Perturbations of commutators

Martijn Caspers - TU Delft

at virtual Amsterdam

Kreīn's problem

Schur multiplication

Transferenc method

Consequences and open questions?

1. Motivation and origin of the problems

In physics one is interested in the commutator

$$[A,x]=Ax-xA,$$

of observables (\approx self-adjoint matrices). Commutators tell how good two observables can be measured simultaneously (the smaller, the better).

Kreĭn's problem

multiplication

Transference method

In physics one is interested in the commutator

[A,x]=Ax-xA,

of observables (\approx self-adjoint matrices). Commutators tell how good two observables can be measured simultaneously (the smaller, the better).

Heisenberg uncertainty principle (qualitative statement)

[A, x] = 0 if and only if A and x can be measured simultaneously.

Kreĭn's problem

multiplicatio

Transference method

In physics one is interested in the commutator

$$[A,x]=Ax-xA,$$

of observables (\approx self-adjoint matrices). Commutators tell how good two observables can be measured simultaneously (the smaller, the better).

Heisenberg uncertainty principle (qualitative statement)

[A, x] = 0 if and only if A and x can be measured simultaneously.

Consequence: place Q and impulse P can never be determined with full accuracy at the same time $[P, Q] = i\hbar$.

Motivation

Transference

Motivation/Question: what happens if a commutator gets perturbed?

Motivation

Kreīn's problem

Schur multiplication

Transference method

Kreĭn's problem

Schur multiplication

Transference method

Consequence and open questions?

Motivation/Question: what happens if a commutator gets perturbed?

One may add noise to a term:

$$[A + noise, x]$$

Kreĭn's problem

Schur multiplication

Transference method

Consequence and open questions?

Motivation/Question: what happens if a commutator gets perturbed?

One may add noise to a term:

$$[A + noise, x]$$

Can we control/estimate the perturbed commutator?

$$[A + noise, x] \leq [A, x],$$

Whatever this means...

Kreĭn's problem

Schur multiplication

Transference method

Consequences and open questions?

Functional calculus

Let A be a self-adjoint matrix.

For $p(x) = \sum_{k=0}^{n} \alpha_k x^k$ a polynomial we set

$$p(A) := \sum_{k=0}^{n} \alpha_k A^k.$$

For $f \in \mathbb{R} \to \mathbb{C}$ continuous we define

$$f(A) = \lim_{i} p_i(A)$$

where p_i are polynomials converging to f uniformly on compact sets.

Motivation/Question: what happens if a commutator gets perturbed?

Motivation

Krein's problem

Schur

Transference method

Kreĭn's problem

multiplication

method

Consequence and open questions?

Motivation/Question: what happens if a commutator gets perturbed?

One may replace an observable A by a new observable f(A).

Motivation/Question: what happens if a commutator gets perturbed?

One may replace an observable A by a new observable f(A).

Can we control/estimate the perturbed commutator?

$$[f(A), x] \leq [A, x],$$

Whatever this means...

Kreĭn's problem

Scnur multiplication

Transference method

Consequence and open questions?

2. Kreĭn's problem: perturbations of commutators

M.G. Krein

Precise mathematical statement, at least going back to M.G. Kreĭn (\approx 1964).

Is the following true?

Let $f : \mathbb{R} \to \mathbb{C}$ be Lipschitz. Is it true that for every self-adjoint A and x in $M_n(\mathbb{C})$:

$$||[f(A), x]|| \le C_{abs} ||f'||_{\infty} ||[A, x]||.$$

Here $C_{abs} > 0$ is some absolute constant.

Kreĭn's

Krein's problem

multiplication

Transference method

Precise mathematical statement, at least going back to M.G. Kreĭn (\approx 1964).

Is the following true?

Let $f : \mathbb{R} \to \mathbb{C}$ be Lipschitz. Is it true that for every self-adjoint A and x in $M_n(\mathbb{C})$:

$$||[f(A), x]|| \le C_{abs} ||f'||_{\infty} ||[A, x]||.$$

Here $C_{abs} > 0$ is some absolute constant.

