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Data assimilation combines a computational model and 
measurements and bring synergy 

One of the goals of DA is an accurate estimation of initial conditions.  

Our goal is accurate initial conditions that are moreover more 
accurate than the current DA methods can provide.

DATA ASSIMILATION



VARIATIONAL DATA ASSIMILATION

The majority of the weather forecasting centres uses a 
variational data assimilation approach (4DVar)

O. Talagrand, P. Courtier,  
F. X. Le Dimet, A. Lorenc,  

D. Dee, V. Penenko, …



LOCAL MINIMA OF THE COST FUNCTION

A drastic increase of the 
number of local minima of the 
corresponding cost function as 
the number of measurements 
increases. 

Miller, Ghil, Gauthiez (1994) 
J. Atmos. Sci.



-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-1.5

-1

-0.5

0

0.5

1
Ikeda map

SHADOWING APPROACH TO DATA ASSIMILATION

“The principle idea of shadowing-based data assimilation is to 
take observations of a trajectory (red dots) and to relax these 
onto a near-by trajectory (blue dots).” K. Judd and L. Smith 
(2001).

K. Judd and L. Smith (2001);  
K. Judd et al. (2008);  
T. Stemler and K. Judd (2009) 
H. Du and L. Smith (2014); 
J. Brocker and U. Parlitz (2001)



SHADOWING LEMMA HAS NOTHING TO DO WITH DA, ORIGINALLY

Definition:             is called an ε-pseudo-orbit of               with an 
associated flow      , if    

 
 
Shadowing lemma (A. Katok and B. Hasselblatt, 1995): 
Let            be an ε-pseudo-orbit of              . Then under some 
conditions there exists                on the orbit with                          , 
such that 
 
 
The Shadowing lemma guarantees the existence but not 
necessarily the uniqueness of a solution     in a δ-neighbourhood 
of         .

| |un+1 − ϕtn(un) | | < ϵ, for n = 0,…, N − 1
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SHADOWING IN NUMERICAL DYNAMICAL SYSTEMS
➤ Shadowing is an important analysis technique for obtaining 

global error bounds on the numerical approximation to the 
solution of differential equations exhibiting chaos.  

S. Chow, X. Lin, and K. Palmer (1989), S. M. Hammel, J. A. Yorke, and C. 
Grebogi (1990); E. Van Vleck (1994), …  

➤ Shadowing refinement employs the pseudo-orbit as an initial 
guess for  and, as opposed to proving the existence 
of a nearby zero of , iteratively refines the pseudo-
orbit to obtain an improved approximation of an exact solution. 
This is clearly akin to the data assimilation problem. 

un+1 − ϕtn(un)
un+1 − ϕtn(un)



SHADOWING-BASED DATA ASSIMILATION 
Search for zero of the cost operator  

using a contractive iteration starting from noisy observations 

➤ Numerical shadowing refinement seeks a pseudo-orbit over the whole 
time interval at ones. This makes it applicable over long time intervals  

➤ But it is computationally more demeaning than 4DVar 

➤ Initialisation needs to be done using full observations

yk = utrue
k + ξk, for 0 ≤ k ≤ N − 1, where ξk ∼ 𝒩(0, R)

G(u) =
G0(u)

⋮
GN−1(u)

, Gn(u) = un+1 − ϕtn(un), for n = 0,…, N − 1,



ASSIMILATION IN THE UNSTABLE SUBSPACE
➤ Recent efforts to improve speed and reliability of data 

assimilation specifically address the partitioning of the tangent 
space into stable, neutral, and unstable subspaces corresponding 
to Lyapunov vectors associated with negative, zero, and positive 
Lyapunov exponents, respectively: 4DVAR-AUS, projected 
ensemble Kalman filter 

A. Trevisan, M. D'Isidoro, and O. Talagrand (2010);  
L. Palatella, A. Carrassi, and A. Trevisan (2013);  

C. Gonzalez-Tokman and B. R. Hunt (2013);  
K. J. H. Law, D. Sanz-Alonso, A. Shukla and A. M. Stuart (2016)  

➤ A dimension of the unstable subspace is smaller than a 
dimension of the model: 24 vs 14724 for a QG model (R. Rotunno 
and J.-W. Bao 1996)



PROJECTED SHADOWING-BASED DA METHOD

Motivated by these works, we propose a new method for 
shadowing-based data assimilation that utilises distinct 
treatments of the dynamics in the stable and nonstable (neutral 
and unstable) directions (B. de Leeuw et al, 2018).  

