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Gene regulatory networks

A gene regulatory network (GRN) is a collection of genes which
mutually regulate their own gene expression levels or protein
production.

We represent a GRN as a directed graph. Each node represents a
gene or protein and the edges between them describe
(transcriptional) regulation.

A→ B (A a B) means A activates (represses) B (i.e. more A
increases (decreases) production rate of B).

Examples:

1

2



A more interesting example
A modern GRN of “known” p53 interactions (G. Chen, M.
Cairelli, et al, PLoS CompBio 2014).

The apparent complexity of a typical GRN actually promotes
robust dynamics.

Central question: What dynamics are imposed by the topology of
the GRN?



Overview of this talk

Main challenge

No first principles. How do we solve ẋ = ?

1 Define a framework for transcribing GRNs into nonlinear ODEs
with relatively simple response functions for each interaction.

2 These ODE models have very high parameter dimension.
3 Compute “combinatorial dynamics” to obtain a coarse but global

description of the dynamics for all parameters.
4 Use the combinatorial dynamics to identify subsets of the

parameter space with interesting dynamics.
5 Return to the ODE model: Apply numerical methods restricted

to these parameter subsets to study dynamics classically
(i.e. orbits, invariant sets, bifurcations, etc).
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From networks to ODEs
For a GRN with N genes we consider a nonlinear ODE:

ẋ = f(x, λ), x ∈ X := [0,∞)N , λ ∈ Λ := (0,∞)M .

For 1 ≤ i ≤ N , the variable xi denotes the protein concentration
or gene expression level of node i.

Assume that each protein or gene degrades at a rate proportional
to its own concentration/expression level, i.e.

ẋi = −γixi + nonlinear/inhomogeneous production,

where the decay rate is γi > 0, which is unknown.

For transcriptional interactions the biology suggests the
functional form

ẋi = −γixi +
∑

interaction
groups

∏
interactions

with xi

gi,j(xj , λ).



Modeling the nonlinear production

Definition
A polynomial, p ∈ R[z1, . . . , zN ] is called an interaction function if it
has the form

p =

q∏
m=1

pm, where pm =
∑
j∈Im

zj ,

and {I1, . . . , Iq} is an integer partition of {1, . . . , N}. The linear
polynomial pm is called the mth summand of p.

Informally, an interaction function is a “product of sums”.
Interactions with similar mechanisms are combined in the same
summand.
Interaction functions provide control over how the contributions
from multiple regulators are combined.
Example: p = (z1 + z2)(z3 + z4)z5 where

q = 3, N = 5, I1 = {1, 2}, I2 = {3, 4}, I3 = {5}.



Hill response functions

Definition

Let H+ : [0,∞)→ (0,∞) denote the activating Hill function defined
by the formula

H+(x) := `+ δ
xd

θd + xd
.

H− : [0,∞)→ (0,∞) denotes the repressing Hill function defined
by the formula

H−(x) := `+ δ
θd

θd + xd

H∗ depends on 4 positive real parameters, {`, δ, θ, d}.
d is called the Hill coefficient (or Hill exponent).

Aliases: Holling type II and type III (ecology),
Michaelis-Menten or Monod (d = 1) functions.



Properties of Hill functions

H+ is increasing and H− is
decreasing.

H+(0) = ` = lim
x→∞

H−(x).

H−(0) = `+ δ = lim
x→∞

H+(x).

H∗(θ) = `+ 1
2δ (half saturation).

Increasing d produces a steeper
response.

H∗ is hyperbolic when 1 ≤ d ≤ 2
and sigmoidal for d > 2.



Hill ODE models

Definition
A Hill model is an ODE of the form

ẋ = f(x, λ) = −Γx+H(x, λ),

where

Γ :=

γ1 . . . 0
...

. . .
...

0 . . . γN

 , Hi(x) = pi
(
H∗i,1(x1) . . . , H

∗
i,N (xN )

)
,

pi is an interaction function, and H∗i,j is a Hill function, 1 ≤ i, j ≤ N .

If there is a directed edge from node j to node i, then H∗i,j
contributes 4 parameters to the model, {`i,j , δi,j , θi,j , di,j}.
If j a i then H∗i,j = H− and if j → i then H∗i,j = H+.