Norm is the operator norm

$$||y|| = \sum_{0 \neq \xi \in \mathbb{C}^n} \frac{||y\xi||}{||\xi||}.$$

But also other norms shall be considered!

■ The problem is hard if one asks for a constant C_{abs} independent of n.

Kreĭn's problem

multiplication

Transference method

Motivatior

Kreĭn's problem

ochur multiplicatior

Transference method

Lipschitz condition is essential

Lipschitz condition is essential

$$A = \left(\begin{array}{cc} a & 0 \\ 0 & b \end{array}\right), \qquad x = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right).$$

Then

$$[A,x] = \begin{pmatrix} 0 & a-b \\ b-a & 0 \end{pmatrix}, \qquad [f(A),x] = \begin{pmatrix} 0 & f(a)-f(b) \\ f(b)-f(a) & 0 \end{pmatrix}.$$

iviotivatio

Kreĭn's problem

Scnur multiplication

Transference method

Consequences and open questions?

Lipschitz condition is essential

$$A = \left(\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right), \qquad x = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right).$$

Then

$$[A,x] = \left(\begin{array}{cc} 0 & a-b \\ b-a & 0 \end{array}\right), \qquad [f(A),x] = \left(\begin{array}{cc} 0 & f(a)-f(b) \\ f(b)-f(a) & 0 \end{array}\right).$$

So if

$$||[f(A), x]|| \le C||[A, x]||$$

then

$$|f(a)-f(b)|\leq C|a-b|,$$

and so f is Lipschitz.

Motivatior

Kreĭn's problem

multiplication

Transference method

Consequence and open questions?

Is the following true?

Let $f: \mathbb{R} \to \mathbb{C}$ be Lipschitz. Is it true that for every self-adjoint A and x in $M_n(\mathbb{C})$:

$$||[f(A), x]|| \le C_{abs} ||f'||_{\infty} ||[A, x]||.$$

Here $C_{abs} > 0$ is some absolute constant.

Kreĭn's problem

multiplication

Transference method

Consequence and open questions?

Is the following true?

Let $f : \mathbb{R} \to \mathbb{C}$ be Lipschitz. Is it true that for every self-adjoint A and x in $M_n(\mathbb{C})$:

$$||[f(A), x]|| \le C_{abs} ||f'||_{\infty} ||[A, x]||.$$

Here $C_{abs} > 0$ is some absolute constant.

Take-home message of this talk:

Kreĭn's question can be resolved using harmonic analysis! Ingredients:

- Fourier multipliers and Calderón-Zygmund theory
- De Leeuw theorems

Kreĭn's problem

multiplication

Transference method

Consequence and open questions?

Is the following true?

Let $f : \mathbb{R} \to \mathbb{C}$ be Lipschitz. Is it true that for every self-adjoint A and x in $M_n(\mathbb{C})$:

$$||[f(A), x]|| \le C_{abs} ||f'||_{\infty} ||[A, x]||.$$

Here $C_{abs} > 0$ is some absolute constant.

Take-home message of this talk:

Kreĭn's question can be resolved using harmonic analysis! Ingredients:

- Fourier multipliers and Calderón-Zygmund theory (🥞)
- De Leeuw theorems ()

Definition: Let S_p be the Schatten-von Neumann L_p -space of $M_n(\mathbb{C})$.

It is $M_n(\mathbb{C})$ with norm

$$||x||_p := \operatorname{Tr}(|x|^p)^{1/p} := \operatorname{Tr}((x^*x)^{p/2})^{1/p}.$$

Sidenote: In general (for B(H)) S_p consists of all compact operators with singular value sequence in ℓ_p . The norm is the ℓ_p norm of these singular values.

Motivatior

Kreĭn's problem

multiplication

Transference method

 $||[f(A), x]||_p \le C_p ||f'||_{\infty} ||[A, x]||_p, \quad \forall A, x \in M_n(\mathbb{C}) \text{ self-adjoint, } f \text{ Lipschitz.}$

Kreĭn's problem

Schur

- ,

Consequence and open

$$||[f(A), x]||_p \le C_p ||f'||_{\infty} ||[A, x]||_p, \quad \forall A, x \in M_n(\mathbb{C}) \text{ self-adjoint, } f \text{ Lipschitz.}$$

For $p = 1, \infty$:

Farforovskaya 1972. Problem is false.