Novel projected shadowing-based DA method: 

➤ We construct projection operators onto the stable and 
nonstable subspaces. 

➤ In the nonstable subspace, we perform (expensive) 
shadowing-based DA that gives us a very accurate estimate. 

➤ In the stable subspace, we decrease error by means of 
synchronisation to that accurate estimate. 



SYNCHRONISATION

➤ Huygens synchronisation 
of two clocks

➤ Synchronisation in nature



SYNCHRONISATION IN DATA ASSIMILATION

Research on synchronisation of chaos indicates that  

➤ when partial observations are sufficient to constrain the 
unstable subspace,  

➤ an orbit of a chaotic dynamical system can be made to 
converge exponentially in time to a different, driving orbit.  

(provided exponential dichotomy)  

Pecora and Carroll (1990);  
Pecora et al. (1997); 

Boccaletti et al. (2002)



SYNCHRONISATION OF THE LORENZ 96 MODEL
➤ We consider the Lorenz 96 model (36 variables). It has 13 positive Lyapunov exponents. 

➤ The true solution is partially observed (noise free): we have access to the true solution 
projected onto the non-strongly stable subspace of dimension p. 

➤ Note that the dimension of the nonstable subspace is 14.

p=12

p=13

p=14

p=15

We plot  

➤ the difference 
between the true 
solution and the 
synchronisation 
approximation in 
the infinity norm  

➤ as a function of time 

➤ for different p 



THE PROJECTED SHADOWING-BASED DA METHOD: NUMERICAL EXPERIMENT 
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➤ Fully observed L96 model in space (36 variables).  

➤ Observation noise is 1 unit. We observe every 3 hours, integration 
time step is 30 minutes. 

➤ We project on 25 nonstable directions.

Black is for 
observations  

Red is for shadowing 

Blue is for 4DVar

Error w.r.t. the truth in norm as a function of time∞−



GREAT LIMITATION OF FULL OBSERVATIONS

A shadowing-based approach to data assimilation has a very 
strict assumption of full observations in space. 

Until now, this assumption was weakened by proposing to have 
a preprocessing before shadowing-based data assimilation can be 
performed. 

A  preprocessing consists of applying another data assimilation 
method (4DVar) with partial observations to have a proxy of the 
whole trajectory. 

We propose to lift up the requirement of full observations and of 
a preprocessing.

B. de Leeuw and S.D. (2020)



SHADOWING-BASED DA FOR PARTIAL OBSERVATIONS

The initial guess now consists of the observations and a 
background trajectory—a solution of the model with an arbitrary 
initial condition. 

Initiating at this initial guess, we use a regularized Gauss-Newton 
method to find a pseudo-orbit of G 

➤ What can we say about convergence of the shadowing-based 
DA method with partial observations? 

➤ What can we say about closeness of an estimate to the true 
orbit, from which observations are generated? 

Gn := un+1 − ϕtn(un)



LOCAL CONVERGENCE AND TRUST REGION
➤ Theorem I: Under some conditions on the initial guess and a 

regularization parameter, the shadowing-based DA method 
converges locally to the solution manifold G(u) = 0.  

➤ Theorem II: Under some conditions, a shadowing-based 
estimate projected on the observation space remains in a ball 
centred at the observations and radius of the observation error. 
 
In practice: in order to fulfil the conditions of Theorem II, we 
need to choose a specific preconditioning for the Gauss-
Newton method. 