Parameter space dimension: M = N + 4 ·#E.



Example: the Toggle Switch

1

2

ẋ1 = −γ1x1 + `1,2 + δ1,2
θ
d1,2
1,2

θ
d1,2
1,2 + x

d1,2
2

= −γ1x1 +H−1,2(x2)

ẋ2 = −γ2x2 + `2,1 + δ2,1
θ
d2,1
2,1

θ
d2,1
2,1 + x

d2,1
1

= −γ2x2 +H−2,1(x1)

x = (x1, x2) ∈ [0,∞)2.

λ = (γ1, `1,2, δ1,2, θ1,2, d1,2, γ2, `2,1, δ2,1, θ2,1, d2,1) ∈ (0,∞)10.



A three node GRN example

f(x, λ) = −

γ1 0 0
0 γ2 0
0 0 γ3

x

︸ ︷︷ ︸
linear decay

+

H+
1,1(x1) +H+

2,1(x2)

H−1,2(x1)H
−
3,2(x3)

H+
1,3(x1)


︸ ︷︷ ︸

nonlinear production

.

x = (x1, x2, x3) ∈ [0,∞)3.

λ =
(
γ1, `1,1, δ1,1, θ1,1, d1,1, `2,1, δ2,1, θ2,1, d2,1, γ2, `1,2, δ1,2, θ1,2, d1,2,

`3,2, δ3,2, θ3,2, d3,2, γ3, `1,3, δ1,3, θ1,3, d1,3
)
∈ (0,∞)23.
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Combinatorial dynamics

Main idea: When Λ is high dimensional or parameters are
difficult to estimate it is impractical to study invariant sets.

Give up (temporarily) on studying invariant sets (e.g. orbits,
equilibria, invariant manifolds, connections, etc).

Study robust dynamical descriptions (e.g. attractor/repeller pairs,
isolating blocks, Morse decompositions, Conley indices, etc).



Attractors vs invariant sets

What we think we see.

What we actually see.



Model coarseness and robustness

Informally, combinatorial dynamics refers to broadly observable
dynamic phenotypes which depend only on the topology of the
GRN.

Let xI denote the vector of state variables which regulate xi
(i.e. source nodes for edges incoming to node i). We imagine a
system of ODEs of the form

xi = −γixi + fi (xI , λ)

where fi is some unknown (monotone?) function.

Combinatorial dynamics are coarse descriptions which are
relatively insensitive to the choice of fi or λ.

These take the form of computable dynamical invariants for
equivalence classes of models [fi] which are robust over large
subsets of parameters.

The dynamics computed are rigorous for all models in [fi].



Dynamic Signatures Generated by Regulatory Networks
(DSGRN)

DSGRN is a computational platform for computing global
combinatorial dynamics for GRN models.
DSGRN uses a simple model for which the following can be
done explicitly, efficiently, and rigorously.

1 Discretize X: Compute a coarse description (Morse graph) of the
gradient-like dynamics on X for an arbitrary parameter.

2 Discretize Λ: Decompose Λ into open, semi-algebraic subsets on
which the Morse graph is constant.

Both steps are highly nontrivial.

The combinatorial description of the global dynamics is a
collection of parameter regions which partition Λ, and a Morse
graph associated to each region.

The combinatorial dynamics computed using DSGRN are valid
for infinite Hill coefficients (i.e. di,j →∞ for all i, j).



Discretizing state space

Partition X into top cells with transverse faces.

Build a graph representation of the dynamics (state transition
graph) and compute its lattice of attractors.

Attractor lattices are robust and their algebraic structure encodes
topological (and therefore dynamical) properties. (W. Kalies, K.
Mischaikow, R.C.A.M. Vandervorst).

Compute the associated Morse graph which is a robust
description of the coarse dynamical phenotype.



Descretizing parameter space

A combinatorial parameter space decomposition (PSD) is a
partition of Λ into subsets on which the Morse graph is constant.
For the simple model these subsets are semi-algebraic sets given
by explicit inequalities.
Unfortunately, there are a lot of these subsets, most of them are
empty, and there is no efficient algorithm for determining
whether an arbitrary semi-algebraic set is nonempty.



