Justifying conditional inference in time series models

Eric Beutner joint work with Alexander Heinemann and Stephan Smeekes based on publication Electronic Journal of Statistics (2021), 15, 2517-2565

Mathematics colloquium VU Amsterdam, March 30, 2022

A simple yet instructive model

A simple yet instructive model

One of the simplest time series models is the AR(1) process given by

$$X_t = \beta X_{t-1} + \varepsilon_t$$

with $|\beta| < 1$ and $\varepsilon_t \stackrel{iid}{\sim} N(0, \sigma_{\varepsilon}^2)$.

A simple yet instructive model

One of the simplest time series models is the AR(1) process given by

$$X_t = \beta X_{t-1} + \varepsilon_t$$

with $|\beta| < 1$ and $\varepsilon_t \stackrel{iid}{\sim} N(0, \sigma_{\varepsilon}^2)$.

Of interest could be:

- Prediction interval for βX_T(= E[X_{T+1}|X_T]),
 i.e. (unconditional inference);
- Or an interval containing the conditional expectation of X_{T+1} given the past, i.e. βx_T (conditional inference).

Which one is better?

Which one is better? Intuitively, the latter is more appropriate because it uses more information and hence will lead to more informative intervals.

- Which one is better? Intuitively, the latter is more appropriate because it uses more information and hence will lead to more informative intervals.
- This is indeed true.

level $1 - \alpha$	length for βX_T	expected length for βx_T
0.90	3.193	2.625
0.95	4.374	3.123
0.99	7.210	4.110

- Which one is better? Intuitively, the latter is more appropriate because it uses more information and hence will lead to more informative intervals.
- This is indeed true.

level $1 - \alpha$	length for βX_T	expected length for βx_T
0.90	3.193	2.625
0.95	4.374	3.123
0.99	7.210	4.110

- Calculations based on treating βX_T to be a product of two independent normals (second column).
- Ignoring the influence of x_T on the distribution of β_T (third column).

• Conditional Confidence interval (CCI) for $\mathbb{E}[X_{T+1}|X_T = x_T] = \beta x_T$ based on the approximation

$$\frac{\sqrt{T}(\hat{\beta}(\mathbf{X}_T)x_T - \beta x_T)}{\sqrt{1 - \hat{\beta}(\mathbf{X}_T)^2}} = x_T \frac{\sqrt{T}(\hat{\beta}(\mathbf{X}_T) - \beta)}{\sqrt{1 - \hat{\beta}(\mathbf{X}_T)^2}} \approx N(0, x_T^2),$$

where $X_T = (X_T, X_{T-1}, ..., X_1)$.

• Conditional Confidence interval (CCI) for $\mathbb{E}[X_{T+1}|X_T = x_T] = \beta x_T$ based on the approximation

$$\frac{\sqrt{T}(\hat{\beta}(\mathbf{X}_{T})x_{T}-\beta x_{T})}{\sqrt{1-\hat{\beta}(\mathbf{X}_{T})^{2}}} = x_{T}\frac{\sqrt{T}(\hat{\beta}(\mathbf{X}_{T})-\beta)}{\sqrt{1-\hat{\beta}(\mathbf{X}_{T})^{2}}} \approx N(0, x_{T}^{2}),$$

where
$$X_T = (X_T, X_{T-1}, ..., X_1).$$

- Points of attention:
 - No limit on the rhs, N(0, x²_T) will not approach a fixed distribution;
 - Inconsistency on the lhs as the observed x_T and the random X_T appear;
 - Because of x_T lhs needs to be treated as a conditional distribution.

Example 2: GARCH(1,1)

•
$$X_t = \sigma_t \varepsilon_t$$
 with $\varepsilon_t \sim i.i.d.(0,1)$ and

$$\sigma_t^2 = \omega + \alpha X_{t-1}^2 + \beta \sigma_{t-1}^2.$$

• **Goal:** CCI for
$$\sigma_{T+1|T}^2 = \mathbb{E}[X_{T+1}^2 | \mathbf{X}_T = \mathbf{x}_T]$$
.

