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Gene regulatory networks

@ A gene regulatory network (GRN) is a collection of genes which
mutually regulate their own gene expression levels or protein
production.

@ We represent a GRN as a directed graph. Each node represents a
gene or protein and the edges between them describe
(transcriptional) regulation.

e A — B (A - B)means A activates (represses) B (i.e. more A
increases (decreases) production rate of B).

o Examples:
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A more interesting example

@ A modern GRN of “known” p53 interactions (G. Chen, M.
Cairelli, et al, PLoS CompBio 2014).

@ The apparent complexity of a typical GRN actually promotes
robust dynamics.

@ Central question: What dynamics are imposed by the topology of
the GRN?




Overview of this talk

Main challenge

No first principles. How do we solve & =

Define a framework for transcribing GRNs into nonlinear ODEs
with relatively simple response functions for each interaction.

These ODE models have very high parameter dimension.

Compute “combinatorial dynamics” to obtain a coarse but global
description of the dynamics for all parameters.

Use the combinatorial dynamics to identify subsets of the
parameter space with interesting dynamics.

Return to the ODE model: Apply numerical methods restricted
to these parameter subsets to study dynamics classically
(i.e. orbits, invariant sets, bifurcations, etc).
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From networks to ODEs

o For a GRN with N genes we consider a nonlinear ODE:
i=f(r,\), zeX:=[0,00", XeA:=(0,00)".

e For 1 < i < N, the variable x; denotes the protein concentration
or gene expression level of node 1.

@ Assume that each protein or gene degrades at a rate proportional
to its own concentration/expression level, i.e.

Z; = —7;x; + nonlinear/inhomogeneous production,

where the decay rate is y; > 0, which is unknown.

e For transcriptional interactions the biology suggests the
functional form

T = =T + Z H Gij (75, A).

interaction interactions
groups with x;



Modeling the nonlinear production

A polynomial, p € R[z1, ..., zyn] is called an interaction function if it
has the form

q
b= H Pm,y where Pm = Z 25,
m=1 JE€Im

and {I3, ..., I,} is an integer partition of {1, ..., N'}. The linear
polynomial p,,, is called the m™ summand of p.

.

e Informally, an interaction function is a “product of sums”.
Interactions with similar mechanisms are combined in the same
summand.

@ Interaction functions provide control over how the contributions
from multiple regulators are combined.

e Example: p = (21 + 22)(23 + 24)25 Where

q:3, N:5, Il = {1,2}, I2 = {3,4}, 13 = {5}



Hill response functions

Definition

Let H : [0,00) — (0, 00) denote the activating Hill function defined
by the formula

24
od +x d’
H~ :]0,00) = (0,00) denotes the repressing Hill function defined
by the formula

HY(z) =0+ 6——

ad

H™(2) =L+ 8 g

.

e H* depends on 4 positive real parameters, {¢, d, 0, d}.
@ d is called the Hill coefficient (or Hill exponent).

o Aliases: Holling type II and type III (ecology),
Michaelis-Menten or Monod (d = 1) functions.



Properties of Hill functions

° is increasing and H ~ is Y
decreasing. R
° ={= lim H (x).
Tr—r00
e H (0) =446 = lim
XTr—r00

o H*(0) = ¢+ 35 (half saturation).
o Increasing d produces a steeper
response.

@ H* is hyperbolic when 1 < d < 2 -
and sigmoidal for d > 2. ]
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Hill ODE models

A Hill model is an ODE of the form

= f(x,\) = Tz +H(z,\),

where

Fe=1|: .. 1, Hi(x):pi(H;‘,l(xl)...,HZN(xN)),
0 ... v

p; s an interaction function, and H;'; is a Hill function, 1 < ¢,j < N.

o

o If there is a directed edge from node j to node 1, then H;
contributes 4 parameters to the model, {/; ;, d; j, 6; ;, 7]}

o If j Hithen H}; = H™ andif j — ithen H;, = H™.
@ Parameter space dimension: M = N + 4 - #F.



Example: the Toggle Switch

di,2
: 1,2 _
iy = -1+l + 00— = =z + Hy 5(x2)
1,2 T %9
da,1
. 05 i B .
Ty = —Y2m2 + b1 + 0o 10— = —y2m2 + Hy (1)
21 t X7

z = (21,72) € [0,00)%.

A= (v,012,012,012,d12,72,¢21,021,021,d1) € (0,00)*.



A three node GRN example

®
&
o

v 0 0 Hyy (21) + Hyy (w2)
fle, N )==10 v 0 ]z+ Hig(wl)Hgg(wg)

0 0 Y3 Hffg(wl)

linear decay nonlinea.r}:roduction

x = (x1,x2,23) € [0, )3,

A= (71,01,1,01,1,01,1,d1,1, L2, 02,1, 02,1, d2,1,72, €12, 01,2, 01,2, d 2,

l39,032,039,ds9,73,013,01,3,013,d13) € (0,00)%.
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Combinatorial dynamics

@ Main idea: When A is high dimensional or parameters are
difficult to estimate it is impractical to study invariant sets.

o Give up (temporarily) on studying invariant sets (e.g. orbits,
equilibria, invariant manifolds, connections, etc).

o Study robust dynamical descriptions (e.g. attractor/repeller pairs,
isolating blocks, Morse decompositions, Conley indices, etc).




