BACKWARD FILTERING FORWARD (GUIDING
FOR MARKOV PROCESSES

Frank van der Meulen — joint work with Moritz Schauer

VU GENERAL MATH COLLOQUIUM

Vrije Universiteit Amsterdam
Chalmers University of Technology and University of Gothenburg

Warming up

General problem setting

Conditioning, Doob’s h-transform and the Backward Information Filter

Guided process
Discrete case
Numerical illustration
Continuous time transitions

Numerical illustration

Wrap-up / conclusions

Warming up

A finite state Markov c

e Consider process that starts at time 0 and evolves over times
1,2,....

3

A finite state Markov chain

e Consider process that starts at time 0 and evolves over times
1,2,....

e At each time, the process takes values in £ := {12 3)}.

3

A finite state Markov chain

e Consider process that starts at time 0 and evolves over times
1,2,....

e At each time, the process takes values in £ := {12 3)}.

e Draw initial state zy € E from probability vector my (row vector):

x | @ @ ®
P(X =z) | m(1) 70(2) mo(3)

3

A finite state Markov chain

Consider process that starts at time 0 and evolves over times
1,2,....

At each time, the process takes values in E := {123}

e Draw initial state zp € E from probability vector 7y (row vector):
. o @ O
P(X =2) ‘ mo(1) mo(2) mo(3)

e Once xg is drawn, proceed iteratively: sample X;|X;_1 = x;_1.

3

A finite state Markov chain

Consider process that starts at time 0 and evolves over times
1,2,....
At each time, the process takes values in E := {123}

Draw initial state 2o € E from probability vector 7y (row vector):

x | @ @ ®
P(X =z) | m(1) 70(2) mo(3)

Once xq is drawn, proceed iteratively: sample X;|X;_1 = x;_1.

e Summarise transition probabilities by matrix

OEIONOEIONOEIC)
k=1Q-0O @-Q@ @-0
-0 -0 B®-=0

3

Distribution of the chain

e Distribution at time 1 is given by

T = Tok.

0

Distribution of the chain

e Distribution at time 1 is given by
T = Tok.
o Likewise

T, = Ti—1K.

0

Distribution of the chain

e Distribution at time 1 is given by

m = Tok.
o Likewise

T = Ti_1K.

e 1 may depend on unknown parameters. Example

1-0 0 0
k=1025 05 0.25
04 03 0.3

0

Distribution of the chain

e Distribution at time 1 is given by

m = Tok.
o Likewise

T = Ti_1K.

e 1 may depend on unknown parameters. Example

1—-60 0 0
k=025 0.5 0.25
04 03 0.3
e Observe sequence (xg,x1,...,%,), estimate 6.

0

Distribution of the chain

e Distribution at time 1 is given by
T = ToK.

Likewise

T, = Ti—1K.

e 1 may depend on unknown parameters. Example

1—-60 0 0
k=025 0.5 0.25
04 03 0.3
e Observe sequence (xg,x1,...,%,), estimate 6.

Markov property
P(X() = Zﬂo,Xl =T1y... ,Xn = CLn)
P(Xo = zo H =z; | Xi1 = 2i-1).

0

Likelihood based inference

Define the function by

00— L(0;2) =Pp(Xo =20, X1 = 21,..., Xp = Tp).

5

Likelihood based inference

Define the function by

00— L(0;2) =Pp(Xo =20, X1 = 21,..., Xp = Tp).

Maximum likelihood estimator: find @ that maximises L(6;x).

5

Likelihood based inference

Define the function by

00— L(0;2) =Pp(Xo =20, X1 = 21,..., Xp = Tp).

Maximum likelihood estimator: find @ that maximises L(6;x).

Bayesian approach: cast problem in hierarchical way. Assume the data
are generated as follows

1. First sample a realisation 6 from the random variable © taking
values in [0, 1];

5

Likelihood based inference

Define the function by

00— L(0;2) =Pp(Xo =20, X1 = 21,..., Xp = Tp).

Maximum likelihood estimator: find @ that maximises L(6;x).
Bayesian approach: cast problem in hierarchical way. Assume the data
are generated as follows
1. First sample a realisation 6 from the random variable © taking
values in [0, 1];
2. conditional on @, generate xg, x1, ..., 2, as before.

