
Backward Filtering Forward Guiding

for Markov processes

Frank van der Meulen – joint work with Moritz Schauer

VU GENERAL MATH COLLOQUIUM

Vrije Universiteit Amsterdam

Chalmers University of Technology and University of Gothenburg



Warming up

General problem setting

Conditioning, Doob’s h-transform and the Backward Information Filter

Guided process

Discrete case

Numerical illustration

Continuous time transitions

Numerical illustration

Wrap-up / conclusions



Warming up



A finite state Markov chain

• Consider process that starts at time 0 and evolves over times

1, 2, . . ..

• At each time, the process takes values in E := { 1 , 2 , 3}.
• Draw initial state x0 ∈ E from probability vector π0 (row vector):

x 1 2 3

P(X = x) π0(1) π0(2) π0(3)

• Once x0 is drawn, proceed iteratively: sample Xi|Xi−1 = xi−1.

• Summarise transition probabilities by matrix

κ =

 1 → 1 1 → 2 1 → 3

2 → 1 2 → 2 2 → 3

3 → 1 3 → 2 3 → 3


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Distribution of the chain

• Distribution at time 1 is given by

π1 = π0κ.

• Likewise

πi = πi−1κ.

• κ may depend on unknown parameters. Example

κ =

1− θ θ 0

0.25 0.5 0.25

0.4 0.3 0.3

 .
• Observe sequence (x0, x1, . . . , xn), estimate θ.

• Markov property

P(X0 = x0, X1 = x1, . . . , Xn = xn)

= P(X0 = x0)

n∏
i=1

P(Xi = xi | Xi−1 = xi−1).
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Likelihood based inference

Define the likelihood function by

θ 7→ L(θ;x) = Pθ(X0 = x0, X1 = x1, . . . , Xn = xn).

Maximum likelihood estimator: find θ that maximises L(θ;x).

Bayesian approach: cast problem in hierarchical way. Assume the data

are generated as follows

1. First sample a realisation θ from the random variable Θ taking

values in [0, 1];

2. conditional on θ, generate x0, x1, . . . , xn as before.

3. Bayesian approach: all inference is based on the posterior

distribution

fΘ|X(θ | x) =
L(θ;x)fΘ(θ)∫
L(θ;x)fΘ(θ) dθ

∝ L(θ;x)fΘ(θ).
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Example (1/2)

Observe

(x0, x1, x2, x4, x4, x5) = ( 1 , 2 , 2 , 3 , 1 , 2 ).

Assume π0 = (1/3, 1/3, 1/3) and recall

κ =

1− θ θ 0

0.25 0.5 0.25

0.4 0.3 0.3

 .
!! Estimate for θ?

L(θ;x) =
1

3
· θ · 0.5 · 0.25 · 0.4 · θ ∝ θ2.

Warming up 6
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Example (2/2)

• MLE θ̂ = 1.

• Bayes: assume Θ ∼ Unif(0, 1), then

fΘ|X(θ | x) = 3θ21[0,1](θ).

0

1

2

3

0.00 0.25 0.50 0.75 1.00

Posterior mean:

E[Θ | X = x] =

∫
θfΘ|X(θ | x) dθ = 3/4.
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Other observation schemes

Fully observed:

x−1 x0 x1 x2

.
xn−1 xn

Partially observed: • =unobserved, ◦=observed.

x−1 x0 x1 x2

.
xn−1 xn

Partially observed:

x−1 x0 x1

v1,1 v1,2

x2

.
xn−1

vn−1

xn

vn
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Problem setting

Consider a directed Markovian tree:

0

s

t

v2

u

r v3

v1

• denotes latent vertices, ◦ leaf/observation-vertices.

Along each edge the process evolves according to either one step of a

discrete-time Markov chain or a time-span of a continuous-time Markov

process.

General problem setting 9
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Problem setting

To each edge corresponds a Markov kernel:

κ )t(xpa(t), dxt)

(pointing towards vertex t).

We aim for

1. sampling values at •, conditional on values at ◦;
2. estimating parameters in kernels;

3. not just on a tree, but on a general Directed Acyclic Graph (DAG).

General problem setting 10
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Example 1: interacting particle process

Setup:

• population of n individuals;

• each individual is either Susceptible, Infected or Recovered;

• each individual has a known (possibly time varying) set of

neighbours .

Dynamics:

• If xi = S, then it transitions to I with intensity λNi(t, x), with

Ni(t, x) number of infected neighbours of individual i at time t.

• If xi = I, then it transitions to R with intensity µ.

