Perturbations of commutators

Martijn Caspers - TU Delft

at virtual Amsterdam

1. Motivation and origin of the problems

In physics one is interested in the commutator

$$
[A, x]=A x-x A
$$

of observables (\approx self-adjoint matrices). Commutators tell how good two observables can be measured simultaneously (the smaller, the better).

In physics one is interested in the commutator

$$
[A, x]=A x-x A
$$

of observables (\approx self-adjoint matrices). Commutators tell how good two observables can be measured simultaneously (the smaller, the better).

Heisenberg uncertainty principle (qualitative statement)
$[A, x]=0$ if and only if A and x can be measured simultaneously.

In physics one is interested in the commutator

$$
[A, x]=A x-x A
$$

of observables (\approx self-adjoint matrices). Commutators tell how good two observables can be measured simultaneously (the smaller, the better).

Heisenberg uncertainty principle (qualitative statement)

$[A, x]=0$ if and only if A and x can be measured simultaneously.

Consequence: place Q and impulse P can never be determined with full accuracy at the same time $[P, Q]=i \hbar$.

Motivation
Kreĭn's
problem
Schiur
multiplication
Transference
method
Consequences and open questions?

Motivation/Question: what happens if a commutator gets perturbed?

Motivation

Kreĭn's

problem
Schiur
multiplication
Transference
method
Consequences and open questions?

Motivation/Question: what happens if a commutator gets perturbed?
One may add noise to a term:

$$
[A+\text { noise }, x]
$$

Motivation
Kreĭn's
problem
Schur
multiplication

Transference

method
Consequences
and open
questions?

Motivation/Question: what happens if a commutator gets perturbed?
One may add noise to a term:

$$
[A+\text { noise }, x]
$$

Can we control/estimate the perturbed commutator?

$$
[A+\text { noise }, x] \preceq[A, x],
$$

Whatever this means...

Motivation
Krein's
problem
Schur multiplication Transference method

Consequences and open questions?

Functional calculus
Let A be a self-adjoint matrix.
For $p(x)=\sum_{k=0}^{n} \alpha_{k} x^{k}$ a polynomial we set

$$
p(A):=\sum_{k=0}^{n} \alpha_{k} A^{k}
$$

For $f \in \mathbb{R} \rightarrow \mathbb{C}$ continuous we define

$$
f(A)=\lim _{i} p_{i}(A)
$$

where p_{i} are polynomials converging to f uniformly on compact sets.

Motivation
Kreĭn's
problem
Schur
multiplication
Transference
method
Consequences and open questions?

Motivation/Question: what happens if a commutator gets perturbed?

Motivation
Kreĭn's
problem
Schiur
multiplication

Transference

method
Consequences
and open
questions?

Motivation/Question: what happens if a commutator gets perturbed?
One may replace an observable A by a new observable $f(A)$.

Motivation/Question: what happens if a commutator gets perturbed?
One may replace an observable A by a new observable $f(A)$.

Can we control/estimate the perturbed commutator?

$$
[f(A), x] \preceq[A, x],
$$

Whatever this means...

Motivation
Kreĭn's problem

Schur

multiplication

Transference
method
Consequences
and open
questions?
2. Kreĭn's problem: perturbations of commutators

M.G. Krein

Precise mathematical statement, at least going back to M.G. Kreĭn (≈ 1964).

Is the following true?
Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be Lipschitz. Is it true that for every self-adjoint A and x in $M_{n}(\mathbb{C})$:

$$
\|[f(A), x]\| \leq C_{a b s}\left\|f^{\prime}\right\|_{\infty}\|[A, x]\|
$$

Here $C_{a b s}>0$ is some absolute constant.

Precise mathematical statement, at least going back to M.G. Kreĭn (≈ 1964).

Is the following true?
Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be Lipschitz. Is it true that for every self-adjoint A and x in $M_{n}(\mathbb{C})$:

$$
\|[f(A), x]\| \leq C_{a b s}\left\|f^{\prime}\right\|_{\infty}\|[A, x]\| .
$$

Here $C_{a b s}>0$ is some absolute constant.