Likelihood based inference

Define the function by

00— L(0;2) =Pp(Xo =20, X1 = 21,..., Xp = Tp).

Maximum likelihood estimator: find @ that maximises L(6;x).

Bayesian approach: cast problem in hierarchical way. Assume the data

are generated as follows

1. First sample a realisation 6 from the random variable © taking

values in [0, 1];

2. conditional on @, generate xg, x1, ..., 2, as before.
3. . all inference is based on the posterior
distribution
(9 x)fo()
0

5

Likelihood based inference

Define the function by

00— L(0;2) =Pp(Xo =20, X1 = 21,..., Xp = Tp).

Maximum likelihood estimator: find @ that maximises L(6;x).

Bayesian approach: cast problem in hierarchical way. Assume the data

are generated as follows

1. First sample a realisation 6 from the random variable © taking
values in [0, 1];

2. conditional on @, generate xg, x1, ..., 2, as before.

3. . all inference is based on the posterior

distribution

forx 0] 5) = TG o L) fo(0).

5

Observe

(z0, 21,22, 74,24, 25) = (D QAR DQD).

g

Observe

(w07w17$2>x47$4;1'5) = (@@@@@@)

Assume 7y = (1/3,1/3,1/3) and recall

1-60 60 0
k= 1025 0.5 0.25
04 03 03

/\ Estimate for 67

g

Observe

(w07w17$2>x47$4;1'5) = (@@@@@@)

Assume 7y = (1/3,1/3,1/3) and recall

1-60 60 0
k= 1025 0.5 0.25
04 03 03

/\ Estimate for 67

L(0;z) =

g

Observe

(w07w17$2>x47$4;1'5) = (@@@@@@)

Assume 7y = (1/3,1/3,1/3) and recall

1-60 60 0
k= 1025 0.5 0.25
04 03 03

/\ Estimate for 67

1
L(#:x) =5 0-0.5-025-0.4-6

g

Observe

(w07w17$2>x47$4;1'5) = (@@@@@@)

Assume 7y = (1/3,1/3,1/3) and recall

1-60 60 0
k= 1025 0.5 0.25
04 03 03

/\ Estimate for 67

1
L(6;) =3 0-0.5-0.25-0.4-6 o 0%

g

e MLE 4 = 1.

7

o MLE § = 1.
e Bayes: assume © ~ Unif(0,1), then

forx (0| z) = 30°1 1)(0).

7

o MLE § = 1.
e Bayes: assume © ~ Unif(0,1), then

forx (0| z) = 30°1 1)(0).

Posterior mean:
E[O| X = 1] = /9f@|X(e | 2)do = 3/4.

7

Other observation schemes

Fully observed:

T—1 Zo €1 €2 Tn—1 Ln

q

Other observation schemes

Fully observed:

T—1 Zo €1 €2 Tn—1 Ln

Tr—1 o Zy T2 Tn—1 In

q

Other observation schemes

Fully observed:

N
T—1 Zo €1 €2 Tn—1 Tn

Tr—1 o Ty T2 Tn—1 In

Partially observed:

U1 Un—1 Un,
° >e j >e >
-1 Lo Z1 T2 Tn—1 T

q

Other observation schemes

Fully observed:

T—1 Zo €1 €2 Tn—1 Ln

Tr—1 o Zy T2 Tn—1 In

Partially observed:

U1,1 V1,2 Un—1 Un,

T To T T2 Tpo1 Ty

q

General problem setting

Problem setting

Consider a directed tree:

U3

>0

e denotes latent vertices, o leaf/observation-vertices.

General problem setting 9

Problem setting

Consider a directed tree:

U3

>0

e denotes latent vertices, o leaf/observation-vertices.

Along each edge the process evolves according to either one step of a
discrete-time Markov chain or a time-span of a continuous-time Markov
process.

General problem setting 9

Problem setting

To each edge corresponds a Markov kernel:

Kt(Tpa(r), doy)

(pointing towards vertex t).

General problem setting 10

Problem setting

To each edge corresponds a Markov kernel:
Kt(Tpa(r), doy)

(pointing towards vertex t).

We aim for

1. sampling values at e, conditional on values at o;

2. estimating parameters in kernels;
3. not just on a tree, but on a general Directed Acyclic Graph (DAG).