Example 2: GARCH(1,1)

•
$$X_t = \sigma_t \varepsilon_t$$
 with $\varepsilon_t \sim i.i.d.(0,1)$ and

$$\sigma_t^2 = \omega + \alpha X_{t-1}^2 + \beta \sigma_{t-1}^2.$$

• Goal: CCI for
$$\sigma_{T+1|T}^2 = \mathbb{E}[X_{T+1}^2 | \mathbf{X}_T = \mathbf{x}_T].$$

The recursive structure implies

$$\sigma_{T+1|T}^2 = \psi_n(\mathbf{x}_T; \theta) = \omega \frac{1-\beta^T}{1-\beta} + \alpha \sum_{k=0}^{\infty} \beta^k x_{T-k}^2.$$

• With an estimator $\hat{\theta}(\mathbf{X}_{\mathcal{T}})$ for $\theta = (\omega, \alpha, \beta)'$ we have

$$\hat{\sigma}_{T+1|T}^2 = \psi_n(\mathbf{x}_T; \hat{\theta}(\mathbf{X}_T)).$$

Problem even more severe because now $\mathbf{x}_T = (x_T, x_{T-1}, ...)$ and \mathbf{X}_T appear.

General set-up

- Object of interest $\psi_{T+1|T}(x_T, x_{T-1}, \ldots; \theta)$.
- ► If infeasible look at $\psi_{T+1|T}^{s}(x_T, x_{T-1}, \dots, x_1, s_0, s_{-1} \dots; \theta)$.
- Still infeasible because of θ .
- With an estimator $\hat{\theta}(\mathbf{X}_{\mathcal{T}})$ the problematic version would be

$$\hat{\psi}_{T+1|T}^{s}\left(x_{T}, x_{T-1}, \ldots, x_{1}, s_{0}, s_{-1} \ldots; \hat{\theta}(\mathbf{X}_{T})\right).$$

 For the AR(1) Kreiss points out that researchers approximate the distribution of

$$\hat{\beta}(\mathbf{X}_T) x_T - \beta x_T$$

rather than the distribution of

$$\hat{\beta}(\mathbf{X}_T)X_T - \beta X_T$$
 given $X_T = x_T$

and that approximating the latter seems to be rather cumbersome because even the rather simple condition $X_T = x_T$ has an influence on the whole series X_1, \ldots, X_T .

▶ Phillips (1979) approximates the conditional distribution by Edgeworth expansion; works only under $\varepsilon_t \stackrel{iid}{\sim} N(0, \sigma_{\varepsilon}^2)$.

The standard approach takes a shortcut as follows: "... the series used for estimation of parameters and the series used for prediction are generated from two independent processes which have the same stochastic structure." - Lewis and Reinsel (1985), Lütkepohl (2005), Dufour and Taamouti (2010).

- The standard approach takes a shortcut as follows: "... the series used for estimation of parameters and the series used for prediction are generated from two independent processes which have the same stochastic structure." - Lewis and Reinsel (1985), Lütkepohl (2005), Dufour and Taamouti (2010).
- The standard approach then proceeds by using the distribution theory for

$$\hat{\psi}_{T+1|T}^{s}\left(x_{T}, x_{T-1}, \ldots, x_{1}, s_{0}, s_{-1} \ldots; \hat{\theta}(\mathbf{Y}_{T})\right),$$

with \mathbf{Y}_T independent of (X_t) and applies it to

$$\hat{\psi}_{T+1|T}^{s}\left(x_{T}, x_{T-1}, \ldots, x_{1}, s_{0}, s_{-1} \ldots; \hat{\theta}(\mathbf{X}_{T})\right).$$

- The standard approach takes a shortcut as follows: "... the series used for estimation of parameters and the series used for prediction are generated from two independent processes which have the same stochastic structure." - Lewis and Reinsel (1985), Lütkepohl (2005), Dufour and Taamouti (2010).
- The standard approach then proceeds by using the distribution theory for

$$\hat{\psi}_{T+1|T}^{s}\left(x_{T}, x_{T-1}, \ldots, x_{1}, s_{0}, s_{-1} \ldots; \hat{\theta}(\mathbf{Y}_{T})\right),$$

with \mathbf{Y}_T independent of (X_t) and applies it to

$$\hat{\psi}_{T+1|T}^{s}\left(x_{T}, x_{T-1}, \ldots, x_{1}, s_{0}, s_{-1} \ldots; \hat{\theta}(\mathbf{X}_{T})\right).$$

- not consistent (or like Pesaran phrases (2015) it "the particular assumptions that underlie the standard approach are not fully recognized.")
- Can one find another way to justify these CCIs?