■ Norm is the operator norm

$$
\|y\|=\sum_{0 \neq \xi \in \mathbb{C}^{n}} \frac{\|y \xi\|}{\|\xi\|}
$$

But also other norms shall be considered!

- The problem is hard if one asks for a constant $C_{a b s}$ independent of n.

Motivation
Kreĭn's problem

Schur multiplication

Transference
method
Consequences and open questions?

Lipschitz condition is essential

Motivation

Kreïn's problem

Lipschitz condition is essential

$$
A=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right), \quad x=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Then

$$
[A, x]=\left(\begin{array}{cc}
0 & a-b \\
b-a & 0
\end{array}\right), \quad[f(A), x]=\left(\begin{array}{cc}
0 & f(a)-f(b) \\
f(b)-f(a) & 0
\end{array}\right)
$$

Motivation

Kreĩn's problem

Lipschitz condition is essential

$$
A=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right), \quad x=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Then

$$
[A, x]=\left(\begin{array}{cc}
0 & a-b \\
b-a & 0
\end{array}\right), \quad[f(A), x]=\left(\begin{array}{cc}
0 & f(a)-f(b) \\
f(b)-f(a) & 0
\end{array}\right)
$$

So if

$$
\|[f(A), x]\| \leq C\|[A, x]\|
$$

then

$$
|f(a)-f(b)| \leq C|a-b|,
$$

and so f is Lipschitz.

Is the following true?
Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be Lipschitz. Is it true that for every self-adjoint A and x in $M_{n}(\mathbb{C})$:

$$
\|[f(A), x]\| \leq C_{a b s}\left\|f^{\prime}\right\|_{\infty}\|[A, x]\|
$$

Here $C_{a b s}>0$ is some absolute constant.

Is the following true?
Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be Lipschitz. Is it true that for every self-adjoint A and x in $M_{n}(\mathbb{C})$:

$$
\|[f(A), x]\| \leq C_{a b s}\left\|f^{\prime}\right\|_{\infty}\|[A, x]\|
$$

Here $C_{a b s}>0$ is some absolute constant.

Take-home message of this talk:
Kreĭn's question can be resolved using harmonic analysis! Ingredients:

- Fourier multipliers and Calderón-Zygmund theory
- De Leeuw theorems

Is the following true?
Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be Lipschitz. Is it true that for every self-adjoint A and x in $M_{n}(\mathbb{C})$:

$$
\|[f(A), x]\| \leq C_{a b s}\left\|f^{\prime}\right\|_{\infty}\|[A, x]\|
$$

Here $C_{a b s}>0$ is some absolute constant.

Take-home message of this talk:
Kreĭn's question can be resolved using harmonic analysis! Ingredients:

- Fourier multipliers and Calderón-Zygmund theory ()
- De Leeuw theorems ()

Definition: Let \mathcal{S}_{p} be the Schatten-von Neumann L_{p}-space of $M_{n}(\mathbb{C})$.

Kreĭn's problem

Schur multiplication

Transference

 methodConsequences and open questions?

It is $M_{n}(\mathbb{C})$ with norm

$$
\|x\|_{p}:=\operatorname{Tr}\left(|x|^{p}\right)^{1 / p}:=\operatorname{Tr}\left(\left(x^{*} x\right)^{p / 2}\right)^{1 / p} .
$$

Sidenote: In general (for $B(H)$) \mathcal{S}_{p} consists of all compact operators with singular value sequence in ℓ_{p}. The norm is the ℓ_{p} norm of these singular values.

Long non-exhaustive list of results on Krein's problem:

Motivation
Kreĭn's problem

Schur
multiplication
Transference
method
Consequences and open questions?
$\|[f(A), x]\|_{p} \leq C_{\rho}\left\|f^{\prime}\right\|_{\infty}\|[A, x]\|_{\rho}, \quad \forall A, x \in M_{n}(\mathbb{C})$ self-adjoint, f Lipschitz.

Long non-exhaustive list of results on Kreĭn's problem:

$$
\|[f(A), x]\|_{p} \leq C_{p}\left\|f^{\prime}\right\|_{\infty}\|[A, x]\|_{p}, \quad \forall A, x \in M_{n}(\mathbb{C}) \text { self-adjoint, } f \text { Lipschitz. }
$$

Kreĭn's problem

Schur
multiplication
Transference method

Consequences and open questions?

