## 1211









































The Why of $p$-adic integration.

1. Skolem-Mahler-Lech.

Consider linear recurrences with integer coefficients:

$$
\begin{array}{ll}
a_{n}=a_{n-1} & \text { constant } \\
a_{n}=a_{n-1}+1 & \text { linear } \\
a_{n}=a_{n-1}+a_{n-2} & \text { Fibonacci } \\
a_{n}=a_{n-4} & \text { periodic }
\end{array}
$$



Can add, interleave, shift, change the start of such sequences.
Fundamental problem: Given a reccarence, describe the asymptotic nature of the zero set $\left\{n: a_{n}=0\right\}$.
We can write

$$
\begin{aligned}
& \left(\begin{array}{c}
a_{i} \\
\vdots \\
a_{i+n}
\end{array}\right)=(M)^{i}\left(\begin{array}{c}
a_{0} \\
\vdots \\
a_{n}
\end{array}\right)=\left(D J P^{-1}\right)^{i}\left(\begin{array}{c}
a_{0} \\
\vdots \\
a_{n}
\end{array}\right) \\
& =p J^{n} p^{-1}\left(\begin{array}{c}
a_{0} \\
\vdots \\
a_{n}
\end{array}\right) \text { polynomial } \\
& \text { so } a_{i}=\sum_{j=0}^{n} \sum_{k=0}^{m_{i} i_{j} \lambda_{j i}^{i} k \quad \text { exponential in }} \quad i \text { base } \lambda_{j}
\end{aligned}
$$

Ex:1) Fibonacci sequence: $F_{n} \quad a_{0}=0 \quad a_{1}=1 \quad M=\binom{11}{10}$

$$
\lambda_{1}=\frac{1+\sqrt{5}}{2}, \lambda_{2}=\frac{1-\sqrt{5}}{2}
$$

$$
F_{n}=\frac{\lambda_{1}^{n}-\lambda_{2}^{n}}{\sqrt{5}}
$$

"Obvious" that $F_{n}=0 \Rightarrow n=0$.
One reason: $\left|\lambda_{1}\right|>1 \quad\left|\lambda_{2}\right|<1$.
so eventually $F_{n} \gg 0$ by $(*)$

$$
\frac{\lambda_{1}^{n}-\lambda_{2}^{n}}{\sqrt{s}}=0 \Leftrightarrow \lambda_{1}^{n}=\lambda_{2}^{n}, ~ \Leftrightarrow n \log \left(\frac{\lambda_{1}}{\lambda_{2}}\right)=0 .
$$

2) Let $B_{2 n}=F_{n}, B_{2 n+1}=0$ $0,0,1,0,1,0,2.0 \ldots$
now $\lambda_{i}$ are the $\pm \sqrt{\lambda_{i}}$ for $F_{n}$
No dear way to conclude in general.
Are there any other absolute value functions $1 \cdot 1$ we can control the vanishing of such a sequence with?
2 Theorem (Ostrowski): The only absolute value functions on Cl are

$$
\left\{\begin{aligned}
&|x|=\operatorname{sgn}(x) \cdot x \quad \operatorname{ord} p\left(\frac{a}{b}\right)= \\
&|x| p a x\left\{n: p^{n} \mid a\right\} \\
&-\max \left\{n: p^{n} \mid b\right\}
\end{aligned}\right.
$$

Ex: $\left|\frac{25}{7}\right|_{7}=7 \quad\left|\frac{25}{7}\right|_{5}=\frac{1}{25}$.

$$
\mathbb{Q} \subseteq \mathbb{R} \quad Q \leq \mathbb{Q}_{7}
$$

For each prime $p$ we can topologically complete $\mathbb{Q}$ to get a field $\mathbb{Q p}_{p}$, analogous to $\mathbb{R}$.

Many familiar notions from $\mathbb{R}$ and $\mathbb{C}$ transfer to Qp, but often with strange differences.

|  |  | $1+10^{-1.8}+10^{.2} 3+10^{-3} .3$. |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 3 | $11 / 6$ | $193 / 132$ | $72097 / 50952$ |  |
| In $R$ | 3.0 | 1.85 | 1.4621 | $1.4149984 \ldots$ |
| In $Q_{7}$ | $0.1260332 \ldots$ | $3.126121235 \ldots$ |  |  |
| 3 | $3+7.6+7^{2} .6+7^{2} 6$ |  | 3 |  |

3. The p-adic topology


- Ultrametric:

$$
|x+y| \leqslant \operatorname{Max}\{|x|,|y|\} \quad(\leqslant|x|+|y|) .
$$

- Every point in a ball is the center
- Every triangle is isoceles
- p-adir topology is totally disconnected.