Attractors vs invariant sets

What we think we see.

What we actually see.
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Model coarseness and robustness

o Informally, combinatorial dynamics refers to broadly observable
dynamic phenotypes which depend only on the topology of the
GRN.

@ Let x denote the vector of state variables which regulate z;
(i.e. source nodes for edges incoming to node 7). We imagine a
system of ODE:s of the form

x; = —vixi + fi (x1, )

where f; is some unknown (monotone?) function.

@ Combinatorial dynamics are coarse descriptions which are
relatively insensitive to the choice of f; or A.

@ These take the form of computable dynamical invariants for
equivalence classes of models [ f;] which are robust over large
subsets of parameters.

@ The dynamics computed are rigorous for all models in [f;].



Dynamic Signatures Generated by Regulatory Networks

(DSGRN)

@ DSGRN is a computational platform for computing global
combinatorial dynamics for GRN models.

@ DSGRN uses a simple model for which the following can be
done explicitly, efficiently, and rigorously.

@ Discretize X: Compute a coarse description (Morse graph) of the
gradient-like dynamics on X for an arbitrary parameter.

© Discretize A: Decompose A into open, semi-algebraic subsets on
which the Morse graph is constant.

@ Both steps are highly nontrivial.

@ The combinatorial description of the global dynamics is a
collection of parameter regions which partition A, and a Morse
graph associated to each region.

@ The combinatorial dynamics computed using DSGRN are valid
for infinite Hill coefficients (i.e. d; ; — oo for all ¢, j).



Discretizing state space

o Partition X into top cells with transverse faces.

@ Build a graph representation of the dynamics (state transition
graph) and compute its lattice of attractors.

@ Attractor lattices are robust and their algebraic structure encodes
topological (and therefore dynamical) properties. (W. Kalies, K.
Mischaikow, R.C.A.M. Vandervorst).

@ Compute the associated Morse graph which is a robust
description of the coarse dynamical phenotype.
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Descretizing parameter space

@ A combinatorial parameter space decomposition (PSD) is a
partition of A into subsets on which the Morse graph is constant.

@ For the simple model these subsets are semi-algebraic sets given
by explicit inequalities.

o Unfortunately, there are a lot of these subsets, most of them are
empty, and there is no efficient algorithm for determining
whether an arbitrary semi-algebraic set is nonempty.




Connections to Algebraic Geometry and Order Theory

o Consider a semi-algebraic set Z C R¢, and a collection of
polynomials P := {p1,...,px} C Rlxy,...,z4].
@ Equip P with a partial order such that if p < g, then

p(§) < q(§) forall € E.

@ A permutation 0 € Sk defines a linear extension of this partial
order, <, satisfying

Do(1) =o Po(2) <o ' <o Po(K)-

@ We define the realizable set associated to o by

Eo = {{ € Z: Po(iy (§) < Po(r1y(§) forall 1 <k < K —1}.

The algebraically constrained linear extension problem (ACLEP)

Given (P, <, E), rigorously compute the set of all permutations with
nonempty realizable sets.




Relationship between ACLEP and PSD

@ Computing a combinatorial PSD for the simple model is
equivalent to a specific instance of the ACLEP.

@ Surprisingly, these instances of the ACLEP can be solved
“efficiently” (S.K., K. Mischaikow, L. Zhang, 2020 STAGA).

@ This problem only needs to be solved once for each distinct
configuration of incoming edges to a GRN node and the results
stored in a database.

@ The current version of DSGRN has rigorous solutions stored for
a node with up to 5 incoming (transcriptional) edges with any
interaction function except p = (z1 + 22 + 23) (24 + 25).

@ We have also solved PSD problems for “non-transcriptional”
regulation modeling ubiquitination and phosphorylation
(B. Cummins, M. Gameiro, T. Gedeon, S.K., K. Mischaikow,
2021).



Combinatorial dynamics of three node networks

@ Top 14 hysteretic switch designs out of 19,683 three node GRNs
(M. Gameiro, T. Gedeon, S.K., K. Mischaikow, PLoS CompBio
2020)

o Synthetic Biology labs at UW and UC Santa Barbara are actually
building these designs.
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Returning to ODE models
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The HillCont library

@ HillCont: An open source Python library for numerical analysis
of Hill models (coauthored with Elena Queirolo).

o Implement Hill function ODE models given only GRN topology
for arbitrary state/parameter dimension.

o Efficient evaluation of Hill models and the following derivatives

D:rfa D)\f? szfa D)\J:f> D)\)\f’ sz:}cf» D)xxzfa DA)\:c-

via automatic differentiation (i.e. without formulas or calculus).
@ Main features:

@ Automatically search for equilibria, saddle-node bifurcations,
Hopf bifurcations, and pitchfork bifurcations.