For $p=1, \infty$:

- Farforovskaya 1972. Problem is false.

Long non-exhaustive list of results on Kreĭn's problem:

Motivation
Krein's problem
Schur
multiplication
Transference method

Consequences and open questions?

$$
\|[f(A), x]\|_{p} \leq C_{p}\left\|f^{\prime}\right\|_{\infty}\|[A, x]\|_{p}, \quad \forall A, x \in M_{n}(\mathbb{C}) \text { self-adjoint, } f \text { Lipschitz. }
$$

For $p=1, \infty$:

- Farforovskaya 1972. Problem is false.

■ Kato 1973, Davies 1988. Problem is false already for $f(\lambda)=|\lambda|$.

Long non-exhaustive list of results on Kreĭn's problem:

Motivation
Krein's problem
Schur
multiplication
Transference
method
Consequences and open questions?

$$
\|[f(A), x]\|_{p} \leq C_{p}\left\|f^{\prime}\right\|_{\infty}\|[A, x]\|_{p}, \quad \forall A, x \in M_{n}(\mathbb{C}) \text { self-adjoint, } f \text { Lipschitz. }
$$

For $p=1, \infty$:

- Farforovskaya 1972. Problem is false.

■ Kato 1973, Davies 1988. Problem is false already for $f(\lambda)=|\lambda|$.
■ Peller 1985. Problem is true if f is $(1+\varepsilon)$-times differentiable.

Long non-exhaustive list of results on Kreĭn's problem:
$\|[f(A), x]\|_{p} \leq C_{p}\left\|f^{\prime}\right\|_{\infty}\|[A, x]\|_{p}, \quad \forall A, x \in M_{n}(\mathbb{C})$ self-adjoint, f Lipschitz.
For $p=1, \infty$:

- Farforovskaya 1972. Problem is false.

■ Kato 1973, Davies 1988. Problem is false already for $f(\lambda)=|\lambda|$.
■ Peller 1985. Problem is true if f is $(1+\varepsilon)$-times differentiable.
For $1<p<\infty$:
■ Kosaki 1992, Dodds, Dodds, de Pagter, Sukochev 1999. True for $f(\lambda)=|\lambda|$.

Long non-exhaustive list of results on Kreĭn's problem:
$\|[f(A), x]\|_{p} \leq C_{p}\left\|f^{\prime}\right\|_{\infty}\|[A, x]\|_{p}, \quad \forall A, x \in M_{n}(\mathbb{C})$ self-adjoint, f Lipschitz.
For $p=1, \infty$:

- Farforovskaya 1972. Problem is false.

■ Kato 1973, Davies 1988. Problem is false already for $f(\lambda)=|\lambda|$.
■ Peller 1985. Problem is true if f is $(1+\varepsilon)$-times differentiable.
For $1<p<\infty$:
■ Kosaki 1992, Dodds, Dodds, de Pagter, Sukochev 1999. True for $f(\lambda)=|\lambda|$.
■ Several important results by V. Peller, A. Aleksandrov, F. Nazarov, ...
■ Potapov, Sukochev 2011. True for any f Lipschitz (complete resolution).

Long non-exhaustive list of results on Kreĭn's problem:
$\|[f(A), x]\|_{p} \leq C_{p}\left\|f^{\prime}\right\|_{\infty}\|[A, x]\|_{p}, \quad \forall A, x \in M_{n}(\mathbb{C})$ self-adjoint, f Lipschitz.
For $p=1, \infty$:

- Farforovskaya 1972. Problem is false.

■ Kato 1973, Davies 1988. Problem is false already for $f(\lambda)=|\lambda|$.
■ Peller 1985. Problem is true if f is $(1+\varepsilon)$-times differentiable.
For $1<p<\infty$:

- Kosaki 1992, Dodds, Dodds, de Pagter, Sukochev 1999. True for $f(\lambda)=|\lambda|$.