Sample split approach

SPL estimator:

$$\hat{\psi}_{T+1|T}^{SPL}\left(x_{T},\ldots,x_{T_{P}},s_{T_{P}-1},\ldots,\hat{\theta}(X_{1:T_{E}})\right)$$

Results in meaningful probabilistic statements because

$$\sqrt{T_E} \left[\hat{\psi}_{T+1|T}^{SPL} \left(x_T, \dots, x_{T_P}, s_{T_P-1}, \dots, \hat{\theta}(X_{1:T_E}) \right) - \psi_{T+1|T}^{SPL} \left(x_T, \dots, x_{T_P}, s_{T_P-1}, \dots, \theta \right) \right].$$

does have non-degenerate (conditional) distributions.

Remains the issue with 'varying limit'.

- Remains the issue with 'varying limit'.
- ► Usual definition of convergence in distribution F_T(x) → F(x) for all continuity points: not convenient to generalize.

- Remains the issue with 'varying limit'.
- ► Usual definition of convergence in distribution F_T(x) → F(x) for all continuity points: not convenient to generalize.
- ► However, we know that convergence in distribution can be metricized as it is equivalent to d_{BL}(F_T, F) → 0 with

$$d_{BL}(F,G) = \sup\left\{\left|\int fd(F-G)\right|: ||f||_{BL} \leq 1\right\}.$$

This can be generalized to two sequences: Two sequences of probability measures F_T, G_T merge if and only if d_{BL}(F_T, G_T) → 0 (Dudley (1968)).

Only one more thing needs to be taken into account.

Only one more thing needs to be taken into account.

- The distributions we look at are conditional distributions not fixed ones as in the merging definition on the previous slide.
- May remind the statistics group of the bootstrap where inference is also conditionally on the sample.

Only one more thing needs to be taken into account.

- The distributions we look at are conditional distributions not fixed ones as in the merging definition on the previous slide.
- May remind the statistics group of the bootstrap where inference is also conditionally on the sample.
- ▶ This suggests the following: Two sequences of random cdfs F_T, G_T merge in probability if and only if $d_{BL}(F_T, G_T) \xrightarrow{\mathbb{P}} 0$.

Theorem Under some regularity conditions the conditional distributions of

$$\sqrt{T_E} \left[\hat{\psi}_{T+1|T}^{SPL} \left(x_T, \dots, x_{T_P}, s_{T_P-1}, \dots, \hat{\theta}(X_{1:T_E}) \right) - \psi_{T+1|T}^{SPL} \left(x_T, \dots, x_{T_P}, s_{T_P-1}, \dots, \theta \right) \right].$$

 and

$$\sqrt{T} \Big[\hat{\psi}_{T+1|T}^{\mathfrak{s}} \left(x_{T}, x_{T-1}, \dots, x_{1}, \mathfrak{s}_{0}, \mathfrak{s}_{-1} \dots; \hat{\theta}(\mathbf{Y}_{T}) \right) \\ \hat{\psi}_{T+1|T}^{\mathfrak{s}} \left(x_{T}, x_{T-1}, \dots, x_{1}, \mathfrak{s}_{0}, \mathfrak{s}_{-1} \dots; \theta \right) \Big]$$

merge in probability.

Interval construction

Theorem Under some regularity conditions the intervals

$$\left[\hat{\psi}_{T+1|T}^{s} - \frac{(\hat{F}_{T}^{STA})^{-1}(1-\gamma_{2})}{\sqrt{T}}, \, \hat{\psi}_{T+1|T}^{s} - \frac{(\hat{F}_{T}^{STA})^{-1}(\gamma_{1})}{\sqrt{T}}\right]$$

and

$$\left[\hat{\psi}_{T+1|T}^{SPL} - \frac{(\hat{F}_{T}^{SPL})^{-1}(1-\gamma_{2})}{\sqrt{T_{E}}}, \, \hat{\psi}_{T+1|T}^{SPL} - \frac{(\hat{F}_{T}^{SPL})^{-1}(\gamma_{1})}{\sqrt{T_{E}}}\right]$$

are asymptotically equivalent in the sense that the centers and the lengths of these intervals converge in probability.

Sample splitting in practice

DGPs in the simulation study

$$x_t = \mu_t + \varepsilon_t, \quad \mu_t = \sum_{j=1}^p \beta_j x_{t-j}, \qquad t = 1, \dots, T, \qquad (1)$$

with T = 50, 75, 100, 150, 200 and $\varepsilon_t \sim N(0, 1)$.