- Kreĭn's problem
- Schur multiplication
- Transference method
- Consequence and open questions?

$$||[f(A), x]||_p \le C_p ||f'||_{\infty} ||[A, x]||_p, \quad \forall A, x \in M_n(\mathbb{C}) \text{ self-adjoint, } f \text{ Lipschitz.}$$

For $p = 1, \infty$:

- Farforovskaya 1972. Problem is false.
- Kato 1973, Davies 1988. Problem is false already for $f(\lambda) = |\lambda|$.

Transference method

Kreĭn's problem

$$||[f(A), x]||_p \le C_p ||f'||_{\infty} ||[A, x]||_p, \quad \forall A, x \in M_n(\mathbb{C}) \text{ self-adjoint, } f \text{ Lipschitz.}$$

For $p = 1, \infty$:

- Farforovskaya 1972. Problem is false.
- Kato 1973, Davies 1988. Problem is false already for $f(\lambda) = |\lambda|$.
- Peller 1985. Problem is true if f is $(1 + \varepsilon)$ -times differentiable.

multiplication

Kreĭn's problem

method

$$||[f(A), x]||_p \le C_p ||f'||_{\infty} ||[A, x]||_p, \quad \forall A, x \in M_n(\mathbb{C}) \text{ self-adjoint, } f \text{ Lipschitz.}$$

For $p = 1, \infty$:

- Farforovskaya 1972. Problem is false.
- Kato 1973, Davies 1988. Problem is false already for $f(\lambda) = |\lambda|$.
- Peller 1985. Problem is true if f is $(1 + \varepsilon)$ -times differentiable.

For 1 < *p* < ∞:

■ Kosaki 1992, Dodds, Dodds, de Pagter, Sukochev 1999. True for $f(\lambda) = |\lambda|$.

Kreĭn's problem

multiplication

Transference method

and open questions?

$$||[f(A), x]||_p \le C_p ||f'||_{\infty} ||[A, x]||_p, \quad \forall A, x \in M_n(\mathbb{C}) \text{ self-adjoint, } f \text{ Lipschitz.}$$

For $p = 1, \infty$:

- Farforovskaya 1972. Problem is false.
- Kato 1973, Davies 1988. Problem is false already for $f(\lambda) = |\lambda|$.
- Peller 1985. Problem is true if f is $(1 + \varepsilon)$ -times differentiable.

For 1 :

- Kosaki 1992, Dodds, Dodds, de Pagter, Sukochev 1999. True for $f(\lambda) = |\lambda|$.
- Several important results by V. Peller, A. Aleksandrov, F. Nazarov, ...
- Potapov, Sukochev 2011. True for any *f* Lipschitz (complete resolution).

Kreĭn's problem

$$||[f(A), x]||_{p} \leq C_{p}||f'||_{\infty}||[A, x]||_{p}, \quad \forall A, x \in M_{n}(\mathbb{C}) \text{ self-adjoint, } f \text{ Lipschitz.}$$

For $p = 1, \infty$:

- Farforovskaya 1972. Problem is false.
- Kato 1973, Davies 1988. Problem is false already for $f(\lambda) = |\lambda|$.
- Peller 1985. Problem is true if f is $(1 + \varepsilon)$ -times differentiable.

For 1 :

- Kosaki 1992, Dodds, Dodds, de Pagter, Sukochev 1999. True for $f(\lambda) = |\lambda|$.
- Several important results by V. Peller, A. Aleksandrov, F. Nazarov, ...
- Potapov, Sukochev 2011. True for any *f* Lipschitz (complete resolution).
- CMPS 2014, CPSZ 2019, CJSZ 2020. True for any f Lipschitz. Moreover,

$$C_p = C_{abs} p p^* = C_{abs} rac{p^2}{p-1}.$$

Motivation

Kreĭn's problem

Schur

Transference method

and open questions?

Motivatior

Kreĭn's problem

Schur multiplication

Transferenc method

Consequences and open questions?