■ Several important results by V. Peller, A. Aleksandrov, F. Nazarov, ...
■ Potapov, Sukochev 2011. True for any f Lipschitz (complete resolution).
■ CMPS 2014, CPSZ 2019, CJSZ 2020. True for any f Lipschitz. Moreover,

$$
C_{p}=C_{a b s} p p^{*}=C_{a b s} \frac{p^{2}}{p-1}
$$

Schur multiplication

Transference

method
Consequences and open questions?
3. Solving Kreĭn's question: Schur multiplication = entry-wise matrix multiplication

How first year students multiply matrices: dumb method.

$$
\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right)=\left(\begin{array}{ll}
x_{11} y_{11} & x_{12} y_{12} \\
x_{21} y_{21} & x_{22} y_{22}
\end{array}\right)
$$

Motivation

Krein's
problem
Schur multiplication

How first year students multiply matrices: dumb method.

$$
\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right)=\left(\begin{array}{ll}
x_{11} y_{11} & x_{12} y_{12} \\
x_{21} y_{21} & x_{22} y_{22}
\end{array}\right)
$$

Motivation

Krein's
problem
Schur multiplication

Transference

method
Consequences and open questions?

How second year students multiply matrices: composition of linear maps.

$$
\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right)=\left(\begin{array}{ll}
x_{11} y_{11}+x_{12} y_{21} & x_{11} y_{12}+x_{21} y_{22} \\
x_{21} y_{11}+x_{22} y_{21} & x_{21} y_{12}+x_{22} y_{22}
\end{array}\right)
$$

Motivation

Krein's
problem
Schur multiplication

Transference

method
Consequences and open questions?

How first year students multiply matrices: dumb method.

$$
\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right)=\left(\begin{array}{ll}
x_{11} y_{11} & x_{12} y_{12} \\
x_{21} y_{21} & x_{22} y_{22}
\end{array}\right)
$$

How second year students multiply matrices: composition of linear maps.

$$
\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right)=\left(\begin{array}{ll}
x_{11} y_{11}+x_{12} y_{21} & x_{11} y_{12}+x_{21} y_{22} \\
x_{21} y_{11}+x_{22} y_{21} & x_{21} y_{12}+x_{22} y_{22}
\end{array}\right)
$$

The dumb method (= Schur multiplication) turns out to be the intriguing method!

Motivation

Krein's
problem
Schur multiplication

Transference

method
Consequences and open questions?

How first year students multiply matrices: dumb method.

$$
\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right)=\left(\begin{array}{ll}
x_{11} y_{11} & x_{12} y_{12} \\
x_{21} y_{21} & x_{22} y_{22}
\end{array}\right)
$$

How second year students multiply matrices: composition of linear maps.

$$
\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right)=\left(\begin{array}{ll}
x_{11} y_{11}+x_{12} y_{21} & x_{11} y_{12}+x_{21} y_{22} \\
x_{21} y_{11}+x_{22} y_{21} & x_{21} y_{12}+x_{22} y_{22}
\end{array}\right)
$$

The dumb method (= Schur multiplication) turns out to be the intriguing method!

1st year student

Motivation

Krein's
problem
Schur multiplication

Transference

method
Consequences and open questions?

How first year students multiply matrices: dumb method.

$$
\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right)=\left(\begin{array}{ll}
x_{11} y_{11} & x_{12} y_{12} \\
x_{21} y_{21} & x_{22} y_{22}
\end{array}\right)
$$

How second year students multiply matrices: composition of linear maps.

$$
\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right)=\left(\begin{array}{ll}
x_{11} y_{11}+x_{12} y_{21} & x_{11} y_{12}+x_{21} y_{22} \\
x_{21} y_{11}+x_{22} y_{21} & x_{21} y_{12}+x_{22} y_{22}
\end{array}\right)
$$

The dumb method (= Schur multiplication) turns out to be the intriguing method!

Motivation
Krein's problem

Schur multiplication

Transference

method
Consequences and open questions?