10

General problem setting

Example 1: interacting particle process

Setup:

e population of n individuals;
e each individual is either Susceptible, Infected or Recovered;

e cach individual has a known (possibly time varying) set of

neighbours .

General problem setting 11

Example 1: interacting particle process

Setup:

e population of n individuals;

e each individual is either Susceptible, Infected or Recovered;

e cach individual has a known (possibly time varying) set of
neighbours .

Dynamics:

e If z; = S, then it transitions to I with intensity AN, (¢,), with
N;(t,z) number of infected neighbours of individual 4 at time t.

General problem setting 11

Example 1: interacting particle process

Setup:
e population of n individuals;
e each individual is either Susceptible, Infected or Recovered;
e cach individual has a known (possibly time varying) set of
neighbours .
Dynamics:

e If z; = S, then it transitions to I with intensity AN, (¢,), with
N;(t,z) number of infected neighbours of individual 4 at time t.

e If z; =1, then it transitions to R with intensity /.

General problem setting 11

Example 1: interacting particle process

Setup:

e population of n individuals;

e each individual is either Susceptible, Infected or Recovered;

e cach individual has a known (possibly time varying) set of
neighbours .

Dynamics:

e If z; = S, then it transitions to I with intensity AN, (¢,), with
N;(t,z) number of infected neighbours of individual 4 at time t.

e If z; =1, then it transitions to R with intensity /.

e If z; = R, it transitions to S with intensity v.

General problem setting 11

Example 1: Dynamics of each particle

e Time-discretised version of the problem, where time steps are
multiples of

General problem setting 12

Example 1:

e Time-discretised version of the problem, where time steps are
multiples of

e In each time interval of length 7, conditional on the the present
state of all individuals, each individual independently remains in its
present state or transitions.

General problem setting 12

Example 1: Dynamics of each particle

e Time-discretised version of the problem, where time steps are
multiples of

e In each time interval of length 7, conditional on the the present
state of all individuals, each individual independently remains in its
present state or transitions.

The transition matrix for individual 7 at time ¢, given “full state” z:

Y (AN;(t,x)) 1= (AN (t,x)) 0
Ki(t,x) = 0 () 1—(u)|,
1—(v) 0 »(v)

where 1¥(u) = exp(—7u)

General problem setting

12

Example 1: challenges

observed data

a2 — —— - - —— -
393
3444 -
295

246 |
1974
1484 R

99 —_—— - — Latent

504 ———————— - _—

14

General problem setting 13

Example 1: challenges

observed data

s —F———— —— 1
393
344 - — -- - type
295 s

246

1974 .'
1484 R
e ———————————— ——— —— Latent

50—
14

Goals:

e identify most probable latent states (partial observations...);

e estimate rate parameters A, 1 and v.

/\ Dimension of state-space is 3".

General problem setting 13

Example 2: stochastic differential equations

e Consider the SDE
dXs = be(s, Xs)ds + op(s, Xs) dWs.

General problem setting 14

Example 2: stochastic differential equations

e Consider the SDE
dXs = be(s, Xs)ds + op(s, Xs) dWs.
e Graphical model

Vita
Xt Xt A

where
Viea | Xiya ~ N(Xipa, X).

General problem setting 14

Example 2: branching diffusion

SDE on a tree where on each branch

dX; = tanh. ;91 % X | dt + o 0

dW;.
s —0s 0 o2 '

03k Mol

A
L P e X L
0z W ba
VW
01|
00 [

—o1 kb MMW

0.0 0.2 0.4 0.6 08

A
15+ A [V aigm

" /
N et

10t _ N,
Mg A
Wiy & M
05 F "ﬂ Mpet it VAR A
0.0 ['

—05
0.0 0.2 0.4 0.6 08

General problem setting 15

Example 3: phylogenetics

—Aleyrodoidea (whiteflies)

Coccoidea (scale insects)
Sternorrhyncha

— —Phylloxeridae (phylloxerans) %

1

Phylloxeroideal &)

L—Adelgidae (woolly conifer aphids; \g\/
Aphidomorpha 9 ¢ v phids) i

o p
L Aphidoidea ,ppigidae (aphids) /

General problem setti 16

Example 3: phylogenetics

Syst. Biol. 52(2):131-158, 2003
DOI: 10.1080,/10635150390192780

Stochastic Mapping of Morphological Characters

JoHN P. HUELSENBECK,! RASMUS NIELSEN,2 AND JONATHAN P. BOLLBACK!