 ${\it 3. Solving Kre\ \ in's question: Schur multiplication = entry-wise matrix multiplication}\\$

How first year students multiply matrices: dumb method.
$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \cdot \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} = \begin{pmatrix} x_{11}y_{11} & x_{12}y_{12} \\ x_{21}y_{21} & x_{22}y_{22} \end{pmatrix}$$

Schur multiplication

$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \cdot \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} = \begin{pmatrix} x_{11}y_{11} & x_{12}y_{12} \\ x_{21}y_{21} & x_{22}y_{22} \end{pmatrix}$$

How second year students multiply matrices: composition of linear maps.

$$\left(\begin{array}{cc} x_{11} & x_{12} \\ x_{21} & x_{22} \end{array} \right) \cdot \left(\begin{array}{cc} y_{11} & y_{12} \\ y_{21} & y_{22} \end{array} \right) = \left(\begin{array}{cc} x_{11}y_{11} + x_{12}y_{21} & x_{11}y_{12} + x_{21}y_{22} \\ x_{21}y_{11} + x_{22}y_{21} & x_{21}y_{12} + x_{22}y_{22} \end{array} \right)$$

Transference method

Schur multiplication

$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \cdot \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} = \begin{pmatrix} x_{11}y_{11} & x_{12}y_{12} \\ x_{21}y_{21} & x_{22}y_{22} \end{pmatrix}$$

How second year students multiply matrices: composition of linear maps.

$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \cdot \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} = \begin{pmatrix} x_{11}y_{11} + x_{12}y_{21} & x_{11}y_{12} + x_{21}y_{22} \\ x_{21}y_{11} + x_{22}y_{21} & x_{21}y_{12} + x_{22}y_{22} \end{pmatrix}$$

The dumb method (= Schur multiplication) turns out to be the intriguing method!

problem

multiplication

Schur

Transference method

and open questions?

$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \cdot \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} = \begin{pmatrix} x_{11}y_{11} & x_{12}y_{12} \\ x_{21}y_{21} & x_{22}y_{22} \end{pmatrix}$$

How second year students multiply matrices: composition of linear maps.

$$\left(\begin{array}{c} x_{11} & x_{12} \\ x_{21} & x_{22} \end{array}\right) \cdot \left(\begin{array}{c} y_{11} & y_{12} \\ y_{21} & y_{22} \end{array}\right) = \left(\begin{array}{c} x_{11}y_{11} + x_{12}y_{21} & x_{11}y_{12} + x_{21}y_{22} \\ x_{21}y_{11} + x_{22}y_{21} & x_{21}y_{12} + x_{22}y_{22} \end{array}\right)$$

The dumb method (= Schur multiplication) turns out to be the intriguing method!

.....

Schur multiplication

Transference

$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \cdot \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} = \begin{pmatrix} x_{11}y_{11} & x_{12}y_{12} \\ x_{21}y_{21} & x_{22}y_{22} \end{pmatrix}$$

How second year students multiply matrices: composition of linear maps.

$$\left(\begin{array}{c} x_{11} & x_{12} \\ x_{21} & x_{22} \end{array}\right) \cdot \left(\begin{array}{c} y_{11} & y_{12} \\ y_{21} & y_{22} \end{array}\right) = \left(\begin{array}{c} x_{11}y_{11} + x_{12}y_{21} & x_{11}y_{12} + x_{21}y_{22} \\ x_{21}y_{11} + x_{22}y_{21} & x_{21}y_{12} + x_{22}y_{22} \end{array}\right)$$

The dumb method (= Schur multiplication) turns out to be the intriguing method!

Schur multiplication

1st year student

2nd year student

$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \cdot \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} = \begin{pmatrix} x_{11}y_{11} & x_{12}y_{12} \\ x_{21}y_{21} & x_{22}y_{22} \end{pmatrix}$$

How second year students multiply matrices: composition of linear maps.

$$\left(\begin{array}{c} x_{11} & x_{12} \\ x_{21} & x_{22} \end{array}\right) \cdot \left(\begin{array}{c} y_{11} & y_{12} \\ y_{21} & y_{22} \end{array}\right) = \left(\begin{array}{c} x_{11}y_{11} + x_{12}y_{21} & x_{11}y_{12} + x_{21}y_{22} \\ x_{21}y_{11} + x_{22}y_{21} & x_{21}y_{12} + x_{22}y_{22} \end{array}\right)$$

The dumb method (= Schur multiplication) turns out to be the intriguing method!