Table 1: AR models considered in the simulation study

DGP	β_1	β_2	β_3	eta_{4}	β_5	β_{6}	β_7	β_8
А	0.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00
В	0.20	-0.50	0.40	0.40	0.00	0.00	0.00	0.00
С	1.20	-0.96	0.77	-0.61	0.49	-0.39	0.31	-0.25
D	0.80	-0.64	0.51	-0.41	0.33	-0.26	0.21	-0.17

Sample splitting in practice: Conditional approach

Figure 1: (Conditional) mean coverage

Sample splitting in practice: Conditional approach

Figure 2: Conditional median (solid), minimum and maximum (dashed) coverage

Sample splitting in practice: Conditional approach

Figure 3: Mean interval length

Table 2: Coverage probability of *STA* and *SPL* for the AR(8) process in row C. DGP 1: shifted gamma innovations, DGP 2 innovations are a mixture of shifted gamma and normal

	DG	Ρ1	DGP 2		
	STA	SPL	STA	SPL	
$T_E = 40, T = 50$	89.8	91.1	90.2	91.2	
$T_E = 50, \ T = 60$	90.8	92.1	91.3	92.5	
$T_E = 60, \ T = 70$	91.5	92.8	91.9	92.9	
$T_E = 70, \ T = 80$	92.1	93.2	92.4	93.5	
$T_E = 80, \ T = 90$	92.6	93.6	92.7	93.5	

Thank you for your attention!

References (merging)

- D'Aristotile, A., Diaconis, P. and Freedman, D. (1988). On merging of probabilities, Sankhyā: The Indian Journal of Statistics, Series A, 50, 363–380.
- Davydov, Y. and Rotar, V. (2009). On asymptotic proximity of distributions, Journal of Theoretical Probability, 22, 82–98,
- Dudley, R. M. (2002). Real Analysis and Probability, Cambridge University Press, Cambridge.
- Lunde, R. (2019). Sample splitting and weak assumption inference for time series, preprint, in revision.

Appendix

Assumption A1: 2IP Estimator

1.1 (Estimator)
$$Z_n^{2IP} = m_n (\hat{ heta}(\mathbf{Y}_n) - heta_0) \sim P_{Z_n}^{2IP} o P_{ heta_0,\xi_0}$$

1.2 (Independence) $\{Y_t\}$ is independent of $\{X_t\}$ and S_0

1.3 (*Differentiability*) $\psi_n(\cdot, \cdot; \theta)$ is continuous on Θ and twice differentiable on $\mathring{\Theta} = int(\Theta)$

1.4 (Initial Cond.) $\sqrt{n} (\psi_n(S_0, \mathbf{X}_n; \theta_0) - \psi_n(s_0^\circ, \mathbf{X}_n; \theta_0)) = o_p(1)$

1.5 (Hessian)
$$\sup_{\theta \in \mathring{O}} \left| \left| \frac{\partial^2 \psi_n(s_0^\circ, \mathbf{X}_n; \theta)}{\partial \theta \partial \theta'} \right| \right| = O_p(1)$$

1.6 (Gradient) $\left| \left| \frac{\partial \psi_n(s_0^\circ, \mathbf{X}_n; \theta_0)}{\partial \theta} \right| \right| = O_p(1)$

Assumption A2: SPL Estimator

2.1 (Estimator)
$$Z_n^{SPL} = m_n (\hat{ heta}(\mathbf{X}_n^1) - heta_0) \sim P_{Z_n}^{SPL} o P_{ heta_0,\xi_0}$$

2.2 (Weak Dependence)
$$\int h d \left(P_{Z_n}^{SPL}(\cdot | \mathbf{X}_n^2, S_{n-n_2}) - P_{Z_n}^{SPL} \right) \xrightarrow{p} 0$$

w.r.t. $n_3 = n - n_1 - n_2$ for all h bounded Lipschitz

2.3 (*Differentiability*) $\psi_{n_2}(\cdot, \cdot; \theta)$ is continuous on Θ and twice differentiable on $\mathring{\Theta}$

2.4 (Initial Cond.)

$$\sqrt{n}(\psi_{n_2}(S_{n-n_2}, \mathbf{X}_n^2; \theta_0) - \psi_{n_2}(s_{n-n_2}^\circ, \mathbf{X}_n^2; \theta_0)) = o_p(1) \text{ w.r.t. } n_2$$

2.5 (*Hessian*)
$$\sup_{\theta \in \mathring{\Theta}} \left\| \frac{\partial^2 \psi_{n_2}(s_{n-n_2}^\circ, \mathbf{X}_n^2; \theta)}{\partial \theta \partial \theta'} \right\| = O_p(1) \text{ w.r.t. } n_2$$

