Justifying conditional inference in time series models

Eric Beutner
joint work with Alexander Heinemann and Stephan Smeekes based on publication
Electronic Journal of Statistics (2021), 15, 2517-2565

Mathematics colloquium VU Amsterdam, March 30, 2022

A simple yet instructive model

A simple yet instructive model

- One of the simplest time series models is the $\operatorname{AR}(1)$ process given by

$$
X_{t}=\beta X_{t-1}+\varepsilon_{t}
$$

with $|\beta|<1$ and $\varepsilon_{t} \stackrel{i i d}{\sim} N\left(0, \sigma_{\varepsilon}^{2}\right)$.

A simple yet instructive model

- One of the simplest time series models is the $\operatorname{AR}(1)$ process given by

$$
X_{t}=\beta X_{t-1}+\varepsilon_{t}
$$

with $|\beta|<1$ and $\varepsilon_{t} \stackrel{i i d}{\sim} N\left(0, \sigma_{\varepsilon}^{2}\right)$.

- Of interest could be:
- Prediction interval for $\beta X_{T}\left(=\mathbb{E}\left[X_{T+1} \mid X_{T}\right]\right)$, i.e. (unconditional inference);
- Or an interval containing the conditional expectation of X_{T+1} given the past, i.e. βx_{T} (conditional inference).

Example 1: $\operatorname{AR}(1)$

- Which one is better?

Example 1: $\operatorname{AR}(1)$

- Which one is better? Intuitively, the latter is more appropriate because it uses more information and hence will lead to more informative intervals.

Example 1: $\operatorname{AR}(1)$

- Which one is better? Intuitively, the latter is more appropriate because it uses more information and hence will lead to more informative intervals.
- This is indeed true.

level $1-\alpha$	length for βX_{T}	expected length for βx_{T}
0.90	3.193	2.625
0.95	4.374	3.123
0.99	7.210	4.110

Example 1: $\operatorname{AR}(1)$

- Which one is better? Intuitively, the latter is more appropriate because it uses more information and hence will lead to more informative intervals.
- This is indeed true.

level $1-\alpha$	length for βX_{T}	expected length for βx_{T}
0.90	3.193	2.625
0.95	4.374	3.123
0.99	7.210	4.110

- Calculations based on treating $\hat{\beta} X_{T}$ to be a product of two independent normals (second column).
- Ignoring the influence of x_{T} on the distribution of $\hat{\beta}_{T}$ (third column).

Example 1: $\operatorname{AR}(1)$

- Conditional Confidence interval (CCI) for $\mathbb{E}\left[X_{T+1} \mid X_{T}=x_{T}\right]=\beta x_{T}$ based on the approximation

$$
\frac{\sqrt{T}\left(\hat{\beta}\left(\mathbf{X}_{T}\right) x_{T}-\beta x_{T}\right)}{\sqrt{1-\hat{\beta}\left(\mathbf{X}_{T}\right)^{2}}}=x_{T} \frac{\sqrt{T}\left(\hat{\beta}\left(\mathbf{X}_{T}\right)-\beta\right)}{\sqrt{1-\hat{\beta}\left(\mathbf{X}_{T}\right)^{2}}} \approx N\left(0, x_{T}^{2}\right),
$$

where $\mathbf{X}_{T}=\left(X_{T}, X_{T-1}, \ldots, X_{1}\right)$.

Example 1: $\operatorname{AR}(1)$

- Conditional Confidence interval (CCI) for $\mathbb{E}\left[X_{T+1} \mid X_{T}=x_{T}\right]=\beta x_{T}$ based on the approximation

$$
\frac{\sqrt{T}\left(\hat{\beta}\left(\mathbf{X}_{T}\right) x_{T}-\beta x_{T}\right)}{\sqrt{1-\hat{\beta}\left(\mathbf{X}_{T}\right)^{2}}}=x_{T} \frac{\sqrt{T}\left(\hat{\beta}\left(\mathbf{X}_{T}\right)-\beta\right)}{\sqrt{1-\hat{\beta}\left(\mathbf{X}_{T}\right)^{2}}} \approx N\left(0, x_{T}^{2}\right)
$$

where $\mathbf{X}_{T}=\left(X_{T}, X_{T-1}, \ldots, X_{1}\right)$.

