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Introduction to the three body problem

The planar three body problem

Co-authors: M. Guàrdia, P. Mart́ın, L. Sabbagh, J. Zhang

This talk is in the context of Celestial Mechanics:
According to wikipedia:
Celestial mechanics is the branch of astronomy that deals with the
motions of objects in outer space. Historically, celestial mechanics applies
principles of physics (classical mechanics) to astronomical objects, such as
stars and planets, to produce ephemeris data.

More concretely we will talk about The planar three body problem
The planar three body problem describes the motion of 3 bodies q1, q2,
q3, of masses m1, m2, m3 which move in a plane under the mutual
gravitational forces.
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Introduction to the three body problem

The planar three body problem

We want to understand the possible asymptotic motions (as t → ±∞) of
the bodies and answer classical questions like:

Are the motion of three bodies stable (bounded)?

Can it happen that some solutions become unbounded?

Are there periodic motions? how many?

Are there more surprising motions?

Are there chaotic motions?

All these questions are related with what is known as:
the problem of stability.
In this talk we will not solve the three body problem and, therefore, we will
not answer all the questions but we will provide some inside of some of
them.
But first, let’s talk about a simpler problem: The two body problem.
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Possible motions in the two body problem

The two body problem

The two-body problem describes the motion of two bodies q1, q2, of
masses m1, m2, moving in the space only under the influence of their
mutual gravitational force. In classical mechanics, the two-body problem is
to determine the motion of two point particles that interact only with each
other. Common examples include a satellite orbiting a planet (ignoring
other planets and the sun), a planet orbiting a star, two stars orbiting each
other (a binary star), etc

, ,
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Possible motions in the two body problem

The two body problem:Kepler laws (1609-1619)

In 1600 Johannes Kepler accepts the proposal to collaborate with the
imperial astronomer Tycho Brahe. Their relation was a little
“complicated” and, for this reason, Kepler had access to the complete
data collected by Tycho only after his death. Those data were more
complete that the ones from Copernicus.
To give a possible explanations to these data, Kepler elaborated his three
laws, known now a days as Kepler laws.

Tere M.Seara (UPC) Vrije Universiteit in Amsterdam,April 21, 2021 5 / 47



Possible motions in the two body problem

The two body problem: Kepler laws (1609-1619)

,

Kepler’s laws describe the motion of a planet around the sun. It is a two
body problem with q1 being the sun. In the picture:

1 q1 is the sun and q2 is the planet 1

2 q1 is the sun and q2 is the planet 2

Kepler observed that the planet always satisfies some properties.
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Possible motions in the two body problem

The two body problem: Kepler laws (1609-1619)

The path of the planets about the sun is elliptical in shape, with the
center of the sun being located at one focus. (The Law of Ellipses)

An imaginary line drawn from the center of the sun to the center of
the planet will sweep out equal areas in equal intervals of time. (The
Law of Equal Areas)
Consequently planets move faster when thay are closer to the sun.

The ratio of the squares of the periods of any two planets is equal to
the ratio of the cubes of their average distances from the sun. (The
Law of Harmonies)

The total orbit times for planet 1 and planet 2 have a ratio
T 2

1

T 2
2

=
a3

1

a3
2
.
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Possible motions in the two body problem

Newton’s law of universal gravitation (1687)

• Any two bodies in the universe attract each other with a force that is directly
proportional to the product of their masses and inversely proportional to the
square of the distance between them.
• Is a general physical law derived from empirical observations by what Isaac
Newton called induction.
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Possible motions in the two body problem

Newton’s law of universal gravitation (1687)

• Was formulated in Newton’s work Philosophiae Naturalis Principia
Mathematica (”the Principia”), first published on 5 July 1687.
• In modern language, the law states: Every point mass attracts every
single other point mass by a force pointing along the line intersecting both
points. The force is proportional to the product of the two masses and
inversely proportional to the square of the distance between them.
• The first test of Newton’s theory of gravitation between masses in the
laboratory was the Cavendish experiment conducted by the British
scientist Henry Cavendish in 1798.
It took place 111 years after the publication of Newton’s Principia and 71
years after his death.
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Possible motions in the two body problem