Connections to Algebraic Geometry and Order Theory

Consider a semi-algebraic set Ξ ⊂ Rd, and a collection of
polynomials P := {p1, . . . , pK} ⊂ R[x1, . . . , xd].

Equip P with a partial order such that if p ≺ q, then

p(ξ) < q(ξ) for all ξ ∈ Ξ.

A permutation σ ∈ SK defines a linear extension of this partial
order, ≺σ, satisfying

pσ(1) ≺σ pσ(2) ≺σ · · · ≺σ pσ(K).

We define the realizable set associated to σ by

Ξσ := {ξ ∈ Ξ : pσ(k)(ξ) < pσ(k+1)(ξ) for all 1 ≤ k ≤ K − 1}.

The algebraically constrained linear extension problem (ACLEP)

Given (P,≺,Ξ), rigorously compute the set of all permutations with
nonempty realizable sets.



Relationship between ACLEP and PSD

Computing a combinatorial PSD for the simple model is
equivalent to a specific instance of the ACLEP.

Surprisingly, these instances of the ACLEP can be solved
“efficiently” (S.K., K. Mischaikow, L. Zhang, 2020 SIAGA).

This problem only needs to be solved once for each distinct
configuration of incoming edges to a GRN node and the results
stored in a database.

The current version of DSGRN has rigorous solutions stored for
a node with up to 5 incoming (transcriptional) edges with any
interaction function except p = (z1 + z2 + z3)(z4 + z5).

We have also solved PSD problems for “non-transcriptional”
regulation modeling ubiquitination and phosphorylation
(B. Cummins, M. Gameiro, T. Gedeon, S.K., K. Mischaikow,
2021).



Combinatorial dynamics of three node networks

Top 14 hysteretic switch designs out of 19,683 three node GRNs
(M. Gameiro, T. Gedeon, S.K., K. Mischaikow, PLoS CompBio
2020)

Synthetic Biology labs at UW and UC Santa Barbara are actually
building these designs.
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The HillCont library

HillCont: An open source Python library for numerical analysis
of Hill models (coauthored with Elena Queirolo).

Implement Hill function ODE models given only GRN topology
for arbitrary state/parameter dimension.

Efficient evaluation of Hill models and the following derivatives

Dxf,Dλf,Dxxf,Dλxf,Dλλf,Dxxxf,Dλxxf,Dλλx.

via automatic differentiation (i.e. without formulas or calculus).
Main features:

1 Automatically search for equilibria, saddle-node bifurcations,
Hopf bifurcations, and pitchfork bifurcations.

2 Constrained parameter optimization and/or continuation along
equilibria/bifurcations.

3 Rigorous enclosures of equilibria for biologically relevant GRNs
via the “bootstrap map”.



The bootstrap map

Definition

A continuous function g : [0,∞)N → (0,∞)N has a monotone
factorization if for each i = 1, . . . , N , gi factors as

gi(x) = g+i (x)g−i (x) for all x ∈ [0,∞)N ,

where g+i : [0,∞)N → (0,∞)N is bounded and strictly increasing
and g−i : [0,∞)N → (0,∞)N is bounded and strictly decreasing as a
function of each variable x1, . . . , xN .

Definition
If f(x) = −Γx+H(x) andH has a monotone factorization, then the
bootstrap map for f is Φ: R2N → R2N defined by the formula

Φi(α, β) =
1

γi
H+
i (α)H−i (β) and ΦN+i(α, β) =

1

γi
H+
i (β)H−i (α),

where α, β ∈ RN and i = 1, . . . , N .



Rigorous equilibrium enclosures

Theorem (S.K., K. Mischaikow, E. Queirolo)
Consider f and Φ as previously defined and assume that
lim inf‖x‖→∞ g

−
i (x) > 0 for all i = 1, . . . , N . Then, the following

are true.

(i) x ∈ [0,∞)N is a zero of f if and only if (x, x) ∈ [0,∞2N ) is a
fixed point of Φ.

