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» One of the simplest time series models is the AR(1) process
given by
Xe = X1 + €t

with |8 < 1 and e; & N(0, 02).

> Of interest could be:
> Prediction interval for X7 (= E[X741|X7]),

i.e. (unconditional inference);

» Or an interval containing the conditional expectation of X1,
given the past, i.e. 8xt (conditional inference).
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0.99 7.210 4.110




Example 1: AR(1)

» Which one is better? Intuitively, the latter is more appropriate
because it uses more information and hence will lead to more
informative intervals.

» This is indeed true.

level 1 — « | length for B X+ ‘ expected length for Bx ‘

0.90 3.193 2.625
0.95 4.374 3.123
0.99 7.210 4.110

» Calculations based on treating BXt to be a product of two
independent normals (second column).

> Ignoring the influence of x on the distribution of 37 (third
column).
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» Conditional Confidence interval (CCl) for
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Example 1: AR(1)

» Conditional Confidence interval (CCl) for
E[X74+1|X7=x7] = BxT based on the approximation

VT(B(X7)xT — BxT) —xr VT(B(XT) - B) ~ N(0,x2),

1 - B(X7)? 1 - B(Xr)?

where XT = (XT,XT_]_, . ,Xl).
» Points of attention:

> No limit on the rhs, N(0,x%) will not approach a fixed
distribution;

» Inconsistency on the |hs as the obsered x1 and the random Xt
appear;

» Because of x7 lhs needs to be treated as a conditional
distribution.




Example 2: GARCH(1,1)
> Xt = OtEt with Et ~ IId(O,].) and
02 =w+aX? |+ Bo ;.

> Goal: CCl for 07, ;7 = E[X7 X7 = x71].



Example 2: GARCH(1,1)
» X; = o0& with 4 ~ 7.i.d.(0,1) and

02 =w+aX? |+ Bo ;.

» Goal: CCl for Ugl’+1|T = E[X%+1|XT = xT}.

» The recursive structure implies

1-87 >
U%’+1|T:w"(x7—;0):w 1-5 +aZ’BkX%—k'
k=0

» With an estimator O(X7) for 0 = (w, o, )" we have

82 ay7 = tn (57 0(XT)).

Problem even more severe because now x1 = (x7,x7_1, ...

and X7 appear.



General set-up

> Object of interest Y7y 7(x7, x7-1,..-;0).
» If infeasible look at ¢§I'+1\T(XT’ XT—1y+-+5X1,50,5-1--; 9)
» Still infeasible because of 6.

> With an estimator A(X7) the problematic version would be

/‘/J§r+1‘7’ (XTaXTfla <y X15,50,5-1 - -5 Q(XT)> .



The problem in the literature

» For the AR(1) Kreiss points out that researchers approximate
the distribution of

N

B(XT)xT — BXT

rather than the distribution of

N

ﬁ(XT)XT — ,BXT given XT = XT

and that approximating the latter seems to be rather
cumbersome because even the rather simple condition
X1 = x7 has an influence on the whole series Xi, ..., X7T.

» Phillips (1979) approximates the conditional distribution by
Edgeworth expansion; works only under &; i N(0, o2).
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» The standard approach takes a shortcut as follows: ... the
series used for estimation of parameters and the series used
for prediction are generated from two independent processes
which have the same stochastic structure.” - Lewis and Reinsel
(1985), Liitkepohl (2005), Dufour and Taamouti (2010).
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The problem in the literature

» The standard approach takes a shortcut as follows: ... the
series used for estimation of parameters and the series used
for prediction are generated from two independent processes
which have the same stochastic structure.” - Lewis and Reinsel
(1985), Liitkepohl (2005), Dufour and Taamouti (2010).

» The standard approach then proceeds by using the
distribution theory for

1;;’+1‘T (XTaXT—lu sy X1,50,5-1 -5 é\(YT)> ’
with Y 7 independent of (X;) and applies it to
772%'4_1‘7' (XTaXT—la ceey3 X1,50,5-1 -5 é\(XT)) .

» = not consistent (or like Pesaran phrases (2015) it "the
particular assumptions that underlie the standard approach are
not fully recognized.”)

» Can one find another way to justify these CCls?



Sample split approach

X171 XTp:T

» SPL estimator:

2SPL A
VT (XT, ey XTpy STp—15 - - -,9(X1;TE))

» Results in meaningful probabilistic statements because
/ ~SPL A
Te |:wT+1|T (XTa <y XTpy STp—15 - - - 79(X1:TE)>
SPL
_wTJrl\T (XT7 e s XTps STp—1y - -+ ,9):| .

does have non-degenerate (conditional) distributions.
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Merging and Metrics

> Remains the issue with 'varying limit’.

» Usual definition of convergence in distribution Fr(x) — F(x)
for all continuity points: not convenient to generalize.

