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of observables (= self-adjoint matrices). Commutators tell how good two
observables can be measured simultaneously (the smaller, the better).

Heisenberg uncertainty principle (qualitative statement)

[A, x] = 0if and only if A and x can be measured simultaneously.

Consequence: place Q and impulse P can never be
determined with full accuracy at the same time [P, Q] = ih.
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One may add noise to a term:
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Can we control/estimate the perturbed commutator?
[A + noise, x] < [A, x],

Whatever this means...



Functional calculus
Let A be a self-adjoint matrix.

For p(x) = >k axxk a polynomial we set

n
P(A) = axA".
k=0

For f € R — C continuous we define

F(A) = lim pi(A)

where p; are polynomials converging to f uniformly on compact sets.
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Motivation/Question: what happens if a commutator gets perturbed?

One may replace an observable A by a new observable f(A).

)
N’

Can we control/estimate the perturbed commutator?
[f(A),x] X [A, x],

Whatever this means...



eains 2. Krein’s problem: perturbations of commutators
problem

M.G. Krein



Precise mathematical statement, at least going back to M.G. Krein (=~ 1964).

Is the following true?

Krein’s

problem Let f : R — C be Lipschitz. Is it true that for every self-adjoint A and x in M,(C):
IF(A), X1l < Cabs|If'lloo [I[A, X1l

Here Cgps > 0 is some absolute constant.
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Is the following true?

Krein’s

problem Let f : R — C be Lipschitz. Is it true that for every self-adjoint A and x in M,(C):
IF(A), X1l < Cabs|If'lloo [I[A, X1l

Here Cgps > 0 is some absolute constant.

m Norm is the operator norm
lly€ll
Ivli= > el
0#EeCn

But also other norms shall be considered!
m The problem is hard if one asks for a constant C,,s independent of n.
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Lipschitz condition is essential

a o0 0 1
A:(o b)’ X:(1 o)'
Then

wi=( 5% 0% ) =y ).

So if
IIF(A), X1l < CII[A, ]|l

then
[f(a) — f(b)| < Cla— b,

and so f is Lipschitz.
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m De Leeuw theorems mmm ( 5)



Definition: Let Sp be the Schatten-von Neumann Lp-space of Ms(C).

It is Mn(C) with norm
Krein's

problem IXllp = Tr(|xIP) /P := Te((x* x)P/2)'/P.

Sidenote: In general (for B(H)) Sp consists of all compact operators with singular
value sequence in £p. The norm is the £, norm of these singular values.
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IIF(A), X]llp < Collf'|loo II[A, X1l VA, x € Mn(C) self-adjoint, f Lipschitz.
Krein’s
problem Forp=1,cc:
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m Potapov, Sukochev 2011. True for any f Lipschitz (complete resolution).
m CMPS 2014, CPSZ 2019, CJSZ 2020. True for any f Lipschitz. Moreover,

2

Cp = Capspp™ = Cabsppj-



Schur 3. Solving Krein’s question: Schur multiplication = entry-wise matrix multiplication
multiplication
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How first year students multiply matrices: dumb method.
X1 X2 ( Yiro Y ) — ( X1y X2¥12 )
X21  X22 Yo1r Yoo X21Yo1  Xo2Yo2

How second year students multiply matrices: composition of linear maps.
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Where does Schur multiplication occur?

Consider the commutator
[A, x] = Ax — XA.

Schur

multiplication For A self-adjoint, we diagonalize (A eigenvalues, p, eigenspace projections),

A€o (A)

We find the Schur (entry-wise) multiplication with matrix (A — u)»,,, since

X= > puxpa.

A, n€a(A)

[Ax] = Z HPuX — Z AXPy = Z (1 = A)PuXp.

pea(A) A€o(A) A u€a(A)



The real problem!

Schur
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The real problem! Recall A= 3", Apx. We have,

D S O S MR

Au€a(A) Amea(A) *
f(p) — f(A
Schur = > L)\()p”[A’ XIp-
multiplication A uEa(A) =
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The real problem! Recall A= 3", Apx. We have,

WA= S (160~ gy = 30 = G a0,

A\ n€a(A) AueoA) ’
f(p) — f(A
multiplication A uEa(A) =

Hence, solving Krein’s question boils down to showing that the Schur multiplier

To iy > bi(1,A)Puypa
X,p€o(A)

with symbol:

1) = 1)

Of(/‘ﬂ )‘) - 0 2

is bounded on Sp := Lp(Mn(C)).

