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A simple yet instructive model

I One of the simplest time series models is the AR(1) process
given by

Xt = βXt−1 + εt

with |β| < 1 and εt
iid∼ N(0, σ2

ε).

I Of interest could be:

I Prediction interval for βXT (= E[XT+1|XT ]),
i.e. (unconditional inference);

I Or an interval containing the conditional expectation of XT+1

given the past, i.e. βxT (conditional inference).
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Example 1: AR(1)

I Which one is better?

Intuitively, the latter is more appropriate
because it uses more information and hence will lead to more
informative intervals.

I This is indeed true.

level 1− α length for βXT expected length for βxT
0.90 3.193 2.625
0.95 4.374 3.123
0.99 7.210 4.110

I Calculations based on treating β̂XT to be a product of two
independent normals (second column).

I Ignoring the influence of xT on the distribution of β̂T (third
column).
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Example 1: AR(1)

I Conditional Confidence interval (CCI) for
E[XT+1|XT =xT ] = βxT based on the approximation

√
T (β̂(XT ) xT − β xT )√

1− β̂(XT )2

= xT

√
T (β̂(XT )− β)√

1− β̂(XT )2

≈N(0, x2
T ),

where XT = (XT ,XT−1, . . . ,X1).

I Points of attention:
I No limit on the rhs, N(0, x2

T ) will not approach a fixed
distribution;

I Inconsistency on the lhs as the obsered xT and the random XT

appear;
I Because of xT lhs needs to be treated as a conditional

distribution.
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Example 2: GARCH(1,1)
I Xt = σtεt with εt ∼ i .i .d .(0, 1) and

σ2
t = ω + αX 2

t−1 + βσ2
t−1.

I Goal: CCI for σ2
T+1|T = E

[
X 2
T+1|XT = xT

]
.

I The recursive structure implies

σ2
T+1|T = ψn(xT ; θ) = ω

1− βT

1− β
+ α

∞∑
k=0

βkx2
T−k .

I With an estimator θ̂(XT ) for θ = (ω, α, β)′ we have

σ̂2
T+1|T = ψn

(
xT ; θ̂(XT )

)
.

Problem even more severe because now xT = (xT , xT−1, . . .)
and XT appear.
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General set-up

I Object of interest ψT+1|T (xT , xT−1, . . . ; θ).

I If infeasible look at ψs
T+1|T (xT , xT−1, . . . , x1, s0, s−1 . . . ; θ).

I Still infeasible because of θ.

I With an estimator θ̂(XT ) the problematic version would be

ψ̂s
T+1|T

(
xT , xT−1, . . . , x1, s0, s−1 . . . ; θ̂(XT )

)
.



The problem in the literature

I For the AR(1) Kreiss points out that researchers approximate
the distribution of

β̂(XT )xT − βxT

rather than the distribution of

β̂(XT )XT − βXT given XT = xT

and that approximating the latter seems to be rather
cumbersome because even the rather simple condition
XT = xT has an influence on the whole series X1, . . . ,XT .

I Phillips (1979) approximates the conditional distribution by

Edgeworth expansion; works only under εt
iid∼ N(0, σ2

ε).



The problem in the literature
I The standard approach takes a shortcut as follows: ”... the

series used for estimation of parameters and the series used
for prediction are generated from two independent processes
which have the same stochastic structure.” - Lewis and Reinsel
(1985), Lütkepohl (2005), Dufour and Taamouti (2010).

I The standard approach then proceeds by using the
distribution theory for

ψ̂s
T+1|T

(
xT , xT−1, . . . , x1, s0, s−1 . . . ; θ̂(YT )

)
,

with YT independent of (Xt) and applies it to

ψ̂s
T+1|T

(
xT , xT−1, . . . , x1, s0, s−1 . . . ; θ̂(XT )

)
.

I ⇒ not consistent (or like Pesaran phrases (2015) it ”the
particular assumptions that underlie the standard approach are
not fully recognized.”)