• If xi = R, it transitions to S with intensity ν.
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Example 1: Dynamics of each particle

• Time-discretised version of the problem, where time steps are

multiples of τ > 0.

• In each time interval of length τ , conditional on the the present

state of all individuals, each individual independently remains in its

present state or transitions.

The transition matrix for individual i at time t, given “full state” x:

κi(t, x) =

ψ (λNi(t, x)) 1− ψ (λNi(t, x)) 0

0 ψ(µ) 1− ψ(µ)

1− ψ(ν) 0 ψ(ν)

,
where ψ(u) = exp(−τu)

General problem setting 12
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Example 1: challenges

Goals:

• identify most probable latent states (partial observations...);

• estimate rate parameters λ, µ and ν.

!! Dimension of state-space is 3n.
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Example 2: stochastic differential equations

• Consider the SDE

dXs = bθ(s,Xs) ds+ σθ(s,Xs) dWs.

• Graphical model

Xt Xt+∆

Vt+∆

where

Vt+∆ | Xt+∆ ∼ N(Xt+∆,Σ).

General problem setting 14
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Example 2: branching diffusion

SDE on a tree where on each branch

dXt = tanh .

([
−θ1 θ1

θ2 −θ2

]
Xt

)
dt+

[
σ1 0

0 σ2

]
dWt.

General problem setting 15



Example 3: phylogenetics
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Example 3: phylogenetics

Along each edge, a finite state continuous time Markov process evolves.

Ideally, one would like to randomly sample character histories that

consistent with the observations at the tips of a phylogenetic tree.
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Related literature

State-space models / hidden Markov models

x−1 x0

v0

x1

v1

x2

v2

.
xn−1

vn−1

xn

vn

Well-known filtering, smoothing algorithms dating back to 1960-1970.

• finite state space: Baum-Welch, Viterbi, forward-backward

algorithm.

• linear Gaussian models: Kalman filter, Rauch-Tung-Striebel

smoother.

• linear stochastic differential equations: Kalman-Bucy filter &

smoother.
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Conditioning, Doob’s

h-transform and the Backward

Information Filter



Conditioning on a tree

Define

• Vt: all leaf descendants of

vertex t.

• Vt = {v1, v2}.

t

v2

u v1

Key identity (Bayesian notation):

p(xt | xpa(t), xVt) ∝ p(xt, xVt | xpa(t))

= p(xt | xpa(t)) p(xVt | xt,���xpa(t) )︸ ︷︷ ︸
ht(xt)

Rewrite to κ?)t(x; dy) ∝ κ )t(x; dy)ht(y) .

!! If xt is observed, then ht(xt) is the likelihood in the subtree from

node t.

Conditioning, Doob’s h-transform and the Backward

Information Filter 19
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Rewrite to κ?)t(x; dy) ∝ κ )t(x; dy)ht(y) .

!! If xt is observed, then ht(xt) is the likelihood in the subtree from

node t.
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Doob’s h-transform

• Doob’s h-transform: Transformation of each κs with hs to κ?s:

κ?)s(x, dy) =
κ )s(x, dy)hs(y)∫
κ )s(x, dy)hs(y)

, s ∈ S.

A forward pass: Needs κ )s and hs.

• Recursive computation of hs in a backward pass: (Backward

Information Filter):

- Compute hs from the leaves back to the roots.

- Acyclic belief propagation, sum-product algorithm, Felsenstein

algorithm...

- !! Only in very specific models tractable.

• !! On a DAG conditioning changes the dependency structure.

There are no conditional kernels κ?)s from pa(s) to s.

Conditioning, Doob’s h-transform and the Backward

Information Filter Doob’s h-transform 20
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Backward Information Filter

x−1 x0

x1

x3

v2

x4

x2 v3

v1

Conditioning, Doob’s h-transform and the Backward

Information Filter Doob’s h-transform 21



Make kernels explicit

x−1 x0

x1

x3

v2

x4

x2 v3

v1

κ−1,0

κ0,3

κ0,1
κ1,2 λ3

λ2

κ3,4

λ1

Conditioning, Doob’s h-transform and the Backward

Information Filter Doob’s h-transform 22



Example: finite state space

• Suppose xt ∈ { 1 , 2 , 3} and vt ∈ { 1,2 , 3}.
Idea: in observations we cannot distinguish 1 and 2.

• Finite state space =⇒ Markov kernels can be identified with matrices

λi =

1 0

1 0

0 1

 κs,t =

1− θ θ 0

0.25 0.5 0.25

0.4 0.3 0.3

 ,
for i ∈ {1, 2, 3}, s ∈ {0, 1, 3} and t ∈ ch(s).