- Points of attention:
- No limit on the rhs, $N\left(0, x_{T}^{2}\right)$ will not approach a fixed distribution;
- Inconsistency on the lhs as the obsered x_{T} and the random X_{T} appear;
- Because of x_{T} lhs needs to be treated as a conditional distribution.

Example 2: $\operatorname{GARCH}(1,1)$

- $X_{t}=\sigma_{t} \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$ and

$$
\sigma_{t}^{2}=\omega+\alpha X_{t-1}^{2}+\beta \sigma_{t-1}^{2} .
$$

- Goal: CCl for $\sigma_{T+1 \mid T}^{2}=\mathbb{E}\left[X_{T+1}^{2} \mid \mathbf{X}_{T}=\mathbf{x}_{T}\right]$.

Example 2: $\operatorname{GARCH}(1,1)$

- $X_{t}=\sigma_{t} \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$ and

$$
\sigma_{t}^{2}=\omega+\alpha X_{t-1}^{2}+\beta \sigma_{t-1}^{2}
$$

- Goal: CCl for $\sigma_{T+1 \mid T}^{2}=\mathbb{E}\left[X_{T+1}^{2} \mid \mathbf{X}_{T}=\mathbf{x}_{T}\right]$.
- The recursive structure implies

$$
\sigma_{T+1 \mid T}^{2}=\psi_{n}\left(\mathbf{x}_{T} ; \theta\right)=\omega \frac{1-\beta^{T}}{1-\beta}+\alpha \sum_{k=0}^{\infty} \beta^{k} x_{T-k}^{2}
$$

- With an estimator $\hat{\theta}\left(\mathbf{X}_{T}\right)$ for $\theta=(\omega, \alpha, \beta)^{\prime}$ we have

$$
\hat{\sigma}_{T+1 \mid T}^{2}=\psi_{n}\left(\mathbf{x}_{T} ; \hat{\theta}\left(\mathbf{X}_{T}\right)\right) .
$$

Problem even more severe because now $\mathbf{x}_{T}=\left(x_{T}, x_{T-1}, \ldots\right)$ and \mathbf{X}_{T} appear.

General set-up

- Object of interest $\psi_{T+1 \mid T}\left(x_{T}, x_{T-1}, \ldots ; \theta\right)$.
- If infeasible look at $\psi_{T+1 \mid T}^{s}\left(x_{T}, x_{T-1}, \ldots, x_{1}, s_{0}, s_{-1} \ldots ; \theta\right)$.
- Still infeasible because of θ.
- With an estimator $\hat{\theta}\left(\mathbf{X}_{T}\right)$ the problematic version would be

$$
\hat{\psi}_{T+1 \mid T}^{s}\left(x_{T}, x_{T-1}, \ldots, x_{1}, s_{0}, s_{-1} \ldots ; \hat{\theta}\left(\mathbf{X}_{T}\right)\right) .
$$

The problem in the literature

- For the $\operatorname{AR}(1)$ Kreiss points out that researchers approximate the distribution of

$$
\hat{\beta}\left(\mathbf{X}_{T}\right) x_{T}-\beta x_{T}
$$

rather than the distribution of

$$
\hat{\beta}\left(\mathbf{X}_{T}\right) X_{T}-\beta X_{T} \text { given } X_{T}=x_{T}
$$

and that approximating the latter seems to be rather cumbersome because even the rather simple condition $X_{T}=x_{T}$ has an influence on the whole series X_{1}, \ldots, X_{T}.

- Phillips (1979) approximates the conditional distribution by Edgeworth expansion; works only under $\varepsilon_{t} \stackrel{i i d}{\sim} N\left(0, \sigma_{\varepsilon}^{2}\right)$.

The problem in the literature

- The standard approach takes a shortcut as follows: "... the series used for estimation of parameters and the series used for prediction are generated from two independent processes which have the same stochastic structure." - Lewis and Reinsel (1985), Lütkepohl (2005), Dufour and Taamouti (2010).