*Section of Ecolagy, Behavior and Evolution, Division of Biology, University of California-San Diego, La Jolla, California 92093-0116, LISA
ZDFpartmz’ni of Biometrics, Cornell University, 439 Warren Hall, Ithaca, New York 14853-7801, LISA

Abstract.— Many questions in evolutionary biology are best addressed by comparing traits in different species. Often such
studies involve mapping characters on phylogenetic trees. Mapping characters on trees allows the nature, number, and timing
of the transformations to be identified. The parsimony method is the only method available for mapping morphological
characters on phylogenies. Although the parsimony method often makes reasonable reconstructions of the history of a
character, it has a number of limitations. These limitations include the inability to consider more than a single change alonga
branch on a tree and the uncoupling of evolutionary time from amount of character change. We extended a method described
by Nielsen (2002, Syst. Biol. 51:729-739) to the mapping of morphological characters under continuous-time Markov models
and demonstrate here the utility of the method for mapping characters on trees and for identifying character correlation.
[Bayesian estimation; character correlation; character mapping; Markov chain Monte Carlo.]

General problem setti 17

Example 3: phylogenetics

Syst. Biol. 52(2):131-158, 2003
DOI: 10.1080,/10635150390192780

Stochastic Mapping of Morphological Characters

JoHN P. HUELSENBECK,! RASMUS NIELSEN,2 AND JONATHAN P. BOLLBACK!

*Section of Ecolagy, Behavior and Evolution, Division of Biology, University of California-San Diego, La Jolla, California 92093-0116, LISA
ZDFpartmz’ni of Biometrics, Cornell University, 439 Warren Hall, Ithaca, New York 14853-7801, LISA

Abstract.— Many questions in evolutionary biology are best addressed by comparing traits in different species. Often such
studies involve mapping characters on phylogenetic trees. Mapping characters on trees allows the nature, number, and timing
of the transformations to be identified. The parsimony method is the only method available for mapping morphological
characters on phylogenies. Although the parsimony method often makes reasonable reconstructions of the history of a
character, it has a number of limitations. These limitations include the inability to consider more than a single change alonga
branch on a tree and the uncoupling of evolutionary time from amount of character change. We extended a method described
by Nielsen (2002, Syst. Biol. 51:729-739) to the mapping of morphological characters under continuous-time Markov models
and demonstrate here the utility of the method for mapping characters on trees and for identifying character correlation.
[Bayesian estimation; character correlation; character mapping; Markov chain Monte Carlo.]

Along each edge, a finite state continuous time Markov process evolves.

General problem setti 17

Example 3: phylogenetics

Syst. Biol. 52(2):131-158, 2003
DOI: 10.1080,/10635150390192780

Stochastic Mapping of Morphological Characters

JoHN P. HUELSENBECK,! RASMUS NIELSEN,2 AND JONATHAN P. BOLLBACK!

*Section of Ecolagy, Behavior and Evolution, Division of Biology, University of California-San Diego, La Jolla, California 92093-0116, LISA
ZDFpartmz’ni of Biometrics, Cornell University, 439 Warren Hall, Ithaca, New York 14853-7801, LISA

Abstract.— Many questions in evolutionary biology are best addressed by comparing traits in different species. Often such
studies involve mapping characters on phylogenetic trees. Mapping characters on trees allows the nature, number, and timing
of the transformations to be identified. The parsimony method is the only method available for mapping morphological
characters on phylogenies. Although the parsimony method often makes reasonable reconstructions of the history of a
character, it has a number of limitations. These limitations include the inability to consider more than a single change alonga
branch on a tree and the uncoupling of evolutionary time from amount of character change. We extended a method described
by Nielsen (2002, Syst. Biol. 51:729-739) to the mapping of morphological characters under continuous-time Markov models
and demonstrate here the utility of the method for mapping characters on trees and for identifying character correlation.
[Bayesian estimation; character correlation; character mapping; Markov chain Monte Carlo.]

Along each edge, a finite state continuous time Markov process evolves.

Ideally, one would like to randomly sample character histories that
consistent with the observations at the tips of a phylogenetic tree.

