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A finite state Markov c

e Consider process that starts at time 0 and evolves over times
1,2,....
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A finite state Markov chain

e Consider process that starts at time 0 and evolves over times
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e Draw initial state zy € E from probability vector my (row vector):
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A finite state Markov chain

Consider process that starts at time 0 and evolves over times
1,2,....

At each time, the process takes values in E := {123}

e Draw initial state zp € E from probability vector 7y (row vector):
. o @ O
P(X =2) ‘ mo(1)  mo(2) mo(3)

e Once xg is drawn, proceed iteratively: sample X;|X;_1 = x;_1.
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A finite state Markov chain

Consider process that starts at time 0 and evolves over times
1,2,....
At each time, the process takes values in E := {123}

Draw initial state 2o € E from probability vector 7y (row vector):

x | @ @ ®
P(X =z) | m(1) 70(2) mo(3)

Once xq is drawn, proceed iteratively: sample X;|X;_1 = x;_1.

e Summarise transition probabilities by matrix

OEIONOEIONOEIC)
k=1Q-0O @-Q@ @-0
-0 -0 B®-=0
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Distribution of the chain

e Distribution at time 1 is given by

T = Tok.
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Distribution of the chain

e Distribution at time 1 is given by

m = Tok.
o Likewise

T = Ti_1K.

e 1 may depend on unknown parameters. Example

1-0 0 0
k=1025 05 0.25
04 03 0.3
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Distribution of the chain

e Distribution at time 1 is given by
T = ToK.

Likewise

T, = Ti—1K.

e 1 may depend on unknown parameters. Example

1—-60 0 0
k=025 0.5 0.25
04 03 0.3
e Observe sequence (xg,x1,...,%,), estimate 6.

Markov property
P(X() = Zﬂo,Xl =T1y... ,Xn = CLn)
P(Xo = zo H =z; | Xi1 = 2i-1).
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Likelihood based inference

Define the function by

00— L(0;2) =Pp(Xo =20, X1 = 21,..., Xp = Tp).
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Likelihood based inference

Define the function by

00— L(0;2) =Pp(Xo =20, X1 = 21,..., Xp = Tp).

Maximum likelihood estimator: find @ that maximises L(6;x).

Bayesian approach: cast problem in hierarchical way. Assume the data

are generated as follows

1. First sample a realisation 6 from the random variable © taking

values in [0, 1];

2. conditional on @, generate xg, x1, ..., 2, as before.
3. . all inference is based on the posterior
distribution
(9 x)fo( )
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Likelihood based inference

Define the function by

00— L(0;2) =Pp(Xo =20, X1 = 21,..., Xp = Tp).

Maximum likelihood estimator: find @ that maximises L(6;x).

Bayesian approach: cast problem in hierarchical way. Assume the data

are generated as follows

1. First sample a realisation 6 from the random variable © taking
values in [0, 1];

2. conditional on @, generate xg, x1, ..., 2, as before.

3. . all inference is based on the posterior

distribution

forx 0] 5) = TG o L) fo(0).
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Observe

(z0, 21,22, 74,24, 25) = (D QAR DQD).
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Observe

(w07w17$2>x47$4;1'5) = (@@@@@@)

Assume 7y = (1/3,1/3,1/3) and recall
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Observe

(w07w17$2>x47$4;1'5) = (@@@@@@)

Assume 7y = (1/3,1/3,1/3) and recall

1-60 60 0
k= 1025 0.5 0.25
04 03 03

/\ Estimate for 67

1
L(6; ) =3 0-0.5-0.25-0.4-6 o 0%

g



e MLE 4 = 1.
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o MLE § = 1.
e Bayes: assume © ~ Unif(0,1), then

forx (0| z) = 30°1 1)(0).
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o MLE § = 1.
e Bayes: assume © ~ Unif(0,1), then

forx (0| z) = 30°1 1)(0).

Posterior mean:
E[O| X = 1] = /9f@|X(e | 2)do = 3/4.
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Other observation schemes

Fully observed:

T—1 Zo €1 €2 Tn—1 Ln
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Other observation schemes

Fully observed:

T—1 Zo €1 €2 Tn—1 Ln

Tr—1 o Zy T2 Tn—1 In

Partially observed:

U1,1 V1,2 Un—1 Un,

T To T T2 Tpo1 Ty

q
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Problem setting

Consider a directed tree:

U3

>0

e denotes latent vertices, o leaf/observation-vertices.
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Problem setting

Consider a directed tree:

U3

>0

e denotes latent vertices, o leaf/observation-vertices.