> However, we know that convergence in distribution can be
metricized as it is equivalent to dg;(F7, F) — 0 with

dou(F.6) =sup {| [ (7 = &) :IIllon <1}

» This can be generalized to two sequences: Two sequences of
probability measures F1, Gt merge if and only if
dBL(FTa GT) —0 (Dudley (1968)).
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Merging and Metrics

» Only one more thing needs to be taken into account.

» The distributions we look at are conditional distributions not
fixed ones as in the merging definition on the previous slide.

> May remind the statistics group of the bootstrap where
inference is also conditionally on the sample.

» This suggests the following: Two sequences of random cdfs
Fr, GT merge in probability if and only if dg,(F7, G1) — 0.



Merging and Metrics

Theorem Under some regularity conditions the conditional
distributions of

\/Tig[ﬁ‘?—'}lw (XT, e XTpy STp—1s- - -5 é(Xl:TE))
_zp?r’er”T (XTs e s XTpy STp—1s- - -5 0)} )

and
ﬁ{z/;sprl” (XT,xr,l, e X1,50,5-1--.] HA(YT)>
12;;—_’_1‘7— (XT,XT_l, ey, X1,50,5-1---; 9)}

merge in probability.



Interval construction

Theorem Under some regularity conditions the intervals

[125 (M=) b (ﬁ?TA)_l(%)}
T+1|T ﬁ » YTH+1T ﬁ

and

[@sm (P =) pSPL (’:_‘TgPL)l(Vl)]
T+1T VTE P UTHT VTE

are asymptotically equivalent in the sense that the centers and the
lengths of these intervals converge in probability.



Sample splitting in practice
DGPs in the simulation study
P
Xt::ut—i_gtv /J't:Z/Bth—j7 t:17"'7T7
j=1

with T = 50,75, 100, 150,200 and & ~ N(0,1).

Table 1: AR models considered in the simulation study

DGP 53 B2 B3 Ba  Ps Be  Br
090 0.00 0.00 0.00 0.00 0.00 o0.00
0.20 -050 040 040 0.00 0.00 o0.00
1.20 -096 0.77 -0.61 0.49 -0.39 0.31
0.80 -0.64 051 -041 033 -0.26 0.21

OCnNnw>»

s
0.00

0.00
-0.25
-0.17



Sample splitting in practice: Conditional approach

Coverage
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Figure 1: (Conditional) mean coverage
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Sample splitting in practice: Conditional approach

DGP B

DGP A

T
— 50
) o IR R U T U U I 75
g STA SPLO SPL2 SPL4 SPL6 SPL8 SPL10 SPL12 SPL14 SPL1G SPL18 SPL20 STA SPLO SPL2 SPL4 SPL6 SPL8 SPL10 SPL12 SPL14 SPL16 SPL18 SPL20
g 100
I} DGP C DGP D
O oo~ _ 10y
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7 e La =
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1 1
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1" 06= |
025= I 1
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0.00 = ' ' 04
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Method

Figure 2: Conditional median (solid), minimum and maximum (dashed)

coverage



Sample splitting in practice: Conditional approach

DGP A DGP B
125 =
04 = 1004 \/
03 / 0.75 = \// T
1 Tt —— 50
=1 [

I T R D T T T R [ T T T T L I U 75
£ STA SPLO SPL2 SPL4 SPL6 SPLB SPLL0SPLIZ SPL14 SPL16 SPLIS SPL20 STA SPLO SPL2 SPL4 SPL6 SPLS SPLLO SPLIZ SPL14 SPL16 SPLIS SPL2O0
2
] DGP C DGP D — 100
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—— 200
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Method

Figure 3: Mean interval length



More on coverage: Unconditional

Table 2: Coverage probability of STA and SPL for the AR(8) process in
row C. DGP 1: shifted gamma innovations, DGP 2 innovations are a
mixture of shifted gamma and normal

DGP 1 DGP 2
STA | SPL | STA | SPL
Te=40, T=50|89.8|91.1|90.2|91.2
Te=50, T=60|908]|921 1913|925
Te=60, T=70]|915|928| 919 929
Te=70, T=80|921]93.2]| 924|935
Te=80, T=90]|926|93.6| 927 | 93.5




Thank you for your attention!



References (merging)

» D'Aristotile, A., Diaconis, P. and Freedman, D. (1988). On
merging of probabilities, Sankhya: The Indian Journal of
Statistics, Series A, 50, 363-380.

» Davydov, Y. and Rotar, V. (2009). On asymptotic proximity
of distributions, Journal of Theoretical Probability, 22, 82-98,

» Dudley, R. M. (2002). Real Analysis and Probability,
Cambridge University Press, Cambridge.

» Lunde, R. (2019). Sample splitting and weak assumption
inference for time series, preprint, in revision.