THE SHADOWING-BASED DA METHOD WITH PARTIAL OBSERVATIONS: NUMERICAL EXPERIMENT 

We observe every 2nd variable of the Lorenz 96 model every 6 hours over 
25 days. Variance of the observation error is 8.

Gn := un+1 − ϕtn(un)

1
N

N−1

∑
n=0

GT
n Gn

1
#K ∑

k∈K

(Huk − yk)T(Huk − yk)

H is the observation operator  
that projects an estimate onto  
the observation phase space



ERROR WITH RESPECT TO THE TRUE SOLUTION
1
N

N−1

∑
n=0

(Hun − Hutrue
n )T(Hun − Hutrue

n )
1
N

N−1

∑
n=0

(H⊥un − H⊥utrue
n )T(H⊥un − H⊥utrue

n )

H is the observation operator  
that projects an estimate onto  
the observation phase space

 is an operator that projects  
an estimate onto  
the “non-observed” phase space

H⊥



COMPARISON TO OTHER DA METHODS

We compare the shadowing-based DA method to a weak 
constraint 4DVar and to a Pseudo-orbit DA method. WC4DVar 
is a weak-constraint variational method, while PDA is a 
shadowing-based DA method as well. We plot error with respect 
to the true solution over time. 



CONCLUSIONS
➤ We are developing a shadowing-based DA approach.  

➤ We showed that the computation costs can be decreased by using a 
tangent splitting to the stable and nonstable subspaces. 

➤ We extended the shadowing-based DA method to partial 
observations. 

➤ We proved that the method converges to the solution manifold. 

➤ Furthermore, we proved that the solution projected onto the 
observation space is within a ball centred at the observation with 
radius of the observation error. 

➤ We showed numerically that the shadowing-based DA method 
provides a very accurate estimation of the true solution, which is 
more accurate than an estimation of a variational data assimilation 
method.



FUTURE WORK
➤ Tangent splitting in the shadowing-based approach with partial observations? 

➤ Bound on the error with respect to the true solution? - Nazanin Abedini has 
already first results!  

➤ Which variables to observe to control the system? 

➤ Ensemble approximation? 

➤ Model error? 

References to our work: 

➤ B. de Leeuw, S. Dubinkina, J. Frank, A. Steyer, X. Tu and E. Van Vleck, 
"Projected Shadowing-based Data Assimilation", SIAM J. Appl. Dyn. Syst., 
17(4) (2018) 

➤ B. de Leeuw and S. Dubinkina, "Shadowing-based data assimilation method 
for partially observed models” arXiv:1810.07064



Thank you  

for  

your attention!



FAIR WARNING, OR NOT A WARNING AT ALL?
Which systems have the shadowing property? 

➤ Hyperbolic systems (with non-zero Lyapunov exponents) can be 
shadowed for infinite times (D. Anosov 1967) 

➤ Non-uniformly hyperbolic systems (with zero Lyapunov exponents) 
can be shadowed for finite but nontrivial times (S. M. Hammel, J. A. 
Yorke, and C. Grebogi 1990; E. Van Vleck 1995) 

➤ If the dimension of the unstable subspace, which is related to the 
positive Lyapunov exponents, is not constant, then shadowing of 
numerical trajectories for relatively long time is impossible (S.P. 
Dawson 1996) 

Shadowing time 

                   Infinite    /     Finite but long    /    Relatively not long



EXISTING SHADOWING-BASED DA METHODS

Judd and Smith (2001)

u( j+1) = u( j) + Δ( j), D := G′ (u( j))

3) Δ( j) = − DT(DDT)−1G(u( j))

4) Δ( j) = − ΣDT(DΣDT + αQ)−1G(u( j))

1) Δ( j) = − γDTG(u( j))

2) Δ( j) = − DTΛ−1G(u( j)) Brocker and Parlitz (2001)

de Leeuw et al. (2018)

Under Theorem I all these methods (1)—(4) converge to the solution 
manifold. The aim of the method (4) is to provide a good estimation of 
the true solution when using partial observations (Theorem II). 

de Leeuw and S.D. (2020)