Along each edge the process evolves according to either one step of a
discrete-time Markov chain or a time-span of a continuous-time Markov
process.
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Problem setting

To each edge corresponds a Markov kernel:

Kt(Tpa(r), doy)

(pointing towards vertex t).
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Problem setting

To each edge corresponds a Markov kernel:
Kt(Tpa(r), doy)

(pointing towards vertex t).

We aim for

1. sampling values at e, conditional on values at o;

2. estimating parameters in kernels;
3. not just on a tree, but on a general Directed Acyclic Graph (DAG).

10
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Example 1: interacting particle process

Setup:

e population of n individuals;
e each individual is either Susceptible, Infected or Recovered;

e cach individual has a known (possibly time varying) set of

neighbours .
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Example 1: interacting particle process

Setup:

e population of n individuals;

e each individual is either Susceptible, Infected or Recovered;

e cach individual has a known (possibly time varying) set of
neighbours .

Dynamics:

e If z; = S, then it transitions to I with intensity AN, (¢, ), with
N;(t,z) number of infected neighbours of individual 4 at time t.

e If z; =1, then it transitions to R with intensity /.

e If z; = R, it transitions to S with intensity v.

General problem setting 11



Example 1: Dynamics of each particle

e Time-discretised version of the problem, where time steps are
multiples of
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Example 1:

e Time-discretised version of the problem, where time steps are
multiples of

e In each time interval of length 7, conditional on the the present
state of all individuals, each individual independently remains in its
present state or transitions.
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Example 1: Dynamics of each particle

e Time-discretised version of the problem, where time steps are
multiples of

e In each time interval of length 7, conditional on the the present
state of all individuals, each individual independently remains in its
present state or transitions.

The transition matrix for individual 7 at time ¢, given “full state” z:

Y (AN;(t,x)) 1= (AN (t,x)) 0
Ki(t,x) = 0 () 1—(u)|,
1—(v) 0 »(v)

where 1¥(u) = exp(—7u)

General problem setting
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Example 1: challenges

observed data

a2 — —— - - —— -
393
3444 -
295

246 |
1974
1484 R

99 —_—— - — Latent

504 ———————— - _—

14
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Example 1: challenges

observed data

s —F———— —— 1
393
344 - — -- - type
295 s

246

1974 .'
1484 R
e ———————————— ——— —— Latent

50—
14

Goals:

e identify most probable latent states (partial observations...);

e estimate rate parameters A, 1 and v.

/\ Dimension of state-space is 3".

General problem setting 13



Example 2: stochastic differential equations

e Consider the SDE
dXs = be(s, Xs)ds + op(s, Xs) dWs.
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Example 2: stochastic differential equations

e Consider the SDE
dXs = be(s, Xs)ds + op(s, Xs) dWs.
e Graphical model

Vita
Xt Xt A

where
Viea | Xiya ~ N(Xipa, X).

General problem setting 14



Example 2: branching diffusion

SDE on a tree where on each branch

dX; = tanh. ;91 % X | dt + o 0

dW;.
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Example 3: phylogenetics

—Aleyrodoidea (whiteflies)

Coccoidea (scale insects)
Sternorrhyncha

— —Phylloxeridae (phylloxerans) %

1

Phylloxeroideal &)

L—Adelgidae (woolly conifer aphids; \g\/
Aphidomorpha 9 ¢ v phids) i

o p
L Aphidoidea ,ppigidae (aphids) /
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Example 3: phylogenetics

Syst. Biol. 52(2):131-158, 2003
DOI: 10.1080,/10635150390192780

Stochastic Mapping of Morphological Characters

JoHN P. HUELSENBECK,! RASMUS NIELSEN,2 AND JONATHAN P. BOLLBACK!