The two body problem: the equations

Second Newton’s law: the vector sum of the external forces F on an object
is equal to the mass m of that object multiplied by the acceleration vector
a of the object: F = ma.
Applying Newton’s law to the bodies, calling:
q1 = q1(t) = (q1

1(t), q2
1(t), q3

1(t)), q2 = q2(t) = (q1
2(t), q2

2(t), q3
2(t))

its positions and recalling that the velocities are vi = vi (t) = q′i (t)
and the accelerations ai = ai (t) = q′′i (t), we obtain:

m1q
′′
1 (t) = G

m2m1(q2 − q1)

||q2 − q1||3

m2q
′′
2 (t) = G

m1m2(q1 − q2)

||q1 − q2||3

where G is the gravitational constant.
• 6 second order differential equations which become a system of 12 first
order non-linear differential equations!
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Possible motions in the two body problem

The two body problem can be completely solved

Goal: find trajectories q1(t) and q2(t) for all times t, given the initial
positions q1(0), q2(0) and velocities v1(0) and v2(0).
trick!: Adding and subtracting these two equations decouples them
into two problems that can be solved independently.
Adding the equations results in an equation describing the center of
mass R(t) = q1(t)m1+q2(t)m2

m1+m2
(barycenter) motion.

Subtracting the equations results in an equation that describes how
the vector Q(t) = q1(t)− q2(t) between the bodies evolves.
If we know R(t) and Q(t) we can easily obtain the trajectories q1(t)
and q2(t).
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Possible motions in the two body problem

The motion of the center of mass

Consider the position of the center of mass:

R(t) =
q1(t)m1 + q2(t)m2

m1 + m2

An easy computation gives:
R̈ = 0

Therefore the velocity V (t) = Ṙ(t) = v1(t)m1+v2(t)m2

m1+m2
of the center of mass

is constant, from which follows that the total momentum

P(t) = m1v1(t) + m2v2(t)

is also constant (conservation of momentum).
The position R(t) of the center of mass can be determined at all times
from the initial positions and velocities.
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Possible motions in the two body problem

The relative motion between the bodies

Consider the relative position of the bodies:

Q(t) = q2(t)− q1(t),

one can see that:

Q̈ = G (m1 + m2)
Q

||Q||3

This is just the central forced problem or the Kepler problem, where a
body is fixed at the origin and the other body moves as Q(t).
Now we have Q(t) = (Q1(t),Q2(t),Q3(t)).
• 3 second order differential equations which become a system of 6 first
order non-linear differential equations!
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Possible motions in the two body problem

Integrating the relative motion between the bodies

Using that the angular momentum: G (t) = Q(t)× Q̇(t) satisfies
Ġ = 0,we obtain that G is constant along the solutions.

If G = 0, Q(t) moves in a line: the motion is co-linear

If G 6= 0 the motion is in a plane. We can take coordinates in such a
way that G = (0, 0, c) and then Q3(t) = Q̇3(t) = 0 and we have the
same second order equation, only with two variables (Q1(t),Q2(t)).

We have 2 second order differential equations which become a system
of 4 first order differential equations!

For experts:
A Hamiltonian system with 2 degrees of freedom with a first integral is
integrable!
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Possible motions in the two body problem

Integrating the relative motion between the bodies

Finally one can integrate the system and obtain that the orbits are given,
using polar coordinates

Q(t) = (Q1(t),Q2(t)) = (ρ(t) cos θ(t), ρ(t) sin θ(t))

as:

ρ =
c2

µ(1 + e cos(θ − ω))

where e and ω are constants of integration, only depend on the initial
positions and velocities.
Possible motions:

e = 0 motion is bounded: circles.

0 < e < 1 motion is bounded: ellipses, where e is the excentricity.

e = 1 motion is unbounded: parabolas

e > 1 motion is unbounded: hyperbolas
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Possible motions in the two body problem

Possible motions in the two body problem

We have seen that in the two body problem there are only three possible
types of motion:

Hyperbolic: ‖Q(t)‖ → ∞ and ‖Q̇(t)‖ → c > 0 as t → ±∞.

Parabolic: ‖Q(t)‖ → ∞ and ‖Q̇(t)‖ → 0 as t → ±∞.