I Can one find another way to justify these CCIs?
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Sample split approach

X1:TE
xTP :T

1 TE T − TP + 1 T

I SPL estimator:

ψ̂SPL
T+1|T

(
xT , . . . , xTP

, sTP−1, . . . , θ̂(X1:TE
)
)

I Results in meaningful probabilistic statements because√
TE

[
ψ̂SPL
T+1|T

(
xT , . . . , xTP

, sTP−1, . . . , θ̂(X1:TE
)
)

−ψSPL
T+1|T (xT , . . . , xTP

, sTP−1, . . . , θ)
]
.

does have non-degenerate (conditional) distributions.



Merging and Metrics

I Remains the issue with ’varying limit’.

I Usual definition of convergence in distribution FT (x)→ F (x)
for all continuity points: not convenient to generalize.

I However, we know that convergence in distribution can be
metricized as it is equivalent to dBL(FT ,F )→ 0 with

dBL(F ,G ) = sup

{∣∣∣∣ ∫ fd(F − G )

∣∣∣∣ : ||f ||BL ≤ 1

}
.

I This can be generalized to two sequences: Two sequences of
probability measures FT ,GT merge if and only if
dBL(FT ,GT )→ 0 (Dudley (1968)).
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Merging and Metrics

I Only one more thing needs to be taken into account.

I The distributions we look at are conditional distributions not
fixed ones as in the merging definition on the previous slide.

I May remind the statistics group of the bootstrap where
inference is also conditionally on the sample.

I This suggests the following: Two sequences of random cdfs

FT ,GT merge in probability if and only if dBL(FT ,GT )
P→ 0.
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Merging and Metrics

Theorem Under some regularity conditions the conditional
distributions of√

TE

[
ψ̂SPL
T+1|T

(
xT , . . . , xTP

, sTP−1, . . . , θ̂(X1:TE )

)
−ψSPL

T+1|T (xT , . . . , xTP
, sTP−1, . . . , θ)

]
.

and

√
T
[
ψ̂s
T+1|T

(
xT , xT−1, . . . , x1, s0, s−1 . . . ; θ̂(YT )

)
ψ̂s
T+1|T (xT , xT−1, . . . , x1, s0, s−1 . . . ; θ)

]
merge in probability.



Interval construction

Theorem Under some regularity conditions the intervals[
ψ̂s
T+1|T −

(F̂ STA
T )−1(1− γ2)√

T
, ψ̂s

T+1|T −
(F̂ STA

T )−1(γ1)√
T

]
and [

ψ̂SPL
T+1|T −

(F̂ SPL
T )−1(1− γ2)√

TE
, ψ̂SPL

T+1|T −
(F̂ SPL

T )−1(γ1)√
TE

]
are asymptotically equivalent in the sense that the centers and the
lengths of these intervals converge in probability.



Sample splitting in practice

DGPs in the simulation study

xt = µt + εt , µt =

p∑
j=1

βjxt−j , t = 1, . . . ,T , (1)

with T = 50, 75, 100, 150, 200 and εt ∼ N(0, 1).

Table 1: AR models considered in the simulation study

DGP β1 β2 β3 β4 β5 β6 β7 β8

A 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00
B 0.20 -0.50 0.40 0.40 0.00 0.00 0.00 0.00
C 1.20 -0.96 0.77 -0.61 0.49 -0.39 0.31 -0.25
D 0.80 -0.64 0.51 -0.41 0.33 -0.26 0.21 -0.17



Sample splitting in practice: Conditional approach

DGP C DGP D

DGP A DGP B
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Figure 1: (Conditional) mean coverage
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More on coverage: Unconditional

Table 2: Coverage probability of STA and SPL for the AR(8) process in
row C. DGP 1: shifted gamma innovations, DGP 2 innovations are a
mixture of shifted gamma and normal