The problem in the literature

- The standard approach takes a shortcut as follows: "... the series used for estimation of parameters and the series used for prediction are generated from two independent processes which have the same stochastic structure." - Lewis and Reinsel (1985), Lütkepohl (2005), Dufour and Taamouti (2010).
- The standard approach then proceeds by using the distribution theory for

$$
\hat{\psi}_{T+1 \mid T}^{s}\left(x_{T}, x_{T-1}, \ldots, x_{1}, s_{0}, s_{-1} \ldots ; \hat{\theta}\left(\mathbf{Y}_{T}\right)\right)
$$

with \mathbf{Y}_{T} independent of $\left(X_{t}\right)$ and applies it to

$$
\hat{\psi}_{T+1 \mid T}^{s}\left(x_{T}, x_{T-1}, \ldots, x_{1}, s_{0}, s_{-1} \ldots ; \hat{\theta}\left(\mathbf{X}_{T}\right)\right)
$$

The problem in the literature

- The standard approach takes a shortcut as follows: "... the series used for estimation of parameters and the series used for prediction are generated from two independent processes which have the same stochastic structure." - Lewis and Reinsel (1985), Lütkepohl (2005), Dufour and Taamouti (2010).
- The standard approach then proceeds by using the distribution theory for

$$
\hat{\psi}_{T+1 \mid T}^{s}\left(x_{T}, x_{T-1}, \ldots, x_{1}, s_{0}, s_{-1} \ldots ; \hat{\theta}\left(\mathbf{Y}_{T}\right)\right)
$$

with \mathbf{Y}_{T} independent of $\left(X_{t}\right)$ and applies it to

$$
\hat{\psi}_{T+1 \mid T}^{s}\left(x_{T}, x_{T-1}, \ldots, x_{1}, s_{0}, s_{-1} \ldots ; \hat{\theta}\left(\mathbf{X}_{T}\right)\right)
$$

- \Rightarrow not consistent (or like Pesaran phrases (2015) it "the particular assumptions that underlie the standard approach are not fully recognized.")
- Can one find another way to justify these CCls?

Sample split approach

- SPL estimator:

$$
\hat{\psi}_{T+1 \mid T}^{S P L}\left(x_{T}, \ldots, x_{T_{P}}, s_{T_{P}-1}, \ldots, \hat{\theta}\left(X_{1: T_{E}}\right)\right)
$$

- Results in meaningful probabilistic statements because

$$
\begin{array}{r}
\sqrt{T_{E}}\left[\hat{\psi}_{T+1 \mid T}^{S P L}\left(x_{T}, \ldots, x_{T_{P}}, s_{T_{P}-1}, \ldots, \hat{\theta}\left(X_{1: T_{E}}\right)\right)\right. \\
\left.-\psi_{T+1 \mid T}^{S P L}\left(x_{T}, \ldots, x_{T_{P}}, s_{T_{P}-1}, \ldots, \theta\right)\right] .
\end{array}
$$

does have non-degenerate (conditional) distributions.

Merging and Metrics

- Remains the issue with 'varying limit'.

Merging and Metrics

- Remains the issue with 'varying limit'.
- Usual definition of convergence in distribution $F_{T}(x) \rightarrow F(x)$ for all continuity points: not convenient to generalize.

Merging and Metrics

- Remains the issue with 'varying limit'.
- Usual definition of convergence in distribution $F_{T}(x) \rightarrow F(x)$ for all continuity points: not convenient to generalize.
- However, we know that convergence in distribution can be metricized as it is equivalent to $d_{B L}\left(F_{T}, F\right) \rightarrow 0$ with

$$
d_{B L}(F, G)=\sup \left\{\left|\int f d(F-G)\right|:\|f\|_{B L} \leq 1\right\}
$$

- This can be generalized to two sequences: Two sequences of probability measures F_{T}, G_{T} merge if and only if $d_{B L}\left(F_{T}, G_{T}\right) \rightarrow 0$ (Dudley (1968)).

Merging and Metrics

- Only one more thing needs to be taken into account.

Merging and Metrics

- Only one more thing needs to be taken into account.
- The distributions we look at are conditional distributions not fixed ones as in the merging definition on the previous slide.
- May remind the statistics group of the bootstrap where inference is also conditionally on the sample.

Merging and Metrics

- Only one more thing needs to be taken into account.
- The distributions we look at are conditional distributions not fixed ones as in the merging definition on the previous slide.
- May remind the statistics group of the bootstrap where inference is also conditionally on the sample.
- This suggests the following: Two sequences of random cdfs F_{T}, G_{T} merge in probability if and only if $d_{B L}\left(F_{T}, G_{T}\right) \xrightarrow{\mathbb{P}} 0$.