*Section of Ecolagy, Behavior and Evolution, Division of Biology, University of California-San Diego, La Jolla, California 92093-0116, LISA
ZDFpartmz’ni of Biometrics, Cornell University, 439 Warren Hall, Ithaca, New York 14853-7801, LISA

Abstract.— Many questions in evolutionary biology are best addressed by comparing traits in different species. Often such
studies involve mapping characters on phylogenetic trees. Mapping characters on trees allows the nature, number, and timing
of the transformations to be identified. The parsimony method is the only method available for mapping morphological
characters on phylogenies. Although the parsimony method often makes reasonable reconstructions of the history of a
character, it has a number of limitations. These limitations include the inability to consider more than a single change alonga
branch on a tree and the uncoupling of evolutionary time from amount of character change. We extended a method described
by Nielsen (2002, Syst. Biol. 51:729-739) to the mapping of morphological characters under continuous-time Markov models
and demonstrate here the utility of the method for mapping characters on trees and for identifying character correlation.
[Bayesian estimation; character correlation; character mapping; Markov chain Monte Carlo.]
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Abstract.— Many questions in evolutionary biology are best addressed by comparing traits in different species. Often such
studies involve mapping characters on phylogenetic trees. Mapping characters on trees allows the nature, number, and timing
of the transformations to be identified. The parsimony method is the only method available for mapping morphological
characters on phylogenies. Although the parsimony method often makes reasonable reconstructions of the history of a
character, it has a number of limitations. These limitations include the inability to consider more than a single change alonga
branch on a tree and the uncoupling of evolutionary time from amount of character change. We extended a method described
by Nielsen (2002, Syst. Biol. 51:729-739) to the mapping of morphological characters under continuous-time Markov models
and demonstrate here the utility of the method for mapping characters on trees and for identifying character correlation.
[Bayesian estimation; character correlation; character mapping; Markov chain Monte Carlo.]

Along each edge, a finite state continuous time Markov process evolves.

Ideally, one would like to randomly sample character histories that
consistent with the observations at the tips of a phylogenetic tree.
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Related literature

Vo U1 V2 Un—1 Un
>e j ,T > ----- U
xr—1 To € T2 Tp—1 T

Well-known filtering, smoothing algorithms dating back to 1960-1970.
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Related literature

Vo U1 V2 Un—1 Un
>e j ,T > ----- U
xr—1 To € T2 Tp—1 T

Well-known filtering, smoothing algorithms dating back to 1960-1970.
e finite state space: Baum-Welch, Viterbi, forward-backward
algorithm.

e linear Gaussian models: Kalman filter, Rauch-Tung-Striebel
smoother.

e linear stochastic differential equations: Kalman-Bucy filter &
smoother.

General problem setting 18



Conditioning, Doob’s
h-transform and the Backward
Information Filter




Conditioning on a tree

Define

e V;: all leaf descendants of
vertex t.

o Vt = {”Ul,’UQ}.
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Conditioning on a tree

U U1

Define

e V;: all leaf descendants of
vertex t.

o Vt = {”Ul,’UQ}.

Key identity (Bayesian notation):

p(fﬂt ‘ 'rpa(t)amvt) X p(xtaxvt | mpa(t))
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Conditioning on a tree

U U1

Define

e V;: all leaf descendants of
vertex t.

° Vt = {”Ul,’UQ}.
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Conditioning on a tree

) u on
Define

e V;: all leaf descendants of
vertex t.

° Vt = {”Ul,’UQ}.

Key identity (Bayesian notation):

p(xt ‘ 'rpa(t)amv,:) x p(xt’xvt | xpa(t))

= p(@t | Tpa)) P(TY, | T4, Tpater)

Rewrite to ’njt(x; dy) o k(5 dy)he(y) ‘
/N If 24 is observed, then is the likelihood in the subtree from
node t.

Information Filter 19



Doob’s h-transform

° : Transformation of each k4 with hg to k}:

o (. dy) = Kss (2, dy)hs(y) ses.

B IK*S(% dy)hS(y)7

A forward pass: Needs ks, and hs.

Information Filter Doob’s h-transform 20



Doob’s h-transform

° : Transformation of each k4 with hg to k}:

o (. dy) = Kss (2, dy)hs(y) ses.

[ kss(x, dy)hs(y)’

A forward pass: Needs ks, and hs.

e Recursive computation of A in a backward pass: (Backward
Information Filter):
- Compute hs from the leaves back to the roots.
- Acyclic belief propagation, sum-product algorithm, Felsenstein
algorithm...
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Doob’s h-transform

° : Transformation of each k4 with hg to k}:

* _ H»S(l‘, dy)hs(y)
w0 = Ay ()’

A forward pass: Needs ks, and hs.

seS.

e Recursive computation of A in a backward pass: (Backward
Information Filter):
- Compute hs from the leaves back to the roots.

- Acyclic belief propagation, sum-product algorithm, Felsenstein
algorithm...

- /\ Only in very specific models tractable.

e /\ On a DAG conditioning changes the dependency structure.
There are no conditional kernels k%, from pa(s) to s.