2.6 (Gradient)
$$\left| \left| \frac{\partial \psi_{n_2}(s_{n-n_2}^\circ, \mathbf{X}_n^\circ; \theta_0)}{\partial \theta} \right| \right| = O_{\rho}(1) \text{ w.r.t. } n_2$$

Merging of 2IP and SPL in probability

Assumption A3: Merging Gradients

$$\left\| \frac{\partial \psi_n(s_0^\circ, \mathbf{X}_n; \theta_0)}{\partial \theta} - \frac{\partial \psi_{n_2}(s_{n-n_2}^\circ, \mathbf{X}_n^2; \theta_0)}{\partial \theta} \right\| \xrightarrow{p} 0.$$

Theorem 1:

Under Assumptions A1 to A3,

$$\mathbb{P}\Big[\sqrt{n}\big(\hat{\lambda}_{n+1}^{2IP} - \lambda_{n+1}\big) \in \cdot |\mathbf{X}_n, S_0\Big] \text{ and } \\ \mathbb{P}\Big[\sqrt{n}\big(\hat{\lambda}_{n+1}^{SPL} - \lambda_{n+1}\big) \in \cdot |\mathbf{X}_n^2, S_{n-n_2}\Big]$$

merge in probability.

Interval construction

Assumption A4: Plug-in Estimator 4.1 (2IP) $\int h \, dP_{\hat{\theta}(\mathbf{X}_n),\hat{\xi}(\mathbf{X}_n)} \xrightarrow{p} \int h \, dP_{\theta_0,\xi_0} \, \forall h \text{ bounded Lipschitz;}$ 4.2 (SPL) $\int h \, dP_{\hat{\theta}(\mathbf{X}_n^1),\hat{\xi}(\mathbf{X}_n^1)} \xrightarrow{p} \int h \, dP_{\theta_0,\xi_0} \, \forall h \text{ bounded Lipschitz.}$

$$I_{\gamma}^{2IP}(\mathbf{Y}_{n},\mathbf{X}_{n}) = \left[\hat{\lambda}_{n+1}^{2IP} - \frac{\widehat{F_{n}^{2IP}}^{-1}(1-\gamma_{2})}{\sqrt{n}}, \, \hat{\lambda}_{n+1}^{2IP} - \frac{\widehat{F_{n}^{2IP}}^{-1}(\gamma_{1})}{\sqrt{n}}\right]$$
$$I_{\gamma}^{SPL}(\mathbf{X}_{n}^{1},\mathbf{X}_{n}^{2}) = \left[\hat{\lambda}_{n+1}^{SPL} - \frac{\widehat{F_{n}^{SPL}}^{-1}(1-\gamma_{2})}{\sqrt{n}}, \, \hat{\lambda}_{n+1}^{SPL} - \frac{\widehat{F_{n}^{SPL}}^{-1}(\gamma_{1})}{\sqrt{n}}\right]$$

$$I_{\gamma}^{j, 2}(\mathbf{X}_{n}^{j}, \mathbf{X}_{n}^{j}) = \left[\lambda_{n+1}^{j, 2} - \frac{1}{\sqrt{n}} \sqrt{n} \right], \ \lambda_{n+1}^{j, 2} - \frac{1}{\sqrt{n}} \sqrt{n}$$

 $I_{\gamma}^{ILL}(\mathbf{X}_n,\mathbf{X}_n) = I_{\gamma}^{2IP}(\mathbf{Y}_n,\mathbf{X}_n)|_{\mathbf{Y}_n=\mathbf{X}_n}$

Theorem 2: Asymptotic Coverage

- 2.1 Under A1 and A4, $P_n^{2IP}(\cdot|\mathbf{X}_n, S_0)$ and $P_n^{2IP}(\cdot)$ merge in probability. If in addition $\widehat{F_n^{2IP}}(\cdot)$ is stochastically uniformly equicontinuous, $\mathbb{P}[I_{\gamma}^{2IP}(\mathbf{Y}_n, \mathbf{X}_n) \ni \lambda_{n+1} | \mathbf{X}_n, S_0] \xrightarrow{P} 1 \gamma;$
- 2.2 Under **A2** and **A4**, $P_n^{SPL}(\cdot | \mathbf{X}_n^2, S_{n-n_2})$ and $\widehat{P_n^{SPL}}(\cdot)$ merge in probability. If in addition $\widehat{F_n^{SPL}}(\cdot)$ is stochastically uniformly equicontinuous, $\mathbb{P}[I_{\gamma}^{SPL}(\mathbf{X}_n^1, \mathbf{X}_n^2) \ni \lambda_{n+1} | \mathbf{X}_n^2, S_{n-n_2}] \xrightarrow{P} 1 \gamma$.