General problem setti 17

Related literature

Vo U1 V2 Un—1 Un
>e j ,T > ----- U
xr—1 To € T2 Tp—1 T

Well-known filtering, smoothing algorithms dating back to 1960-1970.

General problem setting 18

Related literature

Vo U1 V2 Un—1 Un
>e j ,T > ----- U
xr—1 To € T2 Tp—1 T

Well-known filtering, smoothing algorithms dating back to 1960-1970.
e finite state space: Baum-Welch, Viterbi, forward-backward
algorithm.

e linear Gaussian models: Kalman filter, Rauch-Tung-Striebel
smoother.

e linear stochastic differential equations: Kalman-Bucy filter &
smoother.

General problem setting 18

Conditioning, Doob’s
h-transform and the Backward
Information Filter

Conditioning on a tree

Define

e V;: all leaf descendants of
vertex t.

o Vt = {”Ul,’UQ}.

Information Filter 19

Conditioning on a tree

U U1

Define

e V;: all leaf descendants of
vertex t.

o Vt = {”Ul,’UQ}.

Key identity (Bayesian notation):

p(l't ‘ 'rpa(t)amvt)

Information Filter 19

Conditioning on a tree

U U1

Define

e V;: all leaf descendants of
vertex t.

o Vt = {”Ul,’UQ}.

Key identity (Bayesian notation):

p(fﬂt ‘ 'rpa(t)amvt) X p(xtaxvt | mpa(t))

Information Filter 19

Conditioning on a tree

U U1

Define

e V;: all leaf descendants of
vertex t.

° Vt = {”Ul,’UQ}.

Key identity (Bayesian notation):

p(xt ‘ 'rpa(t)amv,:) x p(xt’xvt | xpa(t))

= p(@t | Tpa)) P(TY, | T4, Tpater)

Information Filter 19

Conditioning on a tree

U U1

Define

e V;: all leaf descendants of
vertex t.

° Vt = {”Ul,’UQ}.

Key identity (Bayesian notation):

p(xt ‘ 'rpa(t)amv,:) x p(xt’xvt | xpa(t))

= p(@t | Tpa)) P(TY, | T4, Tpater)

Rewrite to ’njt(x; dy) o k(5 dy)he(y) ‘

Information Filter 19

Conditioning on a tree

) u on
Define

e V;: all leaf descendants of
vertex t.

° Vt = {”Ul,’UQ}.

Key identity (Bayesian notation):

p(xt ‘ 'rpa(t)amv,:) x p(xt’xvt | xpa(t))

= p(@t | Tpa)) P(TY, | T4, Tpater)

Rewrite to ’njt(x; dy) o k(5 dy)he(y) ‘
/N If 24 is observed, then is the likelihood in the subtree from
node t.

Information Filter 19

Doob’s h-transform

° : Transformation of each k4 with hg to k}:

o (. dy) = Kss (2, dy)hs(y) ses.

B IK*S(% dy)hS(y)7

A forward pass: Needs ks, and hs.

Information Filter Doob’s h-transform 20

Doob’s h-transform

° : Transformation of each k4 with hg to k}:

o (. dy) = Kss (2, dy)hs(y) ses.

[kss(x, dy)hs(y)’

A forward pass: Needs ks, and hs.

e Recursive computation of A in a backward pass: (Backward
Information Filter):
- Compute hs from the leaves back to the roots.
- Acyclic belief propagation, sum-product algorithm, Felsenstein
algorithm...

Information Filter Doob’s h-transform 20

Doob’s h-transform

° : Transformation of each k4 with hg to k}:

o (. dy) = Kss (2, dy)hs(y) ses.

[kss(x, dy)hs(y)’

A forward pass: Needs ks, and hs.

e Recursive computation of A in a backward pass: (Backward
Information Filter):
- Compute hs from the leaves back to the roots.
- Acyclic belief propagation, sum-product algorithm, Felsenstein
algorithm...
- /\ Only in very specific models tractable.

Information Filter Doob’s h-transform 20

Doob’s h-transform

° : Transformation of each k4 with hg to k}:

* _ H»S(l‘, dy)hs(y)
w0 = Ay ()’

A forward pass: Needs ks, and hs.

seS.

e Recursive computation of A in a backward pass: (Backward
Information Filter):
- Compute hs from the leaves back to the roots.

- Acyclic belief propagation, sum-product algorithm, Felsenstein
algorithm...