Information Filter Doob’s h-transform 20



Backward Information Filter

T4 (%

T3

1 x

Information Filter Doob’s h-transform 21



Make kernels explicit

Information Filter Doob’s h-transform 22



Example: finite state space

e Suppose z; € {1 @) @)} and v; € {@,@}

. in observations we cannot distinguish @) and Q)
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e Finite state space = Markov kernels can be identified with matrices

1 0 1—-0 0 0
Ai= 1 0 Ker= 1025 0.5 0.25],
0 1 04 03 0.3
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Example: finite state space

e Suppose z; € {1 @) @)} and v; € {@,@}

. in observations we cannot distinguish @) and Q)

e Finite state space = Markov kernels can be identified with matrices

1 0 1—-0 0 0
Ai= 1 0 Ker= 1025 0.5 0.25],
0 1 04 03 0.3

for i € {1,2,3}, s € {0,1,3} and t € ch(s).
o :set x_1 = (0 and

h",,l?[) = [71'1, T2, 7'('3] = TT.

Information Filter Doob’s h-transform 23



Backward Information Filter (BIF)

e BIF: efficient way to compute x +— hy(x).
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Backward Information Filter (BIF)

e BIF: efficient way to compute x +— hy(x).

e /\ For finite state space this map can be identified with a vector hy.
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Backward Information Filter (BIF)

e BIF: efficient way to compute x +— hy(x).
e /\ For finite state space this map can be identified with a vector h,.

° cfort=0,...,n

hobS = [é] 1{v; = @} +

0

) 1{v; = ®}.
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Backward Information Filter (BIF)

e BIF: efficient way to compute x +— hy(x).
e /\ For finite state space this map can be identified with a vector h,.

° cfort=0,...,n

hobS = [é] 1{v; = @} +

0

) 1{v; = ®}.

hy = Ashg™
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Backward Information Filter (BIF)

e BIF: efficient way to compute x +— hy(x).
e /\ For finite state space this map can be identified with a vector h,.

° cfort=0,...,n

hobS = [é] 1{v; = @} +

0

1 1{v; = ®}.

hQ = )\3h§bs hl = KLQhQ.

Information Filter Doob’s h-transform 24



Pullback along edges

€3

hy = A3hgP

Why h1 = /€172h2?
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Pullback along edges

€3

hy = A3hgP

Why h1 = /€172h2?

ha(e) = plos | 1) = / p(va, @2 | 1) da
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Pullback along edges

€3

hy = A3h$™

Why h1 = /€172h2?

hi(z1) = p(vz | z1) = /P (v3, 2 | 1) daso

= /P Us |Q"/f,3?2 (12\1‘1)(1962
%/_/

ha(z2)

Information Filter Doob’s h-transform 25



Backward Information Filter (BIF)

Get
hoeg = Iioﬁghg and hof>1 = HO.lhl

Information Filter Doob’s h-transform 26



Backward Information Filter (BIF)

Get
hoag = Ho,ghg and ho»l = HO.lhl

. by conditional independence of children we have

ho(.r) - ho»l(l‘)ho»g(.r).

Information Filter Doob’s h-transform 26



Backward Information Filter (BIF)

Get
hoag = Ho,ghg and ho»l = HO.lhl

. by conditional independence of children we have
ho(z) = hos1(x)hoss(x).
By identifying with vectors
ho = hos1 © hos3.

Information Filter Doob’s h-transform 26



Backward Information Filter (BIF)

e Likelihood: L(a) = h,l = H‘,]‘Uho.

Information Filter Doob’s h-transform 27



Backward Information Filter (BIF)

e Likelihood: L(e) = h_l = H‘,]‘Uho.

xy | xf =1~ Cat(ks i, ] © he), t € ch(s).
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Backward Information Filter (BIF)

e Likelihood: L(e) = h_l = H‘,]‘Uho.

xy | xf =1~ Cat(ks i, ] © he), t € ch(s).

/N\ This is all tractable because

1. the DAG is a directed tree;

2. the state space is finite.

Information Filter Doob’s h-transform 27



Guided process




Backward Information Filter (BIF)

Key idea: replace hgst by gss¢ that makes BIF tractable.
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Key idea: replace hgst by gss¢ that makes BIF tractable.
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Backward Information Filter (BIF)

Key idea: replace hgst by gss¢ that makes BIF tractable.