(ii) Define
(
α(0), β(0)

)
∈ R2N coordinate wise by

α
(0)
i :=

1

γi
g+i (0) lim inf

‖x‖→∞
g−i (x), β

(0)
i :=

1

γi
lim sup
‖x‖→∞

g+i (x)g−i (0)

for i = 1, . . . , N . Iteratively, define (αn+1, βn+1) = Φ(αn, βn)
for n ≥ 1. Then (α̂, β̂) := lim

n→∞
(αn, βn) exists and (α̂, β̂) is a

fixed point of Φ.

(iii) If f(x̂) = 0, then
x̂ ∈ R̂ :=

N∏
i=1

[α̂i, β̂i].
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DSGRN analysis of the Toggle Switch

Λ = (0,∞)10 is partitioned into 9
semi-algebraic subsets {R1, . . . , R9} with
constant Morse graphs.

Example: R5 is defined by the inequalities

`1,2 < γ1θ2,1 < `1,2 + δ1,2

`2,1 < γ2θ1,2 < `2,1 + δ2,1

and has associated Morse graph
c

a b

The remaining 8 regions are have Morse
graphs with a unique minimal attractor of
“FP” type.

1

2

R1 R2 R3

R4 R5 R6

R7 R8 R9



Predicting ODE dynamics from combinatorial dynamics

The Toggle Switch Hill model is

ẋ = f(x, λ) =

(
−γ1 0

0 −γ2

)
x+

(
H−1,2(x2)

H−2,1(x1)

)
with λ = (γ1, `1,2, δ1,2, θ1,2, d1,2, γ2, `2,1, δ2,1, θ2,1, d2,1).

We identify both Hill coefficients (i.e. d1,2 = d2,1 = d).

At d = 1, f has a unique globally attracting stable equilibrium.

The DSGRN analysis holds in the limit d→∞.

Assume f has no codimension-1 bifurcations other than
saddle-node bifurcations.

If the combinatorial dynamics were a perfect predictor of the
ODE dynamics, then we expect to find saddle-node bifurcations
when continuing parameters in R5.

Using HillCont we can quantify the correlation between the
combinatorial and ODE dynamics with statistical analysis.



Constructive saddle-node bifurcation theorem

Theorem (J.B. van den Berg, M. Gameiro, J.P. Lessard, J.D. Mireles
James, K. Mischaikow)
Let g : X × R→ TX be a one parameter family of vector fields.
Define G : R2N+1 → R2N+1 by the formula

G(x, v, s) :=

 g(x, s)
Dxg(x, s)v
vT v − 1

 x, v ∈ RN , s ∈ R.

Suppose û = (x̂, v̂, ŝ) ∈ RN × RN × R satisfies
1 G(û) = 0.
2 DuG(û) is an isomorphism.
3 Every nonzero eigenvalue of Dxg(x̂, ŝ) has nonzero real part.

Then, g undergoes a saddle-node bifurcation at (x̂, ŝ) and

kerDxg(x̂, ŝ) = span ({v̂}).
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Rigorous equilibria for the Toggle Switch

Theorem (S.K., K. Mischaikow, E. Queirolo)

Let Φ : R4 → R4 be the bootstrap map for Toggle Switch. Suppose
the bootstrap iteration converges to (α̂, β̂) ∈ R2 × R2 and let
R̂ := [α̂1, β̂1]× [α̂2, β̂2]. Then, either R̂ is degenerate and f is
monostable with unique equilibrium x̂ = (α̂1, α̂2), or f is bistable
with stable equilibria at the corners of R̂ with coordinates

x̂1 = (α̂1, β̂2), x̂2 = (β̂1, α̂2).



Statistical analysis of combinatorial predictions

χ2 hypothesis testing
We test the null hypothesis that λ ∈ R5 is independent of the
existence of a saddle-node bifurcation along the parameterized path
γ : [1,∞]→ Λ defined by

γ(s) = (γ1, `1,2, δ1,2, θ1,2, s, γ2, `2,1, δ2,1, θ2,1, s).

Contingency table for 1,000 randomly chosen parameters:

SNB found No SNB found Bisection fail Bad parity
λ ∈ R5 86 0 30 5
λ /∈ R5 2 875 0 2

χ2 test statistic: 968.19

p-value: p ≈ 1.4× 10−209



Thank you for your attention!
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