© Constrained parameter optimization and/or continuation along
equilibria/bifurcations.

@ Rigorous enclosures of equilibria for biologically relevant GRNs
via the “bootstrap map”.



The bootstrap map

A continuous function g: [0,00)"Y — (0, 00)" has a monotone
factorization if for eachz =1, ..., IV, g; factors as

gi(a) = g (@)g; (x) forallz € [0,00)",

where g; : [0,00)" — (0,00)" is bounded and strictly increasing
and g; : [0,00)" — (0,00)" is bounded and strictly decreasing as a
function of each variable z1, ...,z .

.

Definition

If f(x) = —T'z + H(x) and H has a monotone factorization, then the
bootstrap map for f is ®: R?Y — R2V defined by the formula

= AR (B) and Dy B) = HF B (@),

)

CDZ'(Oé, B)

where o, 5 € RN andi =1,...,N.




Rigorous equilibrium enclosures

Theorem (S.K., K. Mischaikow, E. Queirolo)
Consider f and ® as previously defined and assume that
liminf| ;500 g; () > 0foralli=1,..., N. Then, the following
are true.
(i) = € [0,00)" is a zero of f if and only if (x,z) € [0,00?N) isa
fixed point of P.
(1) Define (a(o), 5(0)) € R2N coordinate wise by

ago) = lg;r(()) liminf g; (z), ﬁ-(o) = ilimSUPQ;F(QJ")%?(O)

i oo Y el
fori=1,...,N. Iteratively, define (o™t grtl) = @(g”, B™)
forn > 1. Then (&, 8) := li_>m (o™, B™) exists and (&, ) is a

n (0.@)
fixed point of P.
(i) If f(2) = 0, then
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DSGRN analysis of the Toggle Switch

o A = (0,00)' is partitioned into 9
semi-algebraic subsets { Ry, ..., Ry} with
constant Morse graphs.

©

Y,
~__ _~

e Example: Rj is defined by the inequalities

®)

U120 <121 <12+ 012
Uy < y2b12 < lo1 + 021

and has associated Morse graph

Cc

@ The remaining 8 regions are have Morse

graphs with a unique minimal attractor of
“FP” type.




Predicting ODE dynamics from combinatorial dynamics

o The Toggle Switch Hill model is

. -7 0 H1_2(x2)>
= f(x,\) = r+ o
= (0 0) o (i
with A = (71,412,612, 01,2, d1,2,72, 02,1, 02,1,02,1,d21).
We identify both Hill coefficients (i.e. d1 2 = d21 = d).
Atd =1, f has a unique globally attracting stable equilibrium.

The DSGRN analysis holds in the limit d — oc.

Assume f has no codimension-1 bifurcations other than
saddle-node bifurcations.

o If the combinatorial dynamics were a perfect predictor of the
ODE dynamics, then we expect to find saddle-node bifurcations
when continuing parameters in I?s.

o Using HillCont we can quantify the correlation between the
combinatorial and ODE dynamics with statistical analysis.



Constructive saddle-node bifurcation theorem

Theorem (J.B. van den Berg, M. Gameiro, J.P. Lessard, J.D. Mireles

James, K. Mischaikow)

Let g : X X R — T X be a one parameter family of vector fields.
Define G : R2N*1 5 R2NHL by the formula

9(, s)
G(z,v,s8) == | Dyg(z,s)v z,veRY s eR.

vy —1

Suppose 1 = (2,0,5) € RN x RN x R satisfies
Q G(u)=0.
@ D,G(1) is an isomorphism.
© Every nonzero eigenvalue of D,g(, $) has nonzero real part.

Then, g undergoes a saddle-node bifurcation at (z, 5) and

ker D, g(Z, 5) = span ({0}).




Analysis of the Toggle Swit

Searching for saddle-node bifurcations for A € R;

parameter: 0 parameter: 1 parameter: 2
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Rigorous equilibria for the Toggle Switch

Theorem (S.K., K. Mischaikow, E. Queirolo)

Let ® : R* — R* be the bootstrap map for Toggle Switch. Suppose
the bootstrap iteration converges to (&, ) € R x R? and let

R := [61, B1] X |, Ba]. Then, either R is degenerate and f is
monostable with unique equilibrium & = (&1, &), or f is bistable
with stable equilibria at the corners of R with coordinates

~

&y = (41, P2), &9 = (b1, Ga).




Statistical analysis of combinatorial predictions

X2 hypothesis testing

We test the null hypothesis that A € Ry is independent of the
existence of a saddle-node bifurcation along the parameterized path
v : [1,00] = A defined by

Y(s) = (71, 41,2,01,2, 61,2, 5,72, 02,1, 02,1, 02,1, 5).

e Contingency table for 1,000 randomly chosen parameters:

‘ SNB found No SNB found Bisection fail Bad parity
A€ERs 86 0 30 5
A ¢ Rs 2 875 0 2

o 2 test statistic: 968.19
o p-value: p ~ 1.4 x 1072%



Thank you for your attention!
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