Merging and Metrics

Theorem Under some regularity conditions the conditional distributions of

$$
\begin{array}{r}
\sqrt{T_{E}}\left[\hat { \psi } _ { T + 1 | T } ^ { S P L } \left(x_{T}, \ldots, x_{T_{P}}, s_{T_{P}-1}, \ldots, \hat{\theta}\left(X_{\left.1: T_{E}\right)}\right)\right.\right. \\
\left.-\psi_{T+1 \mid T}^{S P L}\left(x_{T}, \ldots, x_{T_{P}}, s_{T_{P}-1}, \ldots, \theta\right)\right] .
\end{array}
$$

and

$$
\begin{array}{r}
\sqrt{T}\left[\hat{\psi}_{T+1 \mid T}^{s}\left(x_{T}, x_{T-1}, \ldots, x_{1}, s_{0}, s_{-1} \ldots ; \hat{\theta}\left(\mathbf{Y}_{T}\right)\right)\right. \\
\left.\hat{\psi}_{T+1 \mid T}^{s}\left(x_{T}, x_{T-1}, \ldots, x_{1}, s_{0}, s_{-1} \ldots ; \theta\right)\right]
\end{array}
$$

merge in probability.

Interval construction

Theorem Under some regularity conditions the intervals

$$
\left[\hat{\psi}_{T+1 \mid T}^{s}-\frac{\left(\hat{F}_{T}^{S T A}\right)^{-1}\left(1-\gamma_{2}\right)}{\sqrt{T}}, \hat{\psi}_{T+1 \mid T}^{s}-\frac{\left(\hat{F}_{T}^{S T A}\right)^{-1}\left(\gamma_{1}\right)}{\sqrt{T}}\right]
$$

and

$$
\left[\hat{\psi}_{T+1 \mid T}^{S P L}-\frac{\left(\hat{F}_{T}^{S P L}\right)^{-1}\left(1-\gamma_{2}\right)}{\sqrt{T_{E}}}, \hat{\psi}_{T+1 \mid T}^{S P L}-\frac{\left(\hat{F}_{T}^{S P L}\right)^{-1}\left(\gamma_{1}\right)}{\sqrt{T_{E}}}\right]
$$

are asymptotically equivalent in the sense that the centers and the lengths of these intervals converge in probability.

Sample splitting in practice

DGPs in the simulation study

$$
\begin{equation*}
x_{t}=\mu_{t}+\varepsilon_{t}, \quad \mu_{t}=\sum_{j=1}^{p} \beta_{j} x_{t-j}, \quad t=1, \ldots, T \tag{1}
\end{equation*}
$$

with $T=50,75,100,150,200$ and $\varepsilon_{t} \sim N(0,1)$.

Table 1: AR models considered in the simulation study

DGP	β_{1}	β_{2}	β_{3}	β_{4}	β_{5}	β_{6}	β_{7}	β_{8}
A	0.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00
B	0.20	-0.50	0.40	0.40	0.00	0.00	0.00	0.00
C	1.20	-0.96	0.77	-0.61	0.49	-0.39	0.31	-0.25
D	0.80	-0.64	0.51	-0.41	0.33	-0.26	0.21	-0.17

Sample splitting in practice: Conditional approach

T

- 75
- 100
- 150
- 200

Figure 1: (Conditional) mean coverage

Sample splitting in practice: Conditional approach

Figure 2: Conditional median (solid), minimum and maximum (dashed) coverage

Sample splitting in practice: Conditional approach

Figure 3: Mean interval length

More on coverage: Unconditional

Table 2: Coverage probability of STA and SPL for the $\operatorname{AR}(8)$ process in row C. DGP 1: shifted gamma innovations, DGP 2 innovations are a mixture of shifted gamma and normal

	DGP 1		DGP 2	
	STA	SPL	STA	SPL
$T_{E}=40, T=50$	89.8	91.1	90.2	91.2
$T_{E}=50, T=60$	90.8	92.1	91.3	92.5
$T_{E}=60, T=70$	91.5	92.8	91.9	92.9
$T_{E}=70, T=80$	92.1	93.2	92.4	93.5
$T_{E}=80, T=90$	92.6	93.6	92.7	93.5

Thank you for your attention!

References (merging)

- D'Aristotile, A., Diaconis, P. and Freedman, D. (1988). On merging of probabilities, Sankhyā: The Indian Journal of Statistics, Series A, 50, 363-380.
- Davydov, Y. and Rotar, V. (2009). On asymptotic proximity of distributions, Journal of Theoretical Probability, 22, 82-98,
- Dudley, R. M. (2002). Real Analysis and Probability, Cambridge University Press, Cambridge.
- Lunde, R. (2019). Sample splitting and weak assumption inference for time series, preprint, in revision.