Get

go»3 = Ko,393 and  gos1 = Ko,101

. by conditional independence of children we have

9o(r) = go-1(x)go+3(z).
By identifying with vectors

go = go»1 © go-3-

Guided process Discrete case 28



Guided process

Let the maps = — gss¢(x) be specified for each edge (s,t) and define

gs(z) = H gs+t(T), s € So. (1)

tech(s)
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Guided process

Let the maps = — gss¢(x) be specified for each edge (s,t) and define

gs(z) = H gs+t(T), s € So. (1)

tech(s)

Practical way to choose ggs;: replace kernel k454 by approximation Kgs¢.
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Guided process

Let the maps = — gss¢(2) be specified for each edge (s,t) and define

II 9-:@),  seso (1)

tech(s)

Practical way to choose ggs;: replace kernel k454 by approximation Kgs¢.
Definition

Define the X° as the process starting in Xj = xg and
from the roots onwards evolving on the DAG G according to transition
kernel

° Js (y)'%pa(s)%s<xpa(s); dy)
Foa(s)>s(Tpa(s); dy) =
pa(s)? ( pals) fgs Kpa(s %s(xpa S),dy)
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Use of guided process

Let S denote the set of non-leaf vertices.

Theorem
Assume kernels towards leaf-nodes admit densities pya(y)+. Then

Ppa(v)+v(Xpa(w)i To)
Hul7‘()>5 ])1 s))H o

s€S veEV 'ql”‘(”)””(Xpn('f‘))

/10(10 = J() 1(]

with weights defined by
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Use of guided process

Let S denote the set of non-leaf vertices.

Theorem
Assume kernels towards leaf-nodes admit densities pya(y)+. Then

Ppa(v)+v(Xpa(w)i To)
Hul7‘()>5 ])1 s))H o

s€S veEV 'ql”‘(”)””(Xpn('f‘))

/10(10 = J() 1(]

with weights defined by

fgs K‘pa (s) %s(Ipa(s); d?j)
Huepa(s) gu»S(l‘u)

Wpa(s )»S(l’pd(s)) = seS.
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Use of guided process

Let S denote the set of non-leaf vertices.

Theorem
Assume kernels towards leaf-nodes admit densities pya(y)+. Then

Ppa(v)+v(Xpa(w)i To)
Hul7‘()>5 ])1 s))H o

s€S veEV 'ql”‘(”)””(Xpn('f‘))

/10(10 = J() 1(]

with weights defined by

fgs K‘pa (s) %s(Ipa(s); d?j)

seS.
Huepa(s) gu»S(l‘u)

Wpa(s)~+s (xpd(s) ) -

Computationally, this implies a bidirectional scheme:

1. pass for :

2. pass for

Guided process Discrete case 30



e If the state space is finite, BIF provides the likelihood.
e Key to tractability is that A can always be represented as a vector.

e /\ In general BIF is intractable.
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If the state space is finite, BIF provides the likelihood.

e Key to tractability is that A can always be represented as a vector.

/\ In general BIF is intractable.

Resolve by backward filtering with simpler kernels and forward
simulating the corresponding guided process.

This results in weighted samples from the conditioned process.

Guided process Discrete case 31



Application: interacting particle process

Forward transitions:

w(ANz(tvx)) 1—1#()\]\71(@%)) 0
ki(t,x) = 0 ) L=(u) |,
1—(v) 0 (V)

where

N;(z) = {number of infected neighbours of individual 7 in state x}

and ¥ (u) = exp(—7u).
Auxiliary kernel for backward filtering:

D) 1—1p(N(1) 0
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Application:
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Application: interacting particle process

08
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——d T
0 2500 5000 7500 10000

iterate
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Continuous time tr

Rethinking the discrete-time case:

e Edge

Zs xrr
*—— >0

Suppose = — h(T,x) is given; wish to find z +— h(S, x).
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Continuous time transitions

Rethinking the discrete-time case:

e Edge

Zs xrr
*—— >0

Suppose = — h(T,x) is given; wish to find z +— h(S, x).

e “Discrete-time” generator

(AR)(S,z): = E[(T,Xr)—h(S, Xs) | X5 = 2]
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Continuous time transitions

Rethinking the discrete-time case:
e Edge

Zs xrr
*—— >0

Suppose = — h(T,x) is given; wish to find z +— h(S, x).

e “Discrete-time” generator
(AR)(S,x): = EWT,Xr)—h(S,Xs) | Xs = z]

— /h(T, y)kss1(x, dy) — h(S, ).

e /\ Obtain = — h(S,z) by solving (Ah)(S,z) = 0.