3-adic

4. Back to Recurrences

$$
a_{i}=\sum_{k=1}^{n} A_{k}(i) \lambda_{k}^{i}
$$

is almost a $p$-adic analytic function of $i$ for any $p$ such that $\left|\lambda_{k}\right|_{p}=1$ for all $k$.

Problem: p-adic exponential has finite radius of convergence.
Instead:
Locally analytic so that on each set Tricot: $(p-1)$ tiff: teztsame for $\alpha \sum_{r} \leqslant r<p-1$ has

Conc $a_{r}+(p-1)+=0$ then this function
is identically zero
The integers are bounded $R$-adically.
The: A linear recurrence $a_{\text {: }}$
has zero set a union of arithmetic pogressions (asymptotically)
What just happened?
Took a discrete object and padially catinued the "tine " step.
Then in small enough segments of time $p$-adic analyticity $\Rightarrow$ either $\equiv 0$ or finitely many zeroes.

$$
\begin{array}{rl}
\left\{n \cdot a_{n}=0\right\} \subseteq\left\{+\in \mathbb{Q}_{p}: a_{t}=0\right) \\
n & n \\
N & \subseteq \mathbb{Q}_{p}
\end{array}
$$

S. Rational points

General Diophantine equations are undecidable.

Q: Bort what about simpler classes/ in partice
Let $C$ be an algebraic carve $1 \mathbb{Q}$ (1-dimensional, defined by equations)

$0 \bigcirc 0$
$x^{2}+y^{2}=1$
$y^{2}=x(x-1)(x-2)$
$y^{2}=x^{5}-3 x+7$.
Then for complicated enough curves $C$ we hare only finitely wang rational Solutions C(Q). Faltings
It is a fundamental open poblem to give better control over this finite set:

- bound the number of solutions
- bound the size of cash solution
- provably find the set of solutions.

Can we use the ideas of Stokn-Mohler-Lech for this problem too.?
Need a source of padic analytic functions
L. Embedding carves into groups

Let $C$ be a cure/othat over $\mathbb{C}$ is topologically a $g$-handled surface
$($ genus $g)$

$C(\mathbb{R})$
$C(\mathbb{C})$

$$
y=2
$$

Cont add points on $C$ but we can add pairs of points.
By fixing a base point $P$ we en ted our algebraic carve into an alyeltair group, ito Jacobion. $J(c)$
5. $p$-adic integration

Can define

$$
y^{2}=x^{5}-1
$$

$$
\int_{p}^{Q} \omega \in \mathbb{Q}_{p}
$$

$$
\frac{d x}{y} \quad \frac{x d x}{y}
$$

for $\omega \in \Omega_{J(c)}^{\prime}$ a translation invorinat differential
defined by integrating locally using power
series.
to analytically continue use group structure or the p-adic phenomenon
of ravencus
A lot of my work is about effectively computing these integrals in different contexts. Why?
6. Chabanty's Method.

In order to find for a genus $g \geqslant 2$ curve


Bounds and algorithms
The method gives both bounds and algorithms ley. for $p>2 r+1, r<g$ good reduction

$$
\# C(Q) \leqslant \# C\left(F_{p}\right)+2 r \quad(\text { Stol l })
$$

Theorem 2 (Hirakawa-Matsıumura). There exists a unique pair of a rational right triangle, and a rational
isosceles triangle with equal areas and equal perimeters Proof. The problem reduces to finding rational points on the genus 2 rank 1 curve

$$
r^{2}=\left(-3 w^{2}+2 w^{2}-6 w+4\right)^{2}-8 w^{6}
$$


which has good reduction at 5 , and 8 points over $F_{5}$. Moreover we can find 10 rational points, most of which
do not correspond to non-degenerate triangles.
If we can explicitly calculate
these integrals we can find the finite set of rational solutions:
Application to dynamist
Do there exist rational numbers $x, 0$ such that
$x \mapsto x^{2}+c \quad$ has period exactly

This problem defines a cure of solutions $\Rightarrow$ finitely vang for each un (n>>)

$$
\begin{array}{ll}
\text { for } \quad n=6 & g=4 \quad r=3 . \\
\text { Chabauty } \Rightarrow & n o \text { solutions. }
\end{array}
$$

Theorem 11 (Balakrishnan-B.-Bianchi-Lawrence-Müller-Triantafillou-Vonk). The number of rational points on the Atkin-Lehner quotient modular curves $X_{0}(N)^{+}:=X_{0}(N) / w_{N}$, all of genus 2, rank 2 and Picard rank 2 for $N \in\{67,73,103\}$ are as follows:

$$
\# X_{0}(67)^{+}(\mathbf{Q})=10, \quad \# X_{0}(73)^{+}(\mathbf{Q})=10, \quad \# X_{0}(103)^{+}(\mathbf{Q})=8
$$

This involves non-abelian Chabauty and Mordell-Weil sieving at 31 and 137 in the $N=67$ case.