Appendix

Assumption A1: 2IP Estimator

1.1 (Estimator) $Z_{n}^{2 I P}=m_{n}\left(\hat{\theta}\left(\mathbf{Y}_{n}\right)-\theta_{0}\right) \sim P_{Z_{n}}^{2 I P} \rightarrow P_{\theta_{0}, \xi_{0}}$
1.2 (Independence) $\left\{Y_{t}\right\}$ is independent of $\left\{X_{t}\right\}$ and S_{0}
1.3 (Differentiability) $\psi_{n}(\cdot, \cdot ; \theta)$ is continuous on Θ and twice differentiable on $\Theta=\operatorname{int}(\Theta)$
1.4 (Initial Cond.) $\sqrt{n}\left(\psi_{n}\left(S_{0}, \mathbf{X}_{n} ; \theta_{0}\right)-\psi_{n}\left(s_{0}^{\circ}, \mathbf{X}_{n} ; \theta_{0}\right)\right)=o_{p}(1)$
1.5 (Hessian) $\sup _{\theta \in \Theta}\left\|\frac{\partial^{2} \psi_{n}\left(s_{0}^{\circ}, \mathbf{X}_{n} ; \theta\right)}{\partial \theta \partial \theta^{\prime}}\right\|=O_{p}(1)$
1.6 (Gradient) $\left\|\frac{\partial \psi_{n}\left(s_{0}^{0}, \mathbf{x}_{n} ; \theta_{0}\right)}{\partial \theta}\right\|=O_{p}(1)$

Assumption A2: SPL Estimator

2.1 (Estimator) $Z_{n}^{S P L}=m_{n}\left(\hat{\theta}\left(\mathbf{X}_{n}^{1}\right)-\theta_{0}\right) \sim P_{Z_{n}}^{S P L} \rightarrow P_{\theta_{0}, \xi_{0}}$
2.2 (Weak Dependence) $\int h d\left(P_{Z_{n}}^{S P L}\left(\cdot \mid \mathbf{X}_{n}^{2}, S_{n-n_{2}}\right)-P_{Z_{n}}^{S P L}\right) \xrightarrow{p} 0$ w.r.t. $n_{3}=n-n_{1}-n_{2}$ for all h bounded Lipschitz
2.3 (Differentiability) $\psi_{n_{2}}(\cdot, \cdot ; \theta)$ is continuous on Θ and twice differentiable on Θ
2.4 (Initial Cond.)
$\sqrt{n}\left(\psi_{n_{2}}\left(S_{n-n_{2}}, \mathbf{X}_{n}^{2} ; \theta_{0}\right)-\psi_{n_{2}}\left(s_{n-n_{2}}^{\circ}, \mathbf{X}_{n}^{2} ; \theta_{0}\right)\right)=o_{p}(1)$ w.r.t. n_{2}
2.5 (Hessian) $\sup _{\theta \in \Theta}\left\|\frac{\partial^{2} \psi_{n_{2}}\left(s_{n-n_{2}}^{\circ}, \mathbf{x}_{n}^{2} ; \theta\right)}{\partial \theta \partial \theta^{\prime}}\right\|=O_{p}(1)$ w.r.t. n_{2}
2.6 (Gradient) $\left\|\frac{\partial \psi_{n_{2}}\left(s_{n-n_{2}}^{\circ}, \mathbf{X}_{n}^{2} ; \theta_{0}\right)}{\partial \theta}\right\|=O_{p}(1)$ w.r.t. n_{2}

Merging of 2IP and SPL in probability

Assumption A3: Merging Gradients

$$
\left\|\frac{\partial \psi_{n}\left(s_{0}^{\circ}, \mathbf{X}_{n} ; \theta_{0}\right)}{\partial \theta}-\frac{\partial \psi_{n_{2}}\left(s_{n-n_{2}}^{\circ}, \mathbf{X}_{n}^{2} ; \theta_{0}\right)}{\partial \theta}\right\| \xrightarrow{p} 0 .
$$

Theorem 1:
Under Assumptions A1 to A3,

$$
\begin{aligned}
& \mathbb{P}\left[\sqrt{n}\left(\hat{\lambda}_{n+1}^{2 I P}-\lambda_{n+1}\right) \in \cdot \mid \mathbf{X}_{n}, S_{0}\right] \text { and } \\
& \qquad \mathbb{P}\left[\sqrt{n}\left(\hat{\lambda}_{n+1}^{S P L}-\lambda_{n+1}\right) \in \cdot \mid \mathbf{X}_{n}^{2}, S_{n-n_{2}}\right]
\end{aligned}
$$

merge in probability.