• Prior on initial state: set x−1 = 0 and

κ−1,0 = [π1, π2, π3] =: π.

Conditioning, Doob’s h-transform and the Backward

Information Filter Doob’s h-transform 23
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Backward Information Filter (BIF)

• BIF: efficient way to compute x 7→ ht(x).

• !! For finite state space this map can be identified with a vector ht.

• Initialise from observations: for t = 0, . . . , n

hobs
t :=

[
1

0

]
1{vt = 1,2 }+

[
0

1

]
1{vt = 3 }.

Pullback along edges:

x−1 x0

x1 x2 v3

x3

κ−1,0
κ0,1

κ1,2 λ3

h2 = λ3h
obs
3 h1 = κ1,2h2.

Conditioning, Doob’s h-transform and the Backward

Information Filter Doob’s h-transform 24
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Pullback along edges

x−1 x0

x1 x2 v3

x3

κ−1,0
κ0,1

κ1,2 λ3

h2 = λ3h
obs
3 h1 = κ1,2h2.

Why h1 = κ1,2h2?

h1(x1) = p(v3 | x1) =

∫
p(v3, x2 | x1) dx2

=

∫
p(v3 |��x1 , x2)︸ ︷︷ ︸

h2(x2)

p(x2 | x1) dx2.

Conditioning, Doob’s h-transform and the Backward

Information Filter Doob’s h-transform 25
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Backward Information Filter (BIF)

x−1 x0

x1

x3

κ−1,0
κ0,1

κ0,3

Get

h0 )3 = κ0,3h3 and h0 )1 = κ0,1h1

Fusion: by conditional independence of children we have

h0(x) = h0 )1(x)h0 )3(x).

By identifying with vectors

h0 = h0 )1 � h0 )3.

Conditioning, Doob’s h-transform and the Backward

Information Filter Doob’s h-transform 26
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Backward Information Filter (BIF)

• Likelihood: L(θ) := h−1 = κ−1,0h0.

• Forward simulate:

x?t | x?s = i ∼ Cat(κs,t[i, ]� ht), t ∈ ch(s).

!! This is all tractable because

1. the DAG is a directed tree;

2. the state space is finite.

Conditioning, Doob’s h-transform and the Backward

Information Filter Doob’s h-transform 27
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Guided process



Backward Information Filter (BIF)

Key idea: replace hs )t by gs )t that makes BIF tractable.

x−1 x0

x1

x3

κ̃−1,0
κ̃0,1

κ̃0,3

Get

g0 )3 = κ̃0,3g3 and g0 )1 = κ̃0,1g1

Fusion: by conditional independence of children we have

g0(x) = g0 )1(x)g0 )3(x).

By identifying with vectors

g0 = g0 )1 � g0 )3.

Guided process Discrete case 28
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Guided process

Let the maps x 7→ gs )t(x) be specified for each edge (s, t) and define

gs(x) =
∏

t∈ch(s)

gs )t(x), s ∈ S0. (1)

Practical way to choose gs )t: replace kernel κs )t by approximation κ̃s )t.

Definition
Define the guided process X◦ as the process starting in X◦0 = x0 and

from the roots onwards evolving on the DAG G according to transition

kernel

κ◦pa(s) )s(xpa(s); dy) =
gs(y)κpa(s) )s(xpa(s); dy)∫
gs(y)κpa(s) )s(xpa(s); dy)

, s ∈ S.

Guided process Discrete case 29
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Use of guided process

Let S denote the set of non-leaf vertices.

Theorem
Assume kernels towards leaf-nodes admit densities ppa(v) )v. Then

h0(x0) = g0(x0)E

[∏
s∈S

wpa(s) )s(X
◦
pa(s))

∏
v∈V

ppa(v) )v(X
◦
pa(v);xv)

gpa(v) )v(X
◦
pa(v))

]

with weights defined by

wpa(s) )s(xpa(s)) =

∫
gs(y)κpa(s) )s(xpa(s); dy)∏

u∈pa(s) gu )s(xu)
s ∈ S.

Computationally, this implies a bidirectional scheme:

1. Backward pass for Filtering;

2. Forward pass for Guiding.

Guided process Discrete case 30
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◦
pa(v))

]

with weights defined by

wpa(s) )s(xpa(s)) =

∫
gs(y)κpa(s) )s(xpa(s); dy)∏

u∈pa(s) gu )s(xu)
s ∈ S.

Computationally, this implies a bidirectional scheme:

1. Backward pass for Filtering;

2. Forward pass for Guiding.
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Wrap-up

• If the state space is finite, BIF provides the likelihood.