- /\ Only in very specific models tractable.

e /\ On a DAG conditioning changes the dependency structure.
There are no conditional kernels k%, from pa(s) to s.

Information Filter Doob’s h-transform 20

Backward Information Filter

T4 (%

T3

1 x

Information Filter Doob’s h-transform 21

Make kernels explicit

Information Filter Doob’s h-transform 22

Example: finite state space

e Suppose z; € {1 @) @)} and v; € {@,@}

. in observations we cannot distinguish @) and Q)

Information Filter Doob’s h-transform 23

Example: finite state space

e Suppose z; € {1 @) @)} and v; € {@,@}

. in observations we cannot distinguish @) and Q)

e Finite state space = Markov kernels can be identified with matrices

1 0 1—-0 0 0
Ai= 1 0 Ker= 1025 0.5 0.25],
0 1 04 03 0.3

for i € {1,2,3}, s € {0,1,3} and t € ch(s).

Information Filter Doob’s h-transform 23

Example: finite state space

e Suppose z; € {1 @) @)} and v; € {@,@}

. in observations we cannot distinguish @) and Q)

e Finite state space = Markov kernels can be identified with matrices

1 0 1—-0 0 0
Ai= 1 0 Ker= 1025 0.5 0.25],
0 1 04 03 0.3

for i € {1,2,3}, s € {0,1,3} and t € ch(s).
o :set x_1 = (0 and

h",,l?[) = [71'1, T2, 7'('3] = TT.

Information Filter Doob’s h-transform 23

Backward Information Filter (BIF)

e BIF: efficient way to compute x +— hy(x).

Information Filter Doob’s h-transform 24

Backward Information Filter (BIF)

e BIF: efficient way to compute x +— hy(x).

e /\ For finite state space this map can be identified with a vector hy.

Information Filter Doob’s h-transform 24

Backward Information Filter (BIF)

e BIF: efficient way to compute x +— hy(x).
e /\ For finite state space this map can be identified with a vector h,.

° cfort=0,...,n

hobS = [é] 1{v; = @} +

0

) 1{v; = ®}.

Information Filter Doob’s h-transform 24

Backward Information Filter (BIF)

e BIF: efficient way to compute x +— hy(x).

e /\ For finite state space this map can be identified with a vector hy.

° cfort=0,...,n

hobS = [é] 1{v; = @} +

0

) 1{v; = ®}.

Information Filter Doob’s h-transform 24

Backward Information Filter (BIF)

e BIF: efficient way to compute x +— hy(x).
e /\ For finite state space this map can be identified with a vector h,.

° cfort=0,...,n

hobS = [é] 1{v; = @} +

0

) 1{v; = ®}.

hy = Ashg™

Information Filter Doob’s h-transform 24

Backward Information Filter (BIF)

e BIF: efficient way to compute x +— hy(x).
e /\ For finite state space this map can be identified with a vector h,.

° cfort=0,...,n

hobS = [é] 1{v; = @} +

0

1 1{v; = ®}.

hQ =)\3h§bs hl = KLQhQ.

Information Filter Doob’s h-transform 24

Pullback along edges

€3

hy = A3hgP

Why h1 = /€172h2?

Information Filter Doob’s h-transform 25

Pullback along edges

€3

hy = A3hgP

Why h1 = /€172h2?

hi(z1) = p(vz | z1) =

Information Filter Doob’s h-transform 25

Pullback along edges

€3

hy = A3hgP

Why h1 = /€172h2?

ha(e) = plos | 1) = / p(va, @2 | 1) da

Information Filter Doob’s h-transform 25

Pullback along edges

€3

hy = A3h$™

Why h1 = /€172h2?

hi(z1) = p(vz | z1) = /P (v3, 2 | 1) daso

= /P Us |Q"/f,3?2 (12\1‘1)(1962
%/_/

ha(z2)

Information Filter Doob’s h-transform 25

Backward Information Filter (BIF)

Get
hoeg = Iioﬁghg and hof>1 = HO.lhl

Information Filter Doob’s h-transform 26

Backward Information Filter (BIF)

Get
hoag = Ho,ghg and ho»l = HO.lhl

. by conditional independence of children we have

ho(.r) - ho»l(l‘)ho»g(.r).