Interval construction

Assumption A4: Plug-in Estimator
$4.1(2 I P) \int h d P_{\hat{\theta}\left(\mathbf{X}_{n}\right), \hat{\xi}\left(\mathbf{X}_{n}\right)} \xrightarrow{p} \int h d P_{\theta_{0}, \xi_{0}} \forall h$ bounded Lipschitz;
$4.2(S P L) \int h d P_{\hat{\theta}\left(\mathbf{X}_{n}^{1}\right), \hat{\xi}\left(\mathbf{X}_{n}^{1}\right)} \xrightarrow{p} \int h d P_{\theta_{0}, \xi_{0}} \forall h$ bounded Lipschitz.
$I_{\gamma}^{2 I P}\left(\mathbf{Y}_{n}, \mathbf{X}_{n}\right)=\left[\hat{\lambda}_{n+1}^{2 I P}-\frac{{\widehat{F_{n}^{2 I P}}}^{-1}\left(1-\gamma_{2}\right)}{\sqrt{n}}, \hat{\lambda}_{n+1}^{2 I P}-\frac{{\widehat{F_{n}^{2 I P}}}^{-1}\left(\gamma_{1}\right)}{\sqrt{n}}\right]$
$I_{\gamma}^{S P L}\left(\mathbf{X}_{n}^{1}, \mathbf{X}_{n}^{2}\right)=\left[\hat{\lambda}_{n+1}^{S P L}-\frac{\widehat{F s}_{n}^{S P L}\left(1-\gamma_{2}\right)}{\sqrt{n}}, \hat{\lambda}_{n+1}^{S P L}-\frac{\widehat{F_{n}^{S P L}}{ }^{-1}\left(\gamma_{1}\right)}{\sqrt{n}}\right]$
$I_{\gamma}^{I L L}\left(\mathbf{X}_{n}, \mathbf{X}_{n}\right)=I_{\gamma}^{2 I P}\left(\mathbf{Y}_{n}, \mathbf{X}_{n}\right) \mid \mathbf{Y}_{n}=\mathbf{X}_{n}$

Theorem 2: Asymptotic Coverage

2.1 Under A1 and $\mathbf{A} 4, P_{n}^{2 I P}\left(\cdot \mid \mathbf{X}_{n}, S_{0}\right)$ and $\widehat{P_{n}^{2 I P}}(\cdot)$ merge in probability. If in addition $\widehat{F_{n}^{2 I P}}(\cdot)$ is stochastically uniformly equicontinuous, $\mathbb{P}\left[l_{\gamma}^{2 I P}\left(\mathbf{Y}_{n}, \mathbf{X}_{n}\right) \ni \lambda_{n+1} \mid \mathbf{X}_{n}, S_{0}\right] \xrightarrow{p} 1-\gamma$;
2.2 Under $\mathbf{A} \mathbf{2}$ and $\mathbf{A 4}, P_{n}^{S P L}\left(\cdot \mid \mathbf{X}_{n}^{2}, S_{n-n_{2}}\right)$ and $\widehat{P_{n}^{S P L}}(\cdot)$ merge in probability. If in addition $\widehat{\digamma_{n}^{S P L}}(\cdot)$ is stochastically uniformly equicontinuous, $\mathbb{P}\left[l_{\gamma}^{S P L}\left(\mathbf{X}_{n}^{1}, \mathbf{X}_{n}^{2}\right) \ni \lambda_{n+1} \mid \mathbf{X}_{n}^{2}, S_{n-n_{2}}\right] \xrightarrow{p} 1-\gamma$.