DGP 1 DGP 2
STA SPL STA SPL

TE = 40, T = 50 89.8 91.1 90.2 91.2
TE = 50, T = 60 90.8 92.1 91.3 92.5
TE = 60, T = 70 91.5 92.8 91.9 92.9
TE = 70, T = 80 92.1 93.2 92.4 93.5
TE = 80, T = 90 92.6 93.6 92.7 93.5



Thank you for your attention!
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Appendix



Assumption A1: 2IP Estimator

1.1 (Estimator) Z 2IP
n = mn

(
θ̂(Yn)− θ0

)
∼ P2IP

Zn
→ Pθ0,ξ0

1.2 (Independence) {Yt} is independent of {Xt} and S0

1.3 (Differentiability) ψn( · , · ; θ) is continuous on Θ and twice
differentiable on Θ̊ = int(Θ)

1.4 (Initial Cond.)
√
n
(
ψn(S0,Xn; θ0)− ψn(s◦0 ,Xn; θ0)

)
= op(1)

1.5 (Hessian) supθ∈Θ̊

∣∣∣∣∣∣∂2ψn(s◦0 ,Xn;θ)
∂θ∂θ′

∣∣∣∣∣∣ = Op(1)

1.6 (Gradient)
∣∣∣∣∣∣∂ψn(s◦0 ,Xn;θ0)

∂θ

∣∣∣∣∣∣ = Op(1)



Assumption A2: SPL Estimator

2.1 (Estimator) ZSPL
n = mn

(
θ̂(X1

n)− θ0

)
∼ PSPL

Zn
→ Pθ0,ξ0

2.2 (Weak Dependence)
∫
h d
(
PSPL
Zn

(·|X2
n,Sn−n2)− PSPL

Zn

)
p→ 0

w.r.t. n3 = n − n1 − n2 for all h bounded Lipschitz

2.3 (Differentiability) ψn2( · , · ; θ) is continuous on Θ and twice
differentiable on Θ̊

2.4 (Initial Cond.)√
n
(
ψn2(Sn−n2 ,X

2
n; θ0)− ψn2(s◦n−n2

,X2
n; θ0)

)
= op(1) w.r.t. n2

2.5 (Hessian) supθ∈Θ̊

∣∣∣∣∣∣∂2ψn2 (s◦n−n2
,X2

n;θ)

∂θ∂θ′

∣∣∣∣∣∣ = Op(1) w.r.t. n2

2.6 (Gradient)
∣∣∣∣∣∣∂ψn2 (s◦n−n2

,X2
n;θ0)

∂θ

∣∣∣∣∣∣ = Op(1) w.r.t. n2



Merging of 2IP and SPL in probability

Assumption A3: Merging Gradients∣∣∣∣∣∣∣∣∂ψn(s◦0 ,Xn; θ0)

∂θ
−
∂ψn2(s◦n−n2

,X2
n; θ0)

∂θ

∣∣∣∣∣∣∣∣ p→ 0 .

Theorem 1:
Under Assumptions A1 to A3,

P
[√

n
(
λ̂2IP
n+1 − λn+1

)
∈ ·|Xn,S0

]
and

P
[√

n
(
λ̂SPLn+1 − λn+1

)
∈ ·|X2

n,Sn−n2

]
merge in probability.



Interval construction

Assumption A4: Plug-in Estimator

4.1 (2IP)
∫
h dPθ̂(Xn),ξ̂(Xn)

p→
∫
h dPθ0,ξ0 ∀h bounded Lipschitz;

4.2 (SPL)
∫
h dPθ̂(X1

n),ξ̂(X1
n)

p→
∫
h dPθ0,ξ0 ∀h bounded Lipschitz.