Information Filter Doob’s h-transform 26

Backward Information Filter (BIF)

Get
hoag = Ho,ghg and ho»l = HO.lhl

. by conditional independence of children we have
ho(z) = hos1(x)hoss(x).
By identifying with vectors
ho = hos1 © hos3.

Information Filter Doob’s h-transform 26

Backward Information Filter (BIF)

e Likelihood: L(a) = h,l = H‘,]‘Uho.

Information Filter Doob’s h-transform 27

Backward Information Filter (BIF)

e Likelihood: L(e) = h_l = H‘,]‘Uho.

xy | xf =1~ Cat(ks i,] © he), t € ch(s).

Information Filter Doob’s h-transform 27

Backward Information Filter (BIF)

e Likelihood: L(e) = h_l = H‘,]‘Uho.

xy | xf =1~ Cat(ks i,] © he), t € ch(s).

/N\ This is all tractable because

1. the DAG is a directed tree;

2. the state space is finite.

Information Filter Doob’s h-transform 27

Guided process

Backward Information Filter (BIF)

Key idea: replace hgst by gss¢ that makes BIF tractable.

Guided process Discrete case 28

Backward Information Filter (BIF)

Key idea: replace hgst by gss¢ that makes BIF tractable.

T3
R0,3 r
T-1 o i
R—-1,0 - "
0,1 1

Guided process Discrete case 28

Backward Information Filter (BIF)

Key idea: replace hgst by gss¢ that makes BIF tractable.

Guided process Discrete case 28

Backward Information Filter (BIF)

Key idea: replace hgst by gss¢ that makes BIF tractable.

Get
hos3 = Kko3hs and hgs1 = Ko 1hy

Guided process Discrete case 28

Backward Information Filter (BIF)

Key idea: replace hgst by gss¢ that makes BIF tractable.

Get
hos3 = Ko,zhs and hgs1 = Ro1h1

Guided process Discrete case 28

Backward Information Filter (BIF)

Key idea: replace hgst by gss¢ that makes BIF tractable.

Get

go»3 = Ko,393 and gos1 = Ko,101

Guided process Discrete case 28

Backward Information Filter (BIF)

Key idea: replace hgst by gss¢ that makes BIF tractable.

Get

go»3 = Ko,393 and gos1 = Ko,101

. by conditional independence of children we have

9o(r) = go-1(x)go+3(z).
By identifying with vectors

go = go»1 © go-3-

Guided process Discrete case 28

Guided process

Let the maps = — gss¢(x) be specified for each edge (s,t) and define

gs(z) = H gs+t(T), s € So. (1)

tech(s)

Guided process Discrete case 29

Guided process

Let the maps = — gss¢(x) be specified for each edge (s,t) and define

gs(z) = H gs+t(T), s € So. (1)

tech(s)

Practical way to choose ggs;: replace kernel k454 by approximation Kgs¢.

Guided process Discrete case 29

Guided process

Let the maps = — gss¢(2) be specified for each edge (s,t) and define

II 9-:@), seso (1)

tech(s)

Practical way to choose ggs;: replace kernel k454 by approximation Kgs¢.
Definition

Define the X° as the process starting in Xj = xg and
from the roots onwards evolving on the DAG G according to transition
kernel

° Js (y)'%pa(s)%s<xpa(s); dy)
Foa(s)>s(Tpa(s); dy) =
pa(s)? (pals) fgs Kpa(s %s(xpa S),dy)

Guided process Discrete case 29

Use of guided process

Let S denote the set of non-leaf vertices.

Theorem
Assume kernels towards leaf-nodes admit densities pya(y)+. Then

Ppa(v)+v(Xpa(w)i To)
Hul7‘()>5])1 s))H o

s€S veEV 'ql”‘(”)””(Xpn('f‘))

/10(10 = J() 1(]

with weights defined by

Guided process Discrete case 30

Use of guided process

Let S denote the set of non-leaf vertices.

Theorem
Assume kernels towards leaf-nodes admit densities pya(y)+. Then

Ppa(v)+v(Xpa(w)i To)
Hul7‘()>5])1 s))H o

s€S veEV 'ql”‘(”)””(Xpn('f‘))

/10(10 = J() 1(]

with weights defined by

fgs K‘pa (s) %s(Ipa(s); d?j)
Huepa(s) gu»S(l‘u)

Wpa(s)»S(l’pd(s)) = seS.