Schur multiplication

1st year student

2nd year student

Where does Schur multiplication occur?

Consider the commutator

$$[A,x]=Ax-xA.$$

For A self-adjoint, we diagonalize (λ eigenvalues, p_{λ} eigenspace projections),

$$A = \sum_{\lambda \in \sigma(A)} \lambda \, p_{\lambda}.$$

We find the Schur (entry-wise) multiplication with matrix $(\lambda - \mu)_{\lambda,\mu}$ since

$$\begin{split} x &= \sum_{\lambda, \mu \in \sigma(A)} p_{\mu} x p_{\lambda}. \\ [A, x] &= \sum_{\mu \in \sigma(A)} \mu p_{\mu} x - \sum_{\lambda \in \sigma(A)} \lambda x p_{\lambda} = \sum_{\lambda, \mu \in \sigma(A)} (\mu - \lambda) p_{\mu} x p_{\lambda}. \end{split}$$

iviotivatioi

problem Schur

multiplication

Transference method

Consequence and open questions?

The real problem!

Motivation

Krein's oroblem

Schur multiplication

Transference method

Consequence and open questions?

The real problem! Recall $A = \sum_{\lambda} \lambda p_{\lambda}$. We have,

Kreĭn's problem

Schur multiplication

Transference method

Consequences and open questions?

$$[f(A), x] = \sum_{\lambda, \mu \in \sigma(A)} (f(\mu) - f(\lambda)) p_{\mu} x p_{\lambda} = \sum_{\lambda, \mu \in \sigma(A)} \frac{f(\mu) - f(\lambda)}{\mu - \lambda} (\mu - \lambda) p_{\mu} x p_{\lambda}$$
$$= \sum_{\lambda, \mu \in \sigma(A)} \frac{f(\mu) - f(\lambda)}{\mu - \lambda} p_{\mu} [A, x] p_{\lambda}.$$

The real problem! Recall $A = \sum_{\lambda} \lambda p_{\lambda}$. We have,

$$\begin{split} [f(A),x] &= \sum_{\lambda,\mu \in \sigma(A)} (f(\mu) - f(\lambda)) p_{\mu} x p_{\lambda} = \sum_{\lambda,\mu \in \sigma(A)} \frac{f(\mu) - f(\lambda)}{\mu - \lambda} (\mu - \lambda) p_{\mu} x p_{\lambda} \\ &= \sum_{\lambda,\mu \in \sigma(A)} \frac{f(\mu) - f(\lambda)}{\mu - \lambda} p_{\mu} [A,x] p_{\lambda}. \end{split}$$

Hence, solving Kreĭn's question boils down to showing that the Schur multiplier

$$T_{\phi_f}: y \mapsto \sum_{\lambda, \mu \in \sigma(A)} \phi_f(\mu, \lambda) p_\mu y p_\lambda$$

with symbol:

$$\phi_f(\mu,\lambda) = \frac{f(\mu) - f(\lambda)}{\mu - \lambda},$$

is bounded on $S_p := L_p(M_n(\mathbb{C}))$.

Kreĭn's problem

Schur multiplication

Transference method

and open questions?