• Key to tractability is that h can always be represented as a vector.

• !! In general BIF is intractable.

• Resolve by backward filtering with simpler kernels and forward

simulating the corresponding guided process.

• This results in weighted samples from the conditioned process.
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Application: interacting particle process

Forward transitions:

κi(t, x) =

ψ (λNi(t, x)) 1− ψ (λNi(t, x)) 0

0 ψ(µ) 1− ψ(µ)

1− ψ(ν) 0 ψ(ν)

 ,
where

Ni(x) = {number of infected neighbours of individual i in state x}

and ψ(u) = exp(−τu).

Auxiliary kernel for backward filtering:

κ̃i =

ψ(λ̃i(t)) 1− ψ(λ̃i(t)) 0

0 ψ(µ) 1− ψ(µ)

1− ψ(ν) 0 ψ(ν)

 .
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Application: interacting particle process
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Continuous time transitions

Rethinking the discrete-time case:

• Edge

xS xT

Suppose x 7→ h(T, x) is given; wish to find x 7→ h(S, x).

• “Discrete-time” generator

(Ah)(S, x) : = E[h(T,XT )− h(S,XS) | XS = x]

=

∫
h(T, y)κS )T (x, dy)− h(S, x).

• !! Obtain x 7→ h(S, x) by solving (Ah)(S, x) = 0.
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Continuous time transitions

Define the infinitesimal generator of the space-time process (t,Xt): for

S ≤ s < s+ h ≤ T

(Ah)(s, x) = lim
h↓0

h−1E[h(s+ h,Xs+h)− h(s,Xs) | Xs = x]

=

(Lh)(s, x) +
∂

∂s
h(s, x).

• Obtain x 7→ h(S, x) from solving

(Ah)(s, x) = 0 subject to h(T, ·).

• h induces a change of measure from X to the process X? with inf.

generator

hL?f = L(fh)− fLh.

!! Solving Kolmogorov backward equation is usually intractable.
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Defining the guided process via its inf.generator

• Backward filter with L̃ instead of L, such that solving

(L̃g)(s, x) + ∂
∂sg(s, x) = 0 becomes tractable.

• g induces a change of measure from X to X◦ with inf. generator

gL◦f = L(fg)− fLg
Identify guided process from L◦.

• Correct for “wrong” h by weight

exp

(∫ ti+1

ti

(L − L̃)g

g
(u,X◦u) du

)
.
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Example 2: branching diffusion

SDE on a tree where on each branch

dXt = tanh .

([
−θ1 θ1

θ2 −θ2

]
Xt

)
dt+

[
σ1 0

0 σ2

]
dWt.
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Numerical illustration: SDE on a tree
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Numerical illustration: SDE on a tree

On each branch

dXt = tanh .

([
−θ1 θ1

θ2 −θ2

]
Xt

)
dt+

[
σ1 0

0 σ2

]
dWt.

• Backward filter a linear process (essentially κ̃)

• Write X◦ as pushforward of (x0, ξ, Z), with ξ = (θ1, θ2, σ1, σ2)

• MCMC on (ξ, Z)

Implementation in MitosisStochasticDiffEq.jl by Frank Schäfer

(MIT).
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Numerical illustration: SDE on a tree
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Numerical illustration: SDE on a tree
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Wrap-up

Backward Filtering Forward Guiding: framework for doing likelihood

based inference in directed acyclic graphs, where transitions over edges

may correspond to the evolution of a stochastic process for a certain time

span.

• Defining guided processes on graphical models

(for “non-tree”-case: see preprint).

• Both discrete-time and continuous-time transitions incorporated.

• Illustrations for interacting particle process and branching diffusion.

• Not covered: compositionality results (some category theory, see

preprint).

Ongoing: SPDEs, SDEs on manifolds, chemical reaction networks.
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Rydén

Good source on filtering, smoothing, parameter estimation in HMM.

Wrap-up / conclusions 44



References

• Continuous-discrete smoothing of diffusions

Mider, Schauer, VdM, Electronic Journal of Statistics

Bayesian inference for partially observed diffusions.

• Automatic Backward Filtering Forward Guiding for Markov processes

and graphical models, VdM and Schauer, preprint on arXiv.

A generalisation to Markov processes on graphical models including

ideas on compositionality from category theory.

• Introduction to Automatic Backward Filtering Forward Guiding,

VdM, preprint on arXiv.

Gentle introduction to the more advanced paper.

• Inference in Hidden Markov Models, Cappé, Moulines and
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