Theorem 3: Asymptotic Equivalence of Confidence Intervals
3.1 (Location) If $\mathbf{A} 1$ and $\mathbf{A} 2$ hold, then $\hat{\lambda}_{n+1}^{I L L}-\hat{\lambda}_{n+1}^{S P L} \xrightarrow{p} 0$.
3.2 (Length) Under the assumptions of Theorem 1 and 2 and ${\widehat{F_{n}^{S P L}}}^{-1}(\cdot)$ being stochastically pointwise equicontinuous at $u=\gamma_{1}, 1-\gamma_{2}$, we have ${\widehat{F_{n}^{I L L}}}^{-1}(u)-{\widehat{F_{n}^{S P L}}}^{-1}(u) \xrightarrow{p} 0$.

Discussion

"... although [the parameter] is assumed fixed at the estimation stage, it is unknown to the forecaster and, from this perspective, it is best viewed as a random variable at the forecasting stage." - Pesaran (2015)

- Pesaran assigns to θ some posterior distribution.
- Treating θ not fixed but random, the issue solves, e.g. $\mathscr{L}\left(\mu_{n+1}-\hat{\mu}_{n+1}^{\prime L L} \mid \mathbf{X}_{n}=\mathbf{x}_{n}\right)$ is non-degenerate

Critique

Combining a frequentist view with a Bayesian-akin approach does not seem to be coherent.

φ - Mapping

Example: $\operatorname{GARCH}(1,1)$

$$
\underbrace{\binom{\sigma_{t}^{2}}{X_{t}^{2}}}_{S_{t}}=\underbrace{\binom{\omega+\alpha X_{t-1}^{2}+\beta \sigma_{t-1}^{2}}{X_{t}^{2}}}_{\varphi\left(S_{t-1}, X_{t} ; \theta\right)}
$$

Example: $\operatorname{ARMA}(1,1)$

$$
\underbrace{\binom{\varepsilon_{t}}{X_{t}}}_{S_{t}}=\underbrace{\binom{X_{t}-\alpha \varepsilon_{t-1}-\beta X_{t-1}}{X_{t}}}_{\varphi\left(S_{t-1}, X_{t} ; \theta\right)}
$$

Other nested models
ARMA(p,q), GARCH(p,q), T-GARCH (Zakoïan, 1994), ACD
(Engle and Russell, 1998), Score models (Harvey, 2013)

Object of interest

- consider $\lambda_{n+1}=\pi\left(S_{n} ; \theta_{0}\right)$
- The recursive structure implies

$$
\lambda_{n+1}=\psi_{n}\left(S_{0}, \mathbf{X}_{n} ; \theta_{0}\right), \quad(\text { random })
$$

where $\psi_{n}=\pi \circ \underbrace{\varphi \cdots \circ \varphi}_{n \text {-times }}$

- Conditioning on $\mathbf{X}_{n}=\mathbf{x}_{n}$ and $S_{0}=s_{0}$, it reduces to

$$
\lambda_{n+1 \mid n}=\psi_{n}\left(s_{0}, \mathbf{x}_{n} ; \theta_{0}\right) \quad(\text { non-random })
$$

Taylor expansion

- 2IP estimator

$$
\sqrt{n}\left(\hat{\lambda}_{n+1}^{2 I P}-\lambda_{n+1}\right)=\frac{\partial \psi_{n}\left(s_{0}^{\circ}, \mathbf{X}_{n} ; \theta_{0}\right)}{\partial \theta^{\prime}} \sqrt{n}\left(\hat{\theta}\left(\mathbf{Y}_{n}\right)-\theta_{0}\right)+R_{n}^{2 I P}
$$

- SPL estimator

$$
\sqrt{n}\left(\hat{\lambda}_{n+1}^{S P L}-\lambda_{n+1}\right)=\frac{\partial \psi_{n_{2}}\left(s_{n-n_{2}}^{\circ}, \mathbf{X}_{n}^{2} ; \theta_{0}\right)}{\partial \theta^{\prime}} \sqrt{n}\left(\hat{\theta}\left(\mathbf{X}_{n}^{1}\right)-\theta_{0}\right)+R_{n}^{S P L}
$$

Assumption 5

Assumption 5: Normality
We assume $P_{\theta_{0}, \xi_{0}}=N\left(0, \Upsilon_{0}\right)$ with $\Upsilon_{0}=\Upsilon\left(\theta_{0}, \xi_{0}\right)$ and there exist $\hat{\Upsilon}\left(\mathbf{X}_{n}\right)$ and $\hat{\Upsilon}\left(\mathbf{X}_{n}^{1}\right)$ converging in probability to Υ_{0}.