Bounded (ellipses): lim supt→±∞ ‖Q‖ < +∞.
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Asymptotic motions in the planar 3BP

The planar three body problem

If we consider three bodies q1, q2, q3, of masses m1, m2, m3 Newton’s
laws give:

m1 q
′′
1 = G

m1 m2(q2 − q1)

||q2 − q1||3
+ G

m1 m3(q3 − q1)

||q3 − q1||3

m2 q
′′
2 = G

m2 m1(q1 − q2)

||q1 − q2||3
+ G

m2 m3(q3 − q2)

||q3 − q2||3

m3 q
′′
3 = G

m3 m1(q1 − q3)

||q1 − q3||3
+ G

m3 m2(q2 − q3)

||q2 − q3||3

• 9 second order differential equations which become a system of 18 first order
differential equations!
• The conservation of the total angular momentum allows to consider the bodies
moving on a plane: qi ∈ R2.
• 6 second order differential equations which become a system of 12 first order
differential equations!
• No enough first integrals to integrate and ”predict” the motion of the three
bodies!
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Asymptotic motions in the planar 3BP

The planar three body problem

• We want to understand the possible final motions in this case.
• We will see that in the case of three bodies the motion is richer!
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Asymptotic motions in the planar 3BP

Asymptotic (final) motions

Chazy (1922): Classification of all possible states that a 3BP can
approach as t → ±∞.

Roughly speaking q(t) refers to some relative position between the
bodies:

H± (hyperbolic): ‖q(t)‖ → +∞ and ‖q̇(t)‖ → c > 0 as t → ±∞.

P± (parabolic): ‖q(t)‖ → +∞ and ‖q̇(t)‖ → 0 as t → ±∞.

B± (bounded): lim supt→±∞ ‖q‖ < +∞.

OS± (oscillatory):
lim supt→±∞ ‖q‖ = +∞ and lim inft→±∞ ‖q‖ < +∞.

Examples of all types except oscillatory already known by Chazy.
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Asymptotic motions in the planar 3BP

Asymptotic motions in the two body problem

We have seen that in the case of two bodies here are only three types of
motion: Hyperbolic, Parabolic, Bounded (ellipses)

Oscillatory orbits can not exist if we only consider two bodies!
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Asymptotic motions in the planar 3BP

Asymptotic motions in the three body problem

We want to see that in the planar 3 body problem there exist initial
conditions which give oscillatory motions.

These solutions travel close to the big elliptic orbits and are consequence
of the existence of chaos in the system
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Asymptotic motions in the planar 3BP

The Restricted planar three body problem

m1q
′′
1 = G

m1m2(q2 − q1)

||q2 − q1||3
+ G

m1m3(q3 − q1)

||q3 − q1||3

m2q
′′
2 = G

m2m1(q1 − q2)

||q1 − q2||3
+ G

m2m3(q3 − q2)

||q3 − q2||3

m3q
′′
3 = G

m3m1(q1 − q3)

||q1 − q3||3
+ G

m3m2(q2 − q3)

||q2 − q3||3

Simplification: m3 ' 0, put m3 = 0 in the equations (after symplifying...):

q′′1 = G
m2(q2 − q1)

||q2 − q1||3

q′′2 = G
m1(q1 − q2)

||q1 − q2||3

q′′3 = G
m1(q1 − q3)

||q1 − q3||3
+ G

m2(q2 − q3)

||q2 − q3||3


The motion of q1, q2 is not affected by q3!

They form a two body problem.
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Asymptotic motions in the planar 3BP

The restricted three body problem

• The two body problem is integrable: it satisfies Kepler laws.
q1, q2 can move in ellipses, hyperbolas or parabolas.
• We will put the solutions q1(t), q2(t) in the equations of q3 and study
the motion of q3:

q′′3 = G
m1(q1(t)− q3)

||q1(t)− q3||3
+ G

m2(q2(t)− q3)

||q2(t)− q3||3

This is the restricted three body problem. q1 and q2 are called primaries.
• Assuming that the motion of q3 occurs in the plane of rotation of the
other two bodies, then the problem is known as
the restricted planar three-body problem (RP3BP)
• Is still not integrable!
• Our results are valid for the full three body problem, but in this talk I
will focus in the restricted circular case.
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Asymptotic motions in the planar 3BP

The restricted planar three body problem (RP3BP)

Change of notation:

We call the primaries qS , qJ and the mass less body (comet) q

We assume the two primaries qS(t), qJ(t) move on ellipses (elliptic case):
a particular case is when they move in circles (circular case).
Typical models in the elliptic case with eccentricity e:

Sun–Jupiter–asteroid or comet: e = 0.048
Sun–Earth–Moon systems: e = 0.016
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Asymptotic motions in the planar 3BP

The equations of the RP3BP

After normalizing, the motion of the comet q = (q1, q2) ∈ R2 is governed by
2 second order differential equations:

d2q

dt2
=

(1− µ)(qS(t)− q)

||qS(t)− q||3
+
µ(qJ(t)− q)

||qJ(t)− q||3
,

where µ = m2

m1+m2
, is the mass ratio, and 0 ≤ µ ≤ 1/2, qJ and qS are the

known position of the primaries.

Calling p = (p1, p2) = dq
dt one obtain a system of 4 non-autonomous

differential equations:

dq

dt
= p

dp

dt
=

(1− µ)(qS(t)− q)

||qS(t)− q||3
+
µ(qJ(t)− q)

||qJ(t)− q||3
,
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Asymptotic motions in the planar 3BP

The equations of the RP3BP

This system can be written:

dq

dt
=

∂H
∂p

(q, p, t; e, µ)

dp

dt
= −∂H

∂q
(q, p, t; e, µ)

where

H(q, p, t; e, µ) =
p2

2
− (1− µ)

||q − qJ(t)||
− µ

||q − qS(t)||
.

p = (p1, p2) q = (q1, q2).
This is a 2π-periodic in time Hamiltonian system (2 and 1/2 degrees of
freedom) with Hamiltonian H.
Parameters: 0 < e < 1 the excentricity of the ellipse (qJ(t) and qS(t)
depend on e) and the mass ratio µ ∈ [0, 1/2].
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The planar restricted circular 3BP

The equations of the circular RP3BP

To give the main ideas in this talk we will work in the circular case
e = 0.

In the circular case e = 0, the position of the primaries is simple and
explicit:

The “big” body of mass 1− µ moves as: qS(t) = −µ(cos t, sin t)
The “small” body of mass µ moves as: qJ(t) = (1− µ)(cos t, sin t).
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The planar restricted circular 3BP

The equations of the circular RP3BP in the circular case

Motion of the primaries in the circular case:

The Hamiltonian is then:

H(q, p, t;µ) =
‖p‖2

2
− 1− µ
‖q + µ(cos t, sin t)‖

− µ

‖q − (1− µ)(cos t, sin t)‖

where q, p ∈ R2.
It has a first integral, the Jacobi constant J (q, p, t;µ).

The Hamiltonian is 2π-periodic in time.

Observation When µ = 1/2, the two bodies move in the same circle
at diametrally oposed points, therefore the Hamiltonian is π-periodic
in time.

To understand the behavior of the comet q, we have to deal with 4
non-linear, non-autonomous differential equations!
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The planar restricted circular 3BP

Simplification: RPC3BP in rotating coordinates

This non-autonomous Hamiltonian can be simplified:

Fix the primaries at the x axis (periodic in time change of variables):

qS = (µ, 0), qJ = (1− µ, 0).

We obtain an autonomous Hamiltonian:

H(q, p;µ) =
‖p‖2

2
− q ∧ p − 1− µ

‖q + µ(1, 0)‖
− µ

‖q − (1− µ)(1, 0)‖

Now the Hamiltonian is autonomous and therefore the energy H is a
conserved quantity!

(For experts): This corresponds to the conservation of the Jacobi
constant

Therefore, fixing the energy level, the motion occurs in a three dimensional
surface.
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The planar restricted circular 3BP

Oscillatory motions in the restricted planar circular three
body problem (RPC3BP)

Goal: understand the motion of the massless body q under the influence of
the other two qS , qJ , which move, independently, in circles.

We will prove that, for some initial conditions, q(t) has oscillatory motion.
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Previous results on oscillatory motions

Oscillatory motions in the Sitnikov problem

Sitnikov (1960): restricted
spatial elliptic three body
problem.

Existence of oscillatory motions
when

Primaries have mass µ = 1/2
and move on ellipses of small
enough eccentricity.
Third body moves on the
(invariant) vertical axis.