How first year students multiply matrices: dumb method.

$$
\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right)=\left(\begin{array}{ll}
x_{11} y_{11} & x_{12} y_{12} \\
x_{21} y_{21} & x_{22} y_{22}
\end{array}\right)
$$

How second year students multiply matrices: composition of linear maps.

$$
\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right)=\left(\begin{array}{ll}
x_{11} y_{11}+x_{12} y_{21} & x_{11} y_{12}+x_{21} y_{22} \\
x_{21} y_{11}+x_{22} y_{21} & x_{21} y_{12}+x_{22} y_{22}
\end{array}\right)
$$

The dumb method (= Schur multiplication) turns out to be the intriguing method!

Where does Schur multiplication occur?

Motivation

Krein's
problem
Schur multiplication

Consider the commutator

$$
[A, x]=A x-x A
$$

For A self-adjoint, we diagonalize (λ eigenvalues, p_{λ} eigenspace projections),

$$
A=\sum_{\lambda \in \sigma(A)} \lambda p_{\lambda} .
$$

We find the Schur (entry-wise) multiplication with matrix $(\lambda-\mu)_{\lambda, \mu}$ since

$$
\begin{aligned}
x & =\sum_{\lambda, \mu \in \sigma(A)} p_{\mu} x p_{\lambda} . \\
{[A, x] } & =\sum_{\mu \in \sigma(A)} \mu p_{\mu} x-\sum_{\lambda \in \sigma(A)} \lambda x p_{\lambda}=\sum_{\lambda, \mu \in \sigma(A)}(\mu-\lambda) p_{\mu} x p_{\lambda} .
\end{aligned}
$$

The real problem！

Motivation

Krein＇s
problem
Schur multiplication Transference method

Consequences and open questions？

The real problem! Recall $A=\sum_{\lambda} \lambda p_{\lambda}$. We have,

$$
\begin{aligned}
{[f(A), x] } & =\sum_{\lambda, \mu \in \sigma(A)}(f(\mu)-f(\lambda)) p_{\mu} x p_{\lambda}=\sum_{\lambda, \mu \in \sigma(A)} \frac{f(\mu)-f(\lambda)}{\mu-\lambda}(\mu-\lambda) p_{\mu} x p_{\lambda} \\
& =\sum_{\lambda, \mu \in \sigma(A)} \frac{f(\mu)-f(\lambda)}{\mu-\lambda} p_{\mu}[A, x] p_{\lambda} .
\end{aligned}
$$

The real problem! Recall $A=\sum_{\lambda} \lambda p_{\lambda}$. We have,

$$
\begin{aligned}
{[f(A), x] } & =\sum_{\lambda, \mu \in \sigma(A)}(f(\mu)-f(\lambda)) p_{\mu} x p_{\lambda}=\sum_{\lambda, \mu \in \sigma(A)} \frac{f(\mu)-f(\lambda)}{\mu-\lambda}(\mu-\lambda) p_{\mu} x p_{\lambda} \\
& =\sum_{\lambda, \mu \in \sigma(A)} \frac{f(\mu)-f(\lambda)}{\mu-\lambda} p_{\mu}[A, x] p_{\lambda} .
\end{aligned}
$$

Hence, solving Kreĭn's question boils down to showing that the Schur multiplier

$$
T_{\phi_{f}}: y \mapsto \sum_{\lambda, \mu \in \sigma(A)} \phi_{f}(\mu, \lambda) p_{\mu} y p_{\lambda}
$$

with symbol:

$$
\phi_{f}(\mu, \lambda)=\frac{f(\mu)-f(\lambda)}{\mu-\lambda},
$$

is bounded on $\mathcal{S}_{p}:=L_{p}\left(M_{n}(\mathbb{C})\right)$.

The real problem! Recall $A=\sum_{\lambda} \lambda p_{\lambda}$. We have,

$$
\begin{aligned}
{[f(A), x] } & =\sum_{\lambda, \mu \in \sigma(A)}(f(\mu)-f(\lambda)) p_{\mu} x p_{\lambda}=\sum_{\lambda, \mu \in \sigma(A)} \frac{f(\mu)-f(\lambda)}{\mu-\lambda}(\mu-\lambda) p_{\mu} x p_{\lambda} \\
& =\sum_{\lambda, \mu \in \sigma(A)} \frac{f(\mu)-f(\lambda)}{\mu-\lambda} p_{\mu}[A, x] p_{\lambda}
\end{aligned}
$$

