Production Scheduling in an Industry 4.0 Era

Joost Berkhout

Wouter Berkelmans, Eric Pauwels, Rob van der Mei & Sandjai Bhulai Public private partnership between:

Briefly about my background

- 2008 2012: MSc Econometrics & Operations Research at VU
- 2012 2016: PhD at VU
- 2016 2019: Post-doc at CWI with scheduling project @ ENGIE
- **Since 2019:** Fulltime AP at the A&O group in VU
- Main research interests: Production scheduling, simulation optimization, and theory & application of Markov chains (series expansions, Google's PageRank, social networks)

Content Presentation

- Scheduling in animal-feed plants
 - Optimization approach
 - Numerical experiments
 - Concluding remarks

Scheduling in Animal-Feed Plants

- World-wide: 10¹² kg
- **120** plants in Holland
- Production aspects:
 - Customer order due dates
 - Contamination
 - Changeover times
 - · ..

Production Scheduling Problem

Trends: 'big data' & mass-customization (industry 4.0)

Goal: How to efficiently schedule orders to meet due dates?

Current situation: planners 'schedule by hand' ...

As a result: time-consuming and opportunity loss (inflexible and 'big data' unused)

Production Process:

Small Example:

• 3 production orders, consisting of 5 batches/jobs:

Small example:

In general, production lines consist of units:

Extended 2-stage flexible flow shop (bottleneck shifting) with non-triangular sequence-dependent setup times

Content Presentation

- Scheduling in animal-feed plants
- Optimization approach
 - Numerical experiments
 - Concluding remarks

Optimization Approach:

Optimization approach

• Two steps optimization approach:

This is a model-based evolutionary algorithm

- 1. Apply **Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA)** from Bosman et al. (2016)* to bottleneck production area
- 2. Fix schedule on bottleneck and solve remaining problem with MILP**
- Motivation for this approach:
 - NP-hard problem (comprise between performance & running time)
 - Flexibility in black box optimization approach & MILP
 - GOMEA is state-of-the-art and MBEAs seen as most powerful EAs
- Our contributions include:
 - Extension of GOMEA for permutation problems* to parallel flow shops
 - Realizing societal impact by developing an efficient optimization approach

*Bosman, P. A. N., Luong, N. H., & Thierens, D. (2016). Expanding from discrete cartesian to permutation Gene-Pool Optimal Mixing Evolutionary Algorithms. *GECCO 2016 - Proceedings of the 2016 Genetic and Evolutionary Computation Conference*.

** Berkhout, J., Pauwels, E., van der Mei, R., Stolze, J., & Broersen, S. (2020). Short-term production scheduling with non-triangular sequence-dependent setup times and shifting production bottlenecks. *International Journal of Production Research*.

GOMEA encoding of schedules

- A schedule for J jobs and M machines is represented by real numbers ("keys") x₁, ..., x_J all in [1, M + 1):
 - If $m \le x_i < m + 1$: Job *i* scheduled on Machine *m*
 - If $m \le x_i < x_j < m + 1$: Job *i* before *j* on Machine *m*

```
Example: for J = 5 jobs

x = [2.3, 1.7, 2.6, 1.4, 2.5]

encodes schedule

Machine 1: Jobs 4 \rightarrow 2

Machine 2: Jobs 1 \rightarrow 5 \rightarrow 3
```

Cost C(x) = "tardiness + makespan of schedule x"

Gene-pool Optimal Mixing EA (GOMEA)

Strength GOMEA: Good subsolutions are detected and exploited during variation

Initial population of feasible schedules

Build linkage tree to identify subsets of jobs that contribute to the quality of solutions

Example optimal mixing in GOMEA (J = 5 jobs)

Mixing parent schedule

x = [2.3, 1.7, 2.6, 1.4, 2.5]

with donor schedule

x' = [2.8, 1.2, 2.4, 1.5, 2.1]

 $x^{new} = [2.8, 1.7, 2.4, 1.4, 2.1]$

Schedule: Machine 1: Jobs $4 \rightarrow 2$ Machine 2: Jobs $1 \rightarrow 5 \rightarrow 3$

Schedule:
Machine 1: Jobs 2 \rightarrow 4
Machine 2: Jobs $5 \rightarrow 3 \rightarrow 1$

Schedule is thus:
Machine 1: Jobs $4 \rightarrow 2$
Machine 2: Jobs $5 \rightarrow 3 \rightarrow 2$

which is accepted if it is better

for subset $\{x_1, x_3, x_5\}$, we get

Note: Starting with a feasible population, mixing keys always leads to a feasible schedule

Building a linkage tree

• Population-based dependency quantification between Jobs *i* and *j* is: $\delta(i,j) = \delta(j,i) = \delta_1(i,j)\delta_2(i,j)$

$$\int_{0}^{\infty} \int_{0}^{1} \int_{0$$

- Linkage tree built by iteratively combining the most dependent jobs (on average) in $O(J^2n)$
- Further research: Exploring more advanced distance functions

Content Presentation

- Scheduling in animal-feed plants
- Optimization approach
- Numerical experiments
 - Performance GOMEA for parallel flowshops
 - Performance optimization approach in practice
 - Concluding remarks

Are GOMEA solutions close to optimality?

Experiment: 4 machines of 3 units each with 11 jobs, average-results over 20 random instances (> $1.4 \cdot 10^{10}$ schedules)

GOMEA performances for instances with no contamination (Mean running time MILP 51.4s)

Impact of *learning a model* in EA

Experiment: 4 machines of 3 units each with **50** jobs, per experiment 20 random instances with contamination (> $7.1 \cdot 10^{68}$ schedules)

Results for a Pilot Plant:

1 grinder-mixer line and 5 press lines

(Recall:) Optimization approach is:

- 1) GOMEA on bottleneck
- 2) Solve MILP of complete problem

Realized schedule for 12 hour time window (120 jobs)

Optimized schedule (in 111s)

Makespan is reduced by 40 minutes (5.5%) and all deadlines are met:

Content Presentation

- Scheduling in animal-feed plants
- Optimization approach
- Numerical experiments
- Concluding remarks

Concluding Remarks

- GOMEA efficiently detects and exploits important subsolutions in parallel flowshops
- MILP model is implemented in a pilot plant in Limburg (testing for accuracy and optimization gain)
- Further research:
 - Optimization of transport and finished product silos
 - Further development of (tailored) heuristics
 - Exploring the application of GOMEA to a routing and scheduling problem in home health care (together with René Bekker and Yoram Clapper)

Thanks for your attention!

Any questions?

Mail: j2.berkhout@vu.nl