Moser (1973) gave a new proof of Sitnikov results.
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Previous results on oscillatory motions

Oscillatory motions in the Non-restricted 3BP

Alexeev (1970) extended the result to the non restricted spatial three
body problem assuming the third mass small enough and using the
simetries of the problem to reduce the dimension of the problem.

Moeckel extended the result of Sitnikov to the case of three bodies
with positive masses, two of them equal, in an isosceles configuration.

Llibre and Simó found oscillatory motions for the collinear three body
problem.
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Previous results on oscillatory motions

First results on Oscillatory motions for the RPC3BP

First results by Llibre and Simó, 1980 following Moser’s approach.

Theorem (Llibre-Simó)

Fix µ > 0 small enough. Then, there exists an orbit (q(t), p(t)) of
RCP3BP which is oscillatory.

Their result requires that the mass ratio µ is extremely small

J. Galante and V. Kaloshin (2011) prove the existence of orbits which
initially are in the range of our Solar System and become oscillatory
as t → +∞ with µ = 10−3 (realistic for the Jupiter-Sun).
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Oscillatory motions for the RP3BP

Oscillatory motions for the planar 3 body problem

We present here some results in the restricted case and for the general
case. Always for any value of the masses

For the restricted planar circular case, for any values of the masses of
the primaries.

For the restricted planar elliptic case, for any values of the masses of
the primaries and small enough eccentricity.

For the general case, for any values of the masses of the bodies.

In the restricted case the oscillatory motions we find have big angular
momentum, therefore these orbits are away from collision.

In the general case the total angular momentum is also big.
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Oscillatory motions for the RP3BP

Results in the restricted circular case

Theorem (Guàrdia–Mart́ın – S, Inv. Math. 2015))

Fix any µ ∈ (0, 1/2].
Then, there exists an orbit (q(t), p(t)) of the RPC3BP which is oscillatory.

In this work the eliminated the condition on µ proving that there exist
oscillatory motions for every value of µ.

The ideas contained in this work have been used to prove the more
general result.

Theorem (Guàrdia–Mart́ın – S, 2021))

There exists an orbit q1(t), q2(t), q3(t) of the planar three body problem
which is oscillatory.
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Oscillatory motions for the RP3BP

Oscillatory motions in the RCP3BP: Moser ideas

We are talking about the solutions of a Hamiltonian system of 2 degrees of
freedom, therefore the phase space is of dimension 4, variables (q1, q2)
(position) and (p1, p2) (momenta).

In a Hamiltonian system the Hamiltonian (energy) is preserved:
H(q(t), p(t)) = ct, the motion occurs in dimension three: we can forget one
variable, say p2.

Poincaré map P: we will look at the solutions every time they pass through
section S .

We will look to the coordinate q1 and the velocity p1 every time we pass this
section. This is the Poincaré map. It is a two dimensional map!
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Oscillatory motions for the RP3BP

Oscillatory motions in the RCP3BP: Moser ideas

We will study the dynamics of this map P on the section S to see that there
are some orbits which are oscillatory.

The oscillatory orbits will be a consequence of the existence of chaotic
dynamics of this map P.
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Oscillatory motions for the RP3BP

Oscillatory motions in the RCP3BP: Moser ideas

We want to prove that the Poincaré map P has chaotic behavior, that is,
there exists an invariant set Σ such that P|Σ has chaotic dynamics:

The set of periodic orbits is dense in Σ

There is sensitive dependence of initial conditions

There is a dense orbit in Σ

The more classical and simple map on R2 which presents chaotic
behaviour is the horseshoe map (Smale, Fields medal 1966):
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Oscillatory motions for the RP3BP

Oscillatory motions in the RCP3BP: Moser ideas

If we have a map P on the plane:

A point z∗ is called an fixed point of a map P if P(z∗) = z∗

Hyperbolic fixed points (DP(z∗) has no eigenvalues |λ| = 1) have stable and
unstable manifolds (curves), which are invariant curves such that:

W s(0, 0) = {z ∈ R2,Pn(z)→ z∗, as n→∞},
W u(0, 0) = {z ∈ R2,P−n(z)→ z∗, as n→∞}
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Oscillatory motions for the RP3BP

Oscillatory motions in the RCP3BP: Moser ideas

Assume that the stable and unstable manifolds intersect transversally
at some homoclinic point zh.
Then, using the classical Lambda-lemma, one can see the existence of
a horseshoe for a suitable iteration of the Poincaré map:
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Oscillatory motions for the RP3BP

Oscillatory motions: chaotic motions

Once we have the horseshoe map, one can apply classical results in
Dynamical systems which provide the existence of symbolic dynamics.