The real problem! Recall $A = \sum_{\lambda} \lambda p_{\lambda}$. We have,

$$\begin{split} [f(A),x] &= \sum_{\lambda,\mu \in \sigma(A)} (f(\mu) - f(\lambda)) p_{\mu} x p_{\lambda} = \sum_{\lambda,\mu \in \sigma(A)} \frac{f(\mu) - f(\lambda)}{\mu - \lambda} (\mu - \lambda) p_{\mu} x p_{\lambda} \\ &= \sum_{\lambda,\mu \in \sigma(A)} \frac{f(\mu) - f(\lambda)}{\mu - \lambda} p_{\mu} [A,x] p_{\lambda}. \end{split}$$

Hence, solving Kreĭn's question boils down to showing that the Schur multiplier

$$T_{\phi_f}: y \mapsto \sum_{\lambda, \mu \in \sigma(A)} \phi_f(\mu, \lambda) p_\mu y p_\lambda$$

with symbol:

Schur multiplication

$$\phi_f(\mu, \lambda) = \frac{f(\mu) - f(\lambda)}{\mu - \lambda},$$

is bounded on $\mathcal{S}_p := L_p(M_n(\mathbb{C}))$.

Warning: estimating Schur multipliers can be extremely hard!

Motivatior

Kreĭn's problem

Schur multiplication

Transference method

Consequences and open questions?

4. Solving Kreĭn's question: The transference method

Notation

Set the gradient, now on the torus,

$$\nabla_{\mathbb{T}} = -i\frac{\partial}{\partial \theta}.$$

Set the trigonometric function $e_s(\theta) = e^{is\theta}, s \in \mathbb{Z}$.

For $\phi \in \ell_{\infty}(\mathbb{Z})$ we define the Fourier multiplier of $L_2(\mathbb{T})$,

$$\phi(
abla_{\mathbb{T}})e_{s}=\phi(s)e_{s}, \qquad s\in\mathbb{Z}.$$

Kreĭn's problem

multiplication

Transference method

Consequence and open questions?

Notation

Set the gradient, now on the torus,

$$\nabla_{\mathbb{T}} = -i\frac{\partial}{\partial \theta}.$$

Set the trigonometric function $e_s(\theta) = e^{is\theta}, s \in \mathbb{Z}$.

For $\phi \in \ell_{\infty}(\mathbb{Z})$ we define the Fourier multiplier of $L_2(\mathbb{T})$,

$$\phi(\nabla_{\mathbb{T}})e_{s} = \phi(s)e_{s}, \qquad s \in \mathbb{Z}.$$

Set the gradient

$$\nabla = -i\frac{\partial}{\partial x}.$$

Set the trigonometric function $e_s(x) = e^{isx}$.

For $\phi \in C_b(\mathbb{R})$ we define the Fourier multiplier of $L_2(\mathbb{R})$,

$$\phi(\nabla)e_s = \phi(s)e_s, \quad s \in \mathbb{R}.$$

Kreĭn's

Schur

Transference method

and open questions?

Motivatioi

Kreĭn's problem

Schur multiplication

Transference method

Consequence and open questions?

Theorem (consequence of Caldéron-Zygmund theory)

Let $\psi:\mathbb{R}^2 \to \mathbb{C}$ be smooth on $\mathbb{R}^2 \backslash \{0\}$ and homogeneous, meaning

$$\psi(\lambda s, \lambda t) = \lambda \psi(s, t), \qquad \forall \lambda > 0, s, t \in \mathbb{R}.$$

Then

$$\psi(\nabla^2_{\mathbb{R}}): L_p(\mathbb{R}^2) \to L_p(\mathbb{R}^2)$$

is bounded on L_p for 1 .

Motivation

Kreĭn's problem

Schur multiplication

Transference method

and open questions?

Theorem (consequence of Caldéron-Zygmund theory)

Let $\psi:\mathbb{R}^2\to\mathbb{C}$ be smooth on $\mathbb{R}^2\backslash\{0\}$ and homogeneous, meaning

$$\psi(\lambda s, \lambda t) = \lambda \psi(s, t), \qquad \forall \lambda > 0, s, t \in \mathbb{R}.$$

Then

$$\psi(\nabla^2_{\mathbb{R}}): L_{\rho}(\mathbb{R}^2) \to L_{\rho}(\mathbb{R}^2)$$

is bounded on L_p for 1 .

Moreover and highly non-trivial:

$$\mathrm{id}_n \otimes \psi(\nabla^2_\mathbb{R}) : L_p(M_n) \otimes L_p(\mathbb{R}^2) \to L_p(M_n) \otimes L_p(\mathbb{R}^2)$$

is bounded uniformly in n [Parcet '09, Cadilhac '18 or Bourgain 1980's].