Guided process Continuous time transitions 35



Continuous time transitions

Define the of the space-time process (¢, X;): for
S<s<s+h<T

(Ah)(S,l’) - 1}:?(} hil]E[h(S + h7Xs+h) - h(57Xs) ‘ Xs = ZE}
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(Lh)(s,x) + %h(s, x).
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Continuous time transitions

Define the of the space-time process (¢, X;): for
S<s<s+h<T

(Ah)(S,l’) - 1}:?(} hil]E[h(S + h7Xs+h) - h(57Xs) ‘ Xs = ZE}

0
(Lh)(s,x) + ah(s, x).
e Obtain = — h(S, z) from solving
(Ah)(s,z) =0 subject to h(T,-).
e / induces a change of measure from X to the process X* with inf,
generator
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Continuous time transitions

Define the of the space-time process (¢, X;): for
S<s<s+h<T

(Ah)(S,l’) - 1}3?3 hil]E[h(s + h7Xs+h) - h(57Xs) ‘ Xs = ZE}

(Lh)(s,x) + %h(s, x).

e Obtain = — h(S, z) from solving
(Ah)(s,z) =0 subject to h(T,-).

e / induces a change of measure from X to the process X* with inf,
generator

/\ Solving Kolmogorov backward equation is usually intractable.

Guided process Continuous time transitions 36



Defining the guided process via its inf.generator

e Backward filter with £ instead of L, such that solving
(Lg)(s,x) + %q(s x) = 0 becomes tractable.
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Identify guided process from
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Defining the guided process via its inf.generator

e Backward filter with £ instead of L, such that solving
(Lg)(s,x) + %q(s x) = 0 becomes tractable.

e ¢ induces a change of measure from X to X° with inf. generator

Identify guided process from
e Correct for “wrong” h by weight

L-Dg,
exp (/n g(u7Xu)du> .

Guided process Continuous time transitions 37



Example 2: branching diffusion

X1
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SDE on a tree where on each branch

=61 0
dX; = tanh. X, | dt
! an 92 —92 ! + 0 g9

o1 aw,.
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Numerical illustration: SDE on a tree
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Numerical illustration: SDE on a tree
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Numerical illustration: SDE on a tree

On each branch

dX; = tanh. —0 0 X | dt+
0y —0s

g1 0
0 g9

] dW;.

Guided process Numerical illustration 40



Numerical illustration: SDE on a tree

On each branch
dX; = tanh. —0 0 X | dt+
0y —0y

e Backward filter a linear process (essentially )
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Numerical illustration: SDE on a tree

On each branch
dX; = tanh. —0 0 X | dt+
0y —0y

e Backward filter a linear process (essentially )
e Write X° as pushforward of (x¢,&, Z), with £ = (61,602,01,02)
e MCMC on (¢, Z)
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Numerical illustration: SDE on a tree

On each branch
dX; = tanh. —0 0 X | dt+
0y —0y

e Backward filter a linear process (essentially )
e Write X° as pushforward of (x¢,&, Z), with £ = (61,602,01,02)
e MCMC on (¢, Z)

Implementation in MitosisStochasticDiffEq. j1 by Frank Schafer
(MIT).
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Numerical illus SDE on a tree
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Numerical illustration: SDE on a tree
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Backward Filtering Forward Guiding: framework for doing likelihood
based inference in directed acyclic graphs, where transitions over edges
may correspond to the evolution of a stochastic process for a certain time
span.

e Defining guided processes on graphical models
(for “non-tree”-case: see preprint).

e Both discrete-time and continuous-time transitions incorporated.
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Backward Filtering Forward Guiding: framework for doing likelihood
based inference in directed acyclic graphs, where transitions over edges
may correspond to the evolution of a stochastic process for a certain time
span.

e Defining guided processes on graphical models
(for “non-tree”-case: see preprint).
e Both discrete-time and continuous-time transitions incorporated.
e lllustrations for interacting particle process and branching diffusion.
e Not covered: (some category theory, see

preprint).

Ongoing: SPDEs, SDEs on manifolds, chemical reaction networks.
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e Continuous-discrete smoothing of diffusions
MIDER, SCHAUER, VDM, Electronic Journal of Statistics
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Bayesian inference for partially observed diffusions.
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ideas on compositionality from category theory.
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Good source on filtering, smoothing, parameter estimation in HMM.
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