In particular we have periodic orbits af all the periods and also orbits which
are dense in some invariant subset. These orbits approach the fixed point z∗

and also the homoclinic intersection zh!
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Oscillatory motions for the RP3BP

Oscillatory motions in the RCP3BP: Moser ideas

Recall that oscillatory orbits “approach” to infinity, therefore we need
some good coordinates to study infinity.

McGehee coordinates: ||q|| = 1
x2 , send infinity to zero. Infinity

becomes the fixed point z∗ = (0, 0) for the Poincaré map.

(0, 0) is not hyperbolic; we have to see that it has stable and unstable
curves W s(0, 0), W u(0, 0).

We need to prove a Lambda-Lemma

We also need to prove that these manifolds intersect at some point zh.

This will provide the existence of chaotic dynamics.

We will have dense orbits

These dense orbits are the oscillatory ones: they pass very close to
the origin (the infinity) once and again but they go back near the
point zh.
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Oscillatory motions: chaotic motions

In the full dimensional space:

the oscillatory orbits pass very close to the origin (the infinity) once and
again but they go back near the point zh.

Tere M.Seara (UPC) Vrije Universiteit in Amsterdam,April 21, 2021 43 / 47



Oscillatory motions for the RP3BP

Oscillatory motions in the RCP3BP: Moser ideas

Main difficulty in applying the approach to RPC3BP: prove the
transversality of the invariant manifold of infinity for any value of the
masses µ.

For µ = 0 (2- body problem between the comet and the sun) we have
a fixed point (0, 0) whose invariant manifolds coincide (parabolic
orbits).

What can we say when µ 6= 0?
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Oscillatory motions for the RP3BP

Transversality of the invariant manifolds of infinity in
Llibre-Simó

For 0 < µ� 1, expand in µ and compute the first order of the difference
between the manifolds in terms of an integral (classical perturbative method
known as Poincaré-Melnikov Theory) and an error of order O(µ2).

d = µM(G0) + O(µ2)

M is an explicit integral and depends on G0, which is the angular
momentum.

We know only how to compute the Melnikov integral M(G0) provided

G0 � 1 and its size is O(e−G
3
0 /3).

M(G0) ' O(e−G
3
0 /3).

Llibre-Simó (Moser) method requires µ < e−G
3
0 /3.

using different methods we could eliminate the condition on µ proving that
the invariant manifolds intersect transversally for every value of µ.

The proof requires some sophisticated perturbative methods, and come ideas
of complex analysis.
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The 3 body problem

In the planar 3BP, the three bodies qi ∈ R2, i = 1, 2, 3 move influenced by each
other. Hamiltonian formulation: H(q, p) = K (p)− U(q), where

K (p) =
1

2m1
p2

1 +
1

2m2
p2

2 +
1

2m3
p2

3

U(q) =
m1m2

‖q1 − q2‖
+

m1m3

‖q1 − q3‖
+

m2m3

‖q2 − q3‖

Equations of motion:

q̇ =
∂H

∂p

ṗ = −∂H
∂q
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The 3 body problem

6 d.o.f.

Classical first integrals:

total linear momentum: p1 + p2 + p3,
total angular momentum: det(q1, p1) + det(q2, p2) + det(q3, p3).

After reduction, it becomes a 3 d.o.f.

Fixing the energy in the reduced Hamiltonian reduces the dimension
to 5 and then the Poincaré map in a suitable section becomes a 4-d
map (instead, the Restricted Planar Circular 3BP is a 2-d map).

Difficulties from the increased dimension:

Infinity is not a fixed point but a disc.
Prove the existence and regularity of the invariant manifolds of infinity
Compute the intersection of some invariant manifolds.
Obtaining 4-d isolating blocks to construct the horseshoe in higher
dimension (a kind of high dimensional Lambda-lemma).
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