO OO0 0O00O0I0

A Latin rectangle is an a x b array of coloured nodes, such that:

(a) Each colour appears at least once in every row and every column.
(b) Each row is balanced.

(c) Each column is balanced.



Opinion Networks

Latin rectangle with 3 colors.

This is not a Latin rectangle.
It satisfies (b) and (c) but not (a).



Opinion Networks

order | number

1
1
1
4
56
0,408
16,942,080
535,281.401.856
377,597 570,964,258 816
10 | 7,580,721,483,160,132,811,489,280
1 | 5,363,937,773,277,371,298,119,673,540,771,840

— = O 00 ~] O O = W v =~

Table 1: numbers of reduced Latin squares of order n



Opinion Networks

Theorem

A colouring of G, is balanced if and only if it is conjugate under
S, XS, to atiling by rectangles, meeting along edges, such that:

(a) Each rectangle is a Latin rectangle.

(b) Distinct rectangles have disjoint sets of colours.



Opinion Networks

Theorem 3.1. The azial colorings on the dissensus space are as follows:

(a)

(b)

[ By By ] where By is a rectangle with only one color (Y ) and B, s a Latin

rectangle with two colors (R, B). On state space, all rows and columns of B, sum

to zero. Possibly By s empty.

¥
B,

with two colors (R, B). On state space, all rows and columns of B, sum to zero.

Possibly By is empty; if so, this is the same as (a) with empty By.

By By
B B
angles are color-disjoint. The row- and column-sum conditions then imply three
independent linear conditions on the four variables corresponding to the colors

} where By is a rectangle with only one color (Y ) and B, is a Latin rectangle

where the B;; are rectangles with only one color and the four rect-



Opinion Networks

|| =a,|l] =b=m—a,|J;| =¢, and |Jo| =d = n — ¢. Here all of a,b,¢,d > 0. Let
the colors be R for By, B for By, G for By, and Y for By;. Then the column- and
row-sums imply

0 = azg+bxp rp = =—CSzp

0 = azxqg+bry rTa = —gg;R

0 = cxrr+drg Ly = —5.’1,'3 = SSJ,R
0 = ch—I-d:z:y



Opinion Networks: 2xn axial colourings

CO0000000
00000000

CO00000®
C0000000



Opinion Networks: 3xn axial colourings

CO0000000
000000000
CO0000000

OCO00000OC 0000000
00000000 0000000
000000006 00000000



Opinion Networks: 4xn axial colourings

Can be done, but I'll omit it. However, there are (lots of) exotic colourings for
n large enough.




Opinion Networks: m x n axial colourings

There is a classification in terms of minimal Latin rectangles. A finite set of
these generates all possible axial colourings, up to conjugacy.

The minimal Latin rectangles can be computed by efficient algorithms.
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