Theorem 3: Asymptotic Equivalence of Confidence Intervals 3.1 (Location) If A1 and A2 hold, then $\hat{\lambda}_{n+1}^{ILL} - \hat{\lambda}_{n+1}^{SPL} \xrightarrow{P} 0$. 3.2 (Length) Under the assumptions of Theorem 1 and 2 and $\widehat{F_n^{SPL}}^{-1}(\cdot)$ being stochastically pointwise equicontinuous at $u = \gamma_1, 1 - \gamma_2$, we have $\widehat{F_n^{ILL}}^{-1}(u) - \widehat{F_n^{SPL}}^{-1}(u) \xrightarrow{P} 0$.

Discussion

"... although [the parameter] is assumed fixed at the estimation stage, it is unknown to the forecaster and, from this perspective, it is best viewed as a random variable at the forecasting stage." - Pesaran (2015)

• Pesaran assigns to θ some posterior distribution.

• Treating θ not fixed but random, the issue solves, e.g. $\mathscr{L}(\mu_{n+1} - \hat{\mu}_{n+1}^{lLL} | \mathbf{X}_n = \mathbf{x}_n)$ is non-degenerate

Critique

Combining a frequentist view with a Bayesian-akin approach does not seem to be coherent.

 φ - Mapping

Example: GARCH(1,1)

$$\underbrace{\begin{pmatrix} \sigma_t^2 \\ X_t^2 \end{pmatrix}}_{S_t} = \underbrace{\begin{pmatrix} \omega + \alpha X_{t-1}^2 + \beta \sigma_{t-1}^2 \\ X_t^2 \end{pmatrix}}_{\varphi(S_{t-1}, X_t; \theta)},$$

Example: ARMA(1,1)

$$\underbrace{\begin{pmatrix} \varepsilon_t \\ X_t \end{pmatrix}}_{S_t} = \underbrace{\begin{pmatrix} X_t - \alpha \varepsilon_{t-1} - \beta X_{t-1} \\ X_t \end{pmatrix}}_{\varphi(S_{t-1}, X_t; \theta)},$$

Other nested models

ARMA(p,q), GARCH(p,q), T-GARCH (Zakoïan, 1994), ACD (Engle and Russell, 1998), Score models (Harvey, 2013)

Object of interest

• consider
$$\lambda_{n+1} = \pi(S_n; \theta_0)$$

The recursive structure implies

$$\lambda_{n+1} = \psi_n(S_0, \mathbf{X}_n; \theta_0), \quad (random)$$

where
$$\psi_n = \pi \circ \underbrace{\varphi \cdots \circ \varphi}_{n-\text{times}}$$

• Conditioning on $\mathbf{X}_n = \mathbf{x}_n$ and $S_0 = s_0$, it reduces to

$$\lambda_{n+1|n} = \psi_n(s_0, \mathbf{x}_n; \theta_0)$$
 (non-random)

Taylor expansion

2IP estimator

$$\sqrt{n}\left(\hat{\lambda}_{n+1}^{2IP} - \lambda_{n+1}\right) = \frac{\partial\psi_n(\boldsymbol{s}_0^{\circ}, \boldsymbol{X}_n; \theta_0)}{\partial\theta'} \sqrt{n}\left(\hat{\theta}(\boldsymbol{Y}_n) - \theta_0\right) + R_n^{2IP}$$

SPL estimator

$$\sqrt{n}\left(\hat{\lambda}_{n+1}^{SPL} - \lambda_{n+1}\right) = \frac{\partial \psi_{n_2}(s_{n-n_2}^{\circ}, \mathbf{X}_n^2; \theta_0)}{\partial \theta'} \sqrt{n} \left(\hat{\theta}(\mathbf{X}_n^1) - \theta_0\right) + R_n^{SPL}$$

Assumption 5

Assumption 5: Normality

We assume $P_{\theta_0,\xi_0} = N(0,\Upsilon_0)$ with $\Upsilon_0 = \Upsilon(\theta_0,\xi_0)$ and there exist $\hat{\Upsilon}(\mathbf{X}_n)$ and $\hat{\Upsilon}(\mathbf{X}_n)$ converging in probability to Υ_0 .