Hence, solving Kreĭn's question boils down to showing that the Schur multiplier

$$
T_{\phi_{f}}: y \mapsto \sum_{\lambda, \mu \in \sigma(A)} \phi_{f}(\mu, \lambda) p_{\mu} y p_{\lambda}
$$

with symbol:

$$
\phi_{f}(\mu, \lambda)=\frac{f(\mu)-f(\lambda)}{\mu-\lambda},
$$

is bounded on $\mathcal{S}_{p}:=L_{p}\left(M_{n}(\mathbb{C})\right)$.
Warning: estimating Schur multipliers can be extremely hard!
4. Solving Kreĭn's question: The transference method

Notation

■ Set the gradient, now on the torus,

Motivation

Krein's
problem
Schur
multiplication
Transference method

Consequences and open questions?

$$
\nabla_{\mathbb{T}}=-i \frac{\partial}{\partial \theta}
$$

Set the trigonometric function $e_{s}(\theta)=e^{i s \theta}, s \in \mathbb{Z}$.
For $\phi \in \ell_{\infty}(\mathbb{Z})$ we define the Fourier multiplier of $L_{2}(\mathbb{T})$,

$$
\phi\left(\nabla_{\mathbb{T}}\right) e_{s}=\phi(s) e_{s}, \quad s \in \mathbb{Z}
$$

Notation

■ Set the gradient, now on the torus,

Motivation

Krein's problem

Schur multiplication

Transference method

Consequences and open questions?

$$
\nabla_{\mathbb{T}}=-i \frac{\partial}{\partial \theta}
$$

Set the trigonometric function $e_{s}(\theta)=e^{i s \theta}, s \in \mathbb{Z}$.
For $\phi \in \ell_{\infty}(\mathbb{Z})$ we define the Fourier multiplier of $L_{2}(\mathbb{T})$,

$$
\phi\left(\nabla_{\mathbb{T}}\right) e_{s}=\phi(s) e_{s}, \quad s \in \mathbb{Z}
$$

■ Set the gradient

$$
\nabla=-i \frac{\partial}{\partial x}
$$

Set the trigonometric function $e_{S}(x)=e^{i s x}$.
For $\phi \in C_{b}(\mathbb{R})$ we define the Fourier multiplier of $L_{2}(\mathbb{R})$,

$$
\phi(\nabla) e_{s}=\phi(s) e_{s}, \quad s \in \mathbb{R}
$$

Theorem (consequence of Caldéron-Zygmund theory)

Krein's
problem
Schur
multiplication
Transference
method
Consequences
and open
questions?

Let $\psi: \mathbb{R}^{2} \rightarrow \mathbb{C}$ be smooth on $\mathbb{R}^{2} \backslash\{0\}$ and homogeneous, meaning

$$
\psi(\lambda s, \lambda t)=\lambda \psi(s, t), \quad \forall \lambda>0, s, t \in \mathbb{R}
$$

Then

$$
\psi\left(\nabla_{\mathbb{R}}^{2}\right): L_{p}\left(\mathbb{R}^{2}\right) \rightarrow L_{p}\left(\mathbb{R}^{2}\right)
$$

is bounded on L_{p} for $1<p<\infty$.

Theorem (consequence of Caldéron-Zygmund theory)
Let $\psi: \mathbb{R}^{2} \rightarrow \mathbb{C}$ be smooth on $\mathbb{R}^{2} \backslash\{0\}$ and homogeneous, meaning

$$
\psi(\lambda s, \lambda t)=\lambda \psi(s, t), \quad \forall \lambda>0, s, t \in \mathbb{R}
$$

Then

$$
\psi\left(\nabla_{\mathbb{R}}^{2}\right): L_{p}\left(\mathbb{R}^{2}\right) \rightarrow L_{p}\left(\mathbb{R}^{2}\right)
$$

is bounded on L_{p} for $1<p<\infty$.

Moreover and highly non-trivial:

$$
\operatorname{id}_{n} \otimes \psi\left(\nabla_{\mathbb{R}}^{2}\right): L_{p}\left(M_{n}\right) \otimes L_{p}\left(\mathbb{R}^{2}\right) \rightarrow L_{p}\left(M_{n}\right) \otimes L_{p}\left(\mathbb{R}^{2}\right)
$$

is bounded uniformly in n [Parcet '09, Cadilhac '18 or Bourgain 1980's].