Motivatio

Kreĭn's problem

Schur multiplication

Transference method

Consequence and open questions?

Karel de Leeuw (1965)

Let $\psi:\mathbb{R}\to\mathbb{C}$ be continuous. Then,

$$\|\psi|_{\mathbb{Z}}(\nabla_{\mathbb{T}}): L_{\rho}(\mathbb{T}) \to L_{\rho}(\mathbb{T})\| \leq \|\psi(\nabla_{\mathbb{R}}): L_{\rho}(\mathbb{R}) \to L_{\rho}(\mathbb{R})\|$$

Remark: De Leeuw proves the analogous result for any discrete subgroup of \mathbb{R}^n .

Motivatio

Kreĭn's problem

Schur multiplication

Transference method

Consequence and open questions?

Karel de Leeuw (1965)

Let $\psi:\mathbb{R}\to\mathbb{C}$ be continuous. Then,

$$\|\psi|_{\mathbb{Z}}(\nabla_{\mathbb{T}}): L_{\rho}(\mathbb{T}) \to L_{\rho}(\mathbb{T})\| \leq \|\psi(\nabla_{\mathbb{R}}): L_{\rho}(\mathbb{R}) \to L_{\rho}(\mathbb{R})\|$$

Remark: De Leeuw proves the analogous result for any discrete subgroup of \mathbb{R}^n .

Theorem (CPPR 15): De Leeuw's theorem holds for any discrete amenable subgroup Γ of a l.c. group G.

Motivation

Kreĭn's problem

multiplication

Transference method

Consequence and open questions?

The unfortunate life story of Karel de Leeuw...

Motivation

Kreĭn's problem

Schur multiplication

Transference method

Consequence and open questions?

The unfortunate life story of Karel de Leeuw...

(source: murderpedia.org)

Recall that solving Kreĭn's question boils down to showing boundedness of

$$T_{\phi_f}: \mathbf{y} \mapsto \sum_{\lambda, \mu \in \sigma(\mathbf{A})} \phi_f(\mu, \lambda) p_\mu \mathbf{y} p_\lambda$$

with symbol (not of Toeplitz form!):

$$\phi_f(\mu,\lambda) = \frac{f(\mu) - f(\lambda)}{\mu - \lambda},$$

viotivation

Kreĭn's problem

Schur multiplication

Transference method

Consequence and open questions?

Recall that solving Kreĭn's question boils down to showing boundedness of

$$T_{\phi_f}: y \mapsto \sum_{\lambda, \mu \in \sigma(A)} \phi_f(\mu, \lambda) p_\mu y p_\lambda$$

with symbol (not of Toeplitz form!):

$$\phi_f(\mu,\lambda) = \frac{f(\mu) - f(\lambda)}{\mu - \lambda},$$

Transference method

Consequences and open questions?

Set

$$\pi: \textit{M}_{\textit{n}}(\mathbb{C}) \rightarrow \textit{L}_{\infty}(\mathbb{T}^2) \otimes \textit{M}_{\textit{n}}(\mathbb{C}): x \mapsto \sum_{\lambda,\mu} e_{(\mu-\lambda,f(\mu)-f(\lambda))} \otimes p_{\mu} x p_{\lambda}.$$

and
$$\psi_0(\lambda,\mu) = \frac{\lambda}{\mu}$$
 for $|\lambda| \le |\mu|$.

Recall that solving Kreĭn's question boils down to showing boundedness of

$$T_{\phi_f}: y \mapsto \sum_{\lambda, \mu \in \sigma(A)} \phi_f(\mu, \lambda) p_\mu y p_\lambda$$

with symbol (not of Toeplitz form!):

$$\phi_f(\mu,\lambda) = \frac{f(\mu) - f(\lambda)}{\mu - \lambda},$$

method

Transference

Set

$$\pi: M_n(\mathbb{C}) \to L_\infty(\mathbb{T}^2) \otimes M_n(\mathbb{C}): x \mapsto \sum_{\lambda,\mu} e_{(\mu-\lambda,f(\mu)-f(\lambda))} \otimes p_\mu x p_\lambda.$$

and
$$\psi_0(\lambda,\mu) = \frac{\lambda}{\mu}$$
 for $|\lambda| \leq |\mu|$.