I 2IP
γ (Yn,Xn) =

[
λ̂2IP
n+1 −

F̂ 2IP
n

−1
(1−γ2)√
n

, λ̂2IP
n+1 −

F̂ 2IP
n

−1
(γ1)√
n

]

I SPLγ (X1
n,X

2
n) =

[
λ̂SPLn+1 −

F̂ SPL
n

−1
(1−γ2)√
n

, λ̂SPLn+1 −
F̂ SPL
n

−1
(γ1)√

n

]

I ILLγ (Xn,Xn) = I 2IP
γ (Yn,Xn)|Yn=Xn



Theorem 2: Asymptotic Coverage

2.1 Under A1 and A4, P2IP
n (·|Xn,S0) and P̂2IP

n (·) merge in

probability. If in addition F̂ 2IP
n (·) is stochastically uniformly

equicontinuous, P
[
I 2IP
γ (Yn,Xn) 3 λn+1

∣∣Xn,S0

] p→ 1− γ;

2.2 Under A2 and A4, PSPL
n (·|X2

n,Sn−n2) and P̂SPL
n (·) merge in

probability. If in addition F̂ SPL
n (·) is stochastically uniformly

equicontinuous, P
[
I SPLγ (X1

n,X
2
n) 3 λn+1

∣∣X2
n, Sn−n2

] p→ 1− γ.

Theorem 3: Asymptotic Equivalence of Confidence Intervals

3.1 (Location) If A1 and A2 hold, then λ̂ILLn+1 − λ̂SPLn+1
p→ 0.

3.2 (Length) Under the assumptions of Theorem 1 and 2 and

F̂ SPL
n

−1
(·) being stochastically pointwise equicontinuous at

u = γ1, 1− γ2, we have F̂ ILL
n

−1
(u)− F̂ SPL

n

−1
(u)

p→ 0.



Discussion

”... although [the parameter] is assumed fixed at the es-
timation stage, it is unknown to the forecaster and, from
this perspective, it is best viewed as a random variable at
the forecasting stage.” - Pesaran (2015)

I Pesaran assigns to θ some posterior distribution.

I Treating θ not fixed but random, the issue solves, e.g.
L
(
µn+1 − µ̂ILLn+1|Xn = xn

)
is non-degenerate

Critique

Combining a frequentist view with a Bayesian-akin approach does
not seem to be coherent.



ϕ - Mapping

Example: GARCH(1,1)

(
σ2
t

X 2
t

)
︸ ︷︷ ︸

St

=

(
ω + αX 2

t−1 + βσ2
t−1

X 2
t

)
︸ ︷︷ ︸

ϕ(St−1,Xt ;θ)

,

Example: ARMA(1,1)

(
εt
Xt

)
︸ ︷︷ ︸

St

=

(
Xt − αεt−1 − βXt−1

Xt

)
︸ ︷︷ ︸

ϕ(St−1,Xt ;θ)

,

Other nested models
ARMA(p,q), GARCH(p,q), T-GARCH (Zaköıan, 1994), ACD
(Engle and Russell, 1998), Score models (Harvey, 2013)



Object of interest

I consider λn+1 = π(Sn; θ0)

I The recursive structure implies

λn+1 = ψn(S0,Xn; θ0) , (random)

where ψn = π ◦ ϕ · · · ◦ ϕ︸ ︷︷ ︸
n-times

I Conditioning on Xn = xn and S0 = s0, it reduces to

λn+1|n = ψn(s0, xn; θ0) (non-random)



Taylor expansion

I 2IP estimator

√
n
(
λ̂2IP
n+1 − λn+1

)
=
∂ψn(s◦0 ,Xn; θ0)

∂θ′
√
n
(
θ̂(Yn)− θ0

)
+ R2IP

n

I SPL estimator

√
n
(
λ̂SPLn+1 − λn+1

)
=
∂ψn2 (s◦n−n2

,X2
n; θ0)

∂θ′
√
n
(
θ̂(X1

n)− θ0

)
+ RSPL

n



Assumption 5

Assumption 5: Normality
We assume Pθ0,ξ0 = N(0,Υ0) with Υ0 = Υ(θ0, ξ0) and there exist

Υ̂(Xn) and Υ̂(X1
n) converging in probability to Υ0.
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