Karel de Leeuw (1965)

Let $\psi: \mathbb{R} \rightarrow \mathbb{C}$ be continuous. Then,

$$
\left\|\left.\psi\right|_{\mathbb{Z}}\left(\nabla_{\mathbb{T}}\right): L_{p}(\mathbb{T}) \rightarrow L_{p}(\mathbb{T})\right\| \leq\left\|\psi\left(\nabla_{\mathbb{R}}\right): L_{p}(\mathbb{R}) \rightarrow L_{p}(\mathbb{R})\right\|
$$

Remark: De Leeuw proves the analogous result for any discrete subgroup of \mathbb{R}^{n}.

Karel de Leeuw (1965)

Let $\psi: \mathbb{R} \rightarrow \mathbb{C}$ be continuous. Then,

$$
\left\|\psi_{\mathbb{Z}}\left(\nabla_{\mathbb{T}}\right): L_{p}(\mathbb{T}) \rightarrow L_{p}(\mathbb{T})\right\| \leq\left\|\psi\left(\nabla_{\mathbb{R}}\right): L_{p}(\mathbb{R}) \rightarrow L_{p}(\mathbb{R})\right\|
$$

Remark: De Leeuw proves the analogous result for any discrete subgroup of \mathbb{R}^{n}.
Theorem (CPPR 15): De Leeuw's theorem holds for any discrete amenable subgroup Γ of a I.c. group G.

Motivation

Kreïn's

 problemSchur multiplication

Transference method

Consequences and open questions?

The unfortunate life story of Karel de Leeuw...

Motivation

Kreǐn's

 problemSchur multiplication

Transference method

Consequences and open questions?

The unfortunate life story of Karel de Leeuw...

Recall that solving Kreĭn's question boils down to showing boundedness of

$$
T_{\phi_{f}}: y \mapsto \sum_{\lambda, \mu \in \sigma(A)} \phi_{f}(\mu, \lambda) p_{\mu} y p_{\lambda}
$$

with symbol (not of Toeplitz form!):

$$
\phi_{f}(\mu, \lambda)=\frac{f(\mu)-f(\lambda)}{\mu-\lambda},
$$

Recall that solving Kreĭn's question boils down to showing boundedness of

$$
T_{\phi_{f}}: y \mapsto \sum_{\lambda, \mu \in \sigma(A)} \phi_{f}(\mu, \lambda) p_{\mu} y p_{\lambda}
$$

Motivation
Kreïn's
problem
Schur
multiplication
Transference method

Consequences and open questions?
with symbol (not of Toeplitz form!):

$$
\phi_{f}(\mu, \lambda)=\frac{f(\mu)-f(\lambda)}{\mu-\lambda},
$$

- Set

$$
\begin{aligned}
& \quad \pi: M_{n}(\mathbb{C}) \rightarrow L_{\infty}\left(\mathbb{T}^{2}\right) \otimes M_{n}(\mathbb{C}): x \mapsto \sum_{\lambda, \mu} e_{(\mu-\lambda, f(\mu)-f(\lambda))} \otimes p_{\mu} x p_{\lambda} . \\
& \text { and } \psi_{0}(\lambda, \mu)=\frac{\lambda}{\mu} \text { for }|\lambda| \leq|\mu| .
\end{aligned}
$$

Recall that solving Kreĭn's question boils down to showing boundedness of

$$
T_{\phi_{f}}: y \mapsto \sum_{\lambda, \mu \in \sigma(A)} \phi_{f}(\mu, \lambda) p_{\mu} y p_{\lambda}
$$

with symbol (not of Toeplitz form!):

$$
\phi_{f}(\mu, \lambda)=\frac{f(\mu)-f(\lambda)}{\mu-\lambda},
$$

■ Set

$$
\begin{aligned}
& \quad \pi: M_{n}(\mathbb{C}) \rightarrow L_{\infty}\left(\mathbb{T}^{2}\right) \otimes M_{n}(\mathbb{C}): x \mapsto \sum_{\lambda, \mu} e_{(\mu-\lambda, f(\mu)-f(\lambda))} \otimes p_{\mu} x p_{\lambda} . \\
& \text { and } \psi_{0}(\lambda, \mu)=\frac{\lambda}{\mu} \text { for }|\lambda| \leq|\mu| .
\end{aligned}
$$