We have the magic formula,

$$(\psi_0(\nabla_{\mathbb{T}^2}) \otimes \mathrm{id}) \circ \pi = \pi \circ T_{\phi_f}.$$

So Krein's problem is a matter of estimating $\|\psi(\nabla_{\mathbb{T}^2})\|_{cb}$, which is true by the previous 2 slides. Schur multiplication

Transference method

Consequences and open questions?

5. Consequence: non-commutative Lipschitz functions and Taylor approximation

$$\begin{split} &f(x) = \ln\left(1 + (\cos x - 1)\right) \\ &= (\cos x - 1) - \frac{1}{2}(\cos x - 1)^2 + \frac{1}{2}(\cos x - 1)^3 + O\left((\cos x - 1)^4\right) \\ &= \left(-\frac{x^2}{2} + \frac{x^4}{24} + \frac{x^6}{720} + O\left(x^8\right)\right) - \frac{1}{2}\left(-\frac{x^2}{2} + \frac{x^4}{24} + O\left(x^6\right)\right)^2 + \frac{1}{3}\left(-\frac{x^2}{2} + O\left(x^4\right)\right)^3 + O\left(x^8\right) \\ &= -\frac{x^2}{2} + \frac{x^4}{4} - \frac{x^6}{720} - \frac{x^6}{8} + \frac{x^6}{24} + O\left(x^8\right) \\ &= -\frac{x^2}{2} - \frac{x^4}{12} + \frac{x^6}{45} + O\left(x^8\right). \end{split}$$

Theorem: Non-commutative Lipschitz functions

There exists a constant C_{abs} such that for any Lipschitz function $f: \mathbb{R} \to \mathbb{C}$, any self-adjoint operators A and B in $M_n(\mathbb{C})$ and any 1 we have

$$||f(A) - f(B)||_{\rho} \le C_{abs} \frac{\rho^2}{\rho - 1} ||f'||_{\infty} ||A - B||_{\rho}.$$

Moreover, this estimate is sharp.

Kreĭn's problem

Schur multiplication

Transference method

Consequences and open questions?

Theorem: Non-commutative Lipschitz functions

There exists a constant C_{abs} such that for any Lipschitz function $f: \mathbb{R} \to \mathbb{C}$, any self-adjoint operators A and B in $M_n(\mathbb{C})$ and any 1 we have

$$\|f(A) - f(B)\|_{\rho} \le C_{abs} \frac{\rho^2}{p-1} \|f'\|_{\infty} \|A - B\|_{\rho}.$$

Moreover, this estimate is sharp.

Proof: Take

$$C = \left(\begin{array}{cc} A & 0 \\ 0 & B \end{array} \right), \qquad x = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right).$$

Then the result is just the inequality:

$$||[f(C), x]||_{p} \leq C_{abs} \frac{p^{2}}{p-1} ||f'|| ||[C, x]||_{p}.$$

Motivation

Kreĭn's problem

Schur multiplication

Transference method

Consequences and open questions?

Motivatior

Kreĭn's problem

Schur multiplication

Transference method

Consequences and open questions?

Several open directions:

- De Leeuw theorem for higher rank Lie groups like $SL_n(\mathbb{R})$, $n \geq 3$?
- Taylor expansions for functional calculus ⇒ higher order approximations?
- Multi-linear (harmonic) analysis.
- ...

Motivatior

Kreĭn's problem

Schur multiplicatior

Transference method

Consequences and open questions?

Several open directions:

- De Leeuw theorem for higher rank Lie groups like $SL_n(\mathbb{R})$, $n \geq 3$?
- Taylor expansions for functional calculus ⇒ higher order approximations?
- Multi-linear (harmonic) analysis.
- ...

Some special thanks go to collaborators (in this talk):

M. Junge, S. Montgomery-Smith, J. Parcet, M. Perrin, D. Potapov, E. Ricard, M. de la Salle, F. Sukochev, D. Zanin.