Appendix



Assumption Al: 2IP Estimator
1.1 (Estimator) Z2" = m,(8(Ys) — 00) ~ P2P — Py, ¢,
2 (Independence) {Y;} is independent of {X;} and Sy

1.3 (Differentiability) 1n( -, -;0) is continuous on © and twice
differentiable on © = int(©)

1.4 (Initial Cond.) \/n(¢n(So, Xn; 00) — tn(sg, Xn; 60)) = 0p(1)

5 (Hessian) sup,.¢ ‘

0hn(sS,Xn:0
¢£9(5%6/ )H = 0p(1)

1.6 (Gradient) Haw" 59 Xnifo)




Assumption A2: SPL Estimator

1 (Estimator) Z,‘;SPL = mn(é(X%) - 90) ~ P%’,DL — P

P
n-m) — P37) 50

w.r.t. n3 = n— ny — ny for all h bounded Lipschitz

2.2 (Weak Dependence) [ h d(ngLHX%,S

2.3 (Differentiability) 1n,( -, -;8) is continuous on © and twice
differentiable on ©

4 (Initial Cond.)
VN (Y, (Snzys X2:00) — Py (5o, X2 00)) = 0p(1) w.rt. mp

Op(1) w.r.t. m

024y (52, X3:0)
— o099 ||~

5 (Hessian) sup, ¢ H

3%2 (5,?_"2 ,X%;@o)

2.6 (Gradient) ’ ‘ 5

‘ = Op(1) w.rt. no



Merging of 2IP and SPL in probability

Assumption A3: Merging Gradients

2.

Ha’(/)n SO,X,,,90 81/},,2(52_,,2,)(2 (90)
00

Theorem 1:
Under Assumptions Al to A3,

[f()\,,H Ant1) € -yxn,so} and
P[ﬁ(f\fﬁ - )‘n+1) € X3, S,

merge in probability.



Interval construction

Assumption A4: Plug-in Estimator
4.1 (2IP) [h dPjix,).£%0) 2 [ h dPg,¢, Yh bounded Lipschitz;

42 (SPL) [ h dPjix1y £x1) 2 [ hdPy, ¢, Yh bounded Lipschitz.

" T . St
BV X,) = |38, - E ) g - B0

n+l vn n+1 vn

,$PL(X%,X%) _ |:3\5PL FS (1) ,ASPL _ Fnﬁ_l(m)]

I';LL(Xm Xn) = lrslp(Yna xn)|Y,,:X,,



Theorem 2: Asymptotic Coverage

2.1 Under Al and A4, P2'P(|X,, So) and P/,%’\P() merge in
probability. If in addition F2/P(-) is stochastically uniformly
equicontinuous, P[lvz’P(Y,,,X,,) S Ant1|Xn, So] B

2.2 Under A2 and Ad, PSPL(|X2, S, ,) and PSPL(-) merge in

probability. If in addition F?PL(.) is stochastically uniformly

n

equicontinuous, }P’[/,YSPL(X},,X%) > )\n+1}X%, Sn—n]| L

Theorem 3: Asymptotic Equivalence of Confidence Intervals
3.1 (Location) If Al and A2 hold, then AL, — A5PL 2 0.
3.2 (Length) Under the assumptions of Theorem 1 and 2 and
1
F3PL () being stochastically pointwise equicontinuous at

—_1 ——1
u=n"1,1—", we have FItLL (u) — F?PL (u) 2.



Discussion

"... although [the parameter]| is assumed fixed at the es-
timation stage, it is unknown to the forecaster and, from
this perspective, it is best viewed as a random variable at
the forecasting stage.” - Pesaran (2015)

P Pesaran assigns to 6 some posterior distribution.

» Treating 0 not fixed but random, the issue solves, e.g.
L (ptn1 — AL X, = xp) is non-degenerate

Critique
Combining a frequentist view with a Bayesian-akin approach does
not seem to be coherent.



© - Mapping
Example: GARCH(1,1)

St @(St—1,Xt:0)

Example: ARMA(1,1)

€t _ Xe —agr-1 — BXea
Xt Xt ’
N——

St @(St—1,Xt:6)

Other nested models
ARMA(p,q), GARCH(p,q), T-GARCH (Zakoian, 1994), ACD
(Engle and Russell, 1998), Score models (Harvey, 2013)



Object of interest

» consider Ap+1 = 7(Sp; 6o)

» The recursive structure implies
Ant1 = ¥n(So, Xn; 6o) , (random)

where ), =Top---0p
—_——

n-times

» Conditioning on X, = x, and Sy = sp, it reduces to

Antin = ¥n(S0, Xn; bo) (non-random)



Taylor expansion

> 2IP estimator

S(())a Xn; 90)

V(32 = A ) = 20k

» SPL estimator

06’

awnz (Sr(:—np X%v 00)

VA(B(Y,) — o) + REP

V(37 = i) =

06’

VA(B(KL) — Bo) + RSP



Assumption 5

Assumption 5: Normality
We assume Py, ¢, = N(0, To) with Tg = T (6o, £o) and there exist
T(X,) and T(X1) converging in probability to To.
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