- We have the magic formula,

$$
\left(\psi_{0}\left(\nabla_{\mathbb{T}^{2}}\right) \otimes \mathrm{id}\right) \circ \pi=\pi \circ T_{\phi_{f}}
$$

So Krein's problem is a matter of estimating $\left\|\psi\left(\nabla_{\mathbb{T}^{2}}\right)\right\|_{c b}$, which is true by the previous 2 slides.
5. Consequence: non-commutative Lipschitz functions and Taylor approximation

$$
\begin{aligned}
& f(x)=\ln (1+(\cos x-1)) \\
& =(\cos x-1)-\frac{1}{2}(\cos x-1)^{2}+\frac{1}{3}(\cos x-1)^{3}+O\left((\cos x-1)^{4}\right) \\
& =\left(-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+O\left(x^{5}\right)\right)-\frac{1}{2}\left(-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{8}\right)\right)^{2}+\frac{1}{3}\left(-\frac{x^{2}}{2}+O\left(x^{4}\right)\right)^{3}+O\left(x^{8}\right) \\
& =-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}-\frac{x^{4}}{8}+\frac{x^{6}}{48}-\frac{x^{6}}{24}+O\left(x^{8}\right) \\
& =-\frac{x^{2}}{2}-\frac{x^{4}}{12}-\frac{x^{8}}{45}+O\left(z^{8}\right) \text {. }
\end{aligned}
$$

Theorem: Non-commutative Lipschitz functions

There exists a constant $C_{\text {abs }}$ such that for any Lipschitz function $f: \mathbb{R} \rightarrow \mathbb{C}$,any self-adjoint operators A and B in $M_{n}(\mathbb{C})$ and any $1<p<\infty$ we have

$$
\|f(A)-f(B)\|_{p} \leq C_{a b s} \frac{p^{2}}{p-1}\left\|f^{\prime}\right\|_{\infty}\|A-B\|_{p}
$$

Moreover, this estimate is sharp.

Motivation

Krein's
problem
Schur

multiplication

Transference
method
Consequences and open questions?

Theorem: Non-commutative Lipschitz functions

There exists a constant $C_{\text {abs }}$ such that for any Lipschitz function $f: \mathbb{R} \rightarrow \mathbb{C}$, any self-adjoint operators A and B in $M_{n}(\mathbb{C})$ and any $1<p<\infty$ we have

$$
\|f(A)-f(B)\|_{p} \leq C_{a b s} \frac{p^{2}}{p-1}\left\|f^{\prime}\right\|_{\infty}\|A-B\|_{p}
$$

Moreover, this estimate is sharp.

Proof: Take

$$
C=\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right), \quad x=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Then the result is just the inequality:

$$
\|[f(C), x]\|_{p} \leq C_{a b s} \frac{p^{2}}{p-1}\left\|f^{\prime}\right\|\|[C, x]\|_{p}
$$

Motivation

Krein's
problem
Schur
multiplication
Transference method

Consequences and open questions?

Several open directions:
■ De Leeuw theorem for higher rank Lie groups like $S L_{n}(\mathbb{R}), n \geq 3$?

- Taylor expansions for functional calculus \Rightarrow higher order approximations?
- Multi-linear (harmonic) analysis.

Motivation

Krein's
problem
Schur multiplication Transference method

Consequences and open questions?

Several open directions:
■ De Leeuw theorem for higher rank Lie groups like $S L_{n}(\mathbb{R}), n \geq 3$?

- Taylor expansions for functional calculus \Rightarrow higher order approximations?

■ Multi-linear (harmonic) analysis.
■ ...

Some special thanks go to collaborators (in this talk):
M. Junge, S. Montgomery-Smith, J. Parcet, M. Perrin, D. Potapov, E. Ricard, M. de la Salle, F. Sukochev, D. Zanin.