Warning: estimating Schur multipliers can be extremely hard!



4. Solving Krein’s question: The transference method

Transference
method




Notation
m Set the gradient, now on the torus,

P
Vp=—i2
=%

Set the trigonometric function es(6) = €?, s € Z.

- For ¢ € £o(Z) we define the Fourier multiplier of Lo(T),

method

#(Vr)es = ¢(s)es, seZ.



Notation
m Set the gradient, now on the torus,
.0

Vp=—i2
=%

Set the trigonometric function es(6) = €?, s € Z.

- For ¢ € £o(Z) we define the Fourier multiplier of Lo(T),
method

#(Vr)es = ¢(s)es, seZ.

m Set the gradient

1o}
V=—i—.
ox

Set the trigonometric function es(x) = €.

For ¢ € Cp(R) we define the Fourier multiplier of L>(R),

#(V)es = ¢(s)es, seR.
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Theorem (consequence of Caldéron-Zygmund theory)

Let ¢ : R? — C be smooth on R?\{0} and homogeneous, meaning
B(AS, Al) = Mp(s, 1), VA >O0,s tER.

Then
$(VE) : Lp(R?) — Lp(R?)

is bounded on Ly for 1 < p < oo.

Moreover and highly non-trivial:
idn © (V§) : Lp(Mp) © Lp(R?) — Lp(Mn) @ Lp(R?)

is bounded uniformly in n [Parcet ‘09, Cadilhac *18 or Bourgain 1980’s].



Karel de Leeuw (1965)
Let ) : R — C be continuous. Then,

Transference l1z(V1) : Lp(T) — Lp(T)|| < [|[#(VR) : Lp(R) — Lp(R)||

method

Remark: De Leeuw proves the analogous result for any discrete subgroup of R".



Karel de Leeuw (1965)
Let ) : R — C be continuous. Then,

Transference l1z(V1) : Lp(T) — Lp(T)|| < [|[#(VR) : Lp(R) — Lp(R)||

method

Remark: De Leeuw proves the analogous result for any discrete subgroup of R".

Theorem (CPPR 15): De Leeuw’s theorem holds for any discrete amenable
subgroup I of a l.c. group G.



The unfortunate life story of Karel de Leeuw...
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(source: murderpedia.org)
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Recall that solving Krein’s question boils down to showing boundedness of

T iy > bi(1, A)Puypa
A, p€a(A)

with symbol (not of Toeplitz form!):

f(n) = (V)

br(ps A) = 5

Transference
method

m Set

T Mn((C) — LOO(TZ) ® Mn(C) X = Z e(H_A7f(H)_,(,\)) ®p/_LXp)\.
Al

and ¢o(\, ) = 7 for [A] < |ul.
m We have the magic formula,
(%(VTz) ®id)omr=mo T¢,,

So Krein’s problem is a matter of estimating ||¢(V2)||cp, Which is true by
the previous 2 slides.



5. Consequence: non-commutative Lipschitz functions
and Taylor approximation
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Consequences
and open
questions?

Theorem: Non-commutative Lipschitz functions

There exists a constant C,p,¢ such that for any Lipschitz function f : R — C,any
self-adjoint operators A and B in My(C) and any 1 < p < co we have

2
F(A) = (B)llp < Cabspp_ Tl lloclIA = Bllp.

Moreover, this estimate is sharp.
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There exists a constant C,p,¢ such that for any Lipschitz function f : R — C,any
self-adjoint operators A and B in My(C) and any 1 < p < co we have

2
F(A) = (B)llp < Cabspp_ Tl lloclIA = Bllp.

Moreover, this estimate is sharp.

c(48) (1)

Then the result is just the inequality:

Proof: Take

IF(C), Allp < Cabspp_21

IFIILC, X]llp-



Several open directions:
m De Leeuw theorem for higher rank Lie groups like SLn(R),n > 3?
m Taylor expansions for functional calculus = higher order approximations?
m Multi-linear (harmonic) analysis.
u

Consequences
and open
questions?



Several open directions:
m De Leeuw theorem for higher rank Lie groups like SLn(R),n > 3?
m Taylor expansions for functional calculus = higher order approximations?
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Consequences
and open

questions? Some special thanks go to collaborators (in this talk):

M. Junge, S. Montgomery-Smith, J. Parcet, M. Perrin, D. Potapov, E. Ricard, M. de
la Salle, F. Sukochev, D. Zanin.
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