Guided process Discrete case 30

Use of guided process

Let S denote the set of non-leaf vertices.

Theorem
Assume kernels towards leaf-nodes admit densities pya(y)+. Then

Ppa(v)+v(Xpa(w)i To)
Hul7‘()>5])1 s))H o

s€S veEV 'ql”‘(”)””(Xpn('f‘))

/10(10 = J() 1(]

with weights defined by

fgs K‘pa (s) %s(Ipa(s); d?j)

seS.
Huepa(s) gu»S(l‘u)

Wpa(s)~+s (xpd(s)) -

Computationally, this implies a bidirectional scheme:

1. pass for :

2. pass for

Guided process Discrete case 30

e If the state space is finite, BIF provides the likelihood.
e Key to tractability is that A can always be represented as a vector.

e /\ In general BIF is intractable.

Guided process Discrete case 31

If the state space is finite, BIF provides the likelihood.

e Key to tractability is that A can always be represented as a vector.

/\ In general BIF is intractable.

Resolve by backward filtering with simpler kernels and forward
simulating the corresponding guided process.

This results in weighted samples from the conditioned process.

Guided process Discrete case 31

Application: interacting particle process

Forward transitions:

w(ANz(tvx)) 1—1#()\]\71(@%)) 0
ki(t,x) = 0) L=(u) |,
1—(v) 0 (V)

where

N;(z) = {number of infected neighbours of individual 7 in state x}

and ¥ (u) = exp(—7u).
Auxiliary kernel for backward filtering:

D) 1—1p(N(1) 0

Guided process Numerical illustration 32

Application:

442+
3934
3444
2954
246
197 4
1484
994
504

k. — T T T T T T T T | I S S S S S S ——
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

final iterate true forward simulated

443 R —
3934 3 | ; "I|"|'”'
344 ! 4

295 F' 1

2461 | 1 (RE

1074
1484
994
504

ity

— T T T T T T T T T = | I S S S S S S ——
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

Guided process Numerical illustration 33

Application: interacting particle process

08
06
04 v
0.2
A P e,
——d T
0 2500 5000 7500 10000

iterate

Guided process Numerical illustration 34

Continuous time tr

Rethinking the discrete-time case:

e Edge

Zs xrr
*—— >0

Suppose = — h(T,x) is given; wish to find z +— h(S, x).

Guided process Continuous time transitions 35

Continuous time transitions

Rethinking the discrete-time case:

e Edge

Zs xrr
*—— >0

Suppose = — h(T,x) is given; wish to find z +— h(S, x).

e “Discrete-time” generator

(AR)(S,z): = E[(T,Xr)—h(S, Xs) | X5 = 2]

Guided process Continuous time transitions 35

Continuous time transitions

Rethinking the discrete-time case:
e Edge

Zs xrr
*—— >0

Suppose = — h(T,x) is given; wish to find z +— h(S, x).

e “Discrete-time” generator
(AR)(S,x): = EWT,Xr)—h(S,Xs) | Xs = z]

— /h(T, y)kss1(x, dy) — h(S,).

e /\ Obtain = — h(S,z) by solving (Ah)(S,z) = 0.

Guided process Continuous time transitions 35

Continuous time transitions

Define the of the space-time process (¢, X;): for
S<s<s+h<T

(Ah)(S,l’) - 1}:?(} hil]E[h(S + h7Xs+h) - h(57Xs) ‘ Xs = ZE}

Guided process Continuous time transitions 36

Continuous time transitions

Define the of the space-time process (¢, X;): for
S<s<s+h<T

(Ah)(S,l’) - 1}:?(} hil]E[h(S + h7Xs+h) - h(57Xs) ‘ Xs = ZE}

(Lh)(s,z) + %h(s, x).

Guided process Continuous time transitions 36

Continuous time transitions

Define the of the space-time process (¢, X;): for
S<s<s+h<T

(Ah)(S,l’) - 1}:?(} hil]E[h(S + h7Xs+h) - h(57Xs) ‘ Xs = ZE}

(Lh)(s,x) + %h(s, x).

e Obtain = — h(S, z) from solving
(Ah)(s,z) =0 subject to h(T,-).

Guided process Continuous time transitions 36

Continuous time transitions

Define the of the space-time process (¢, X;): for
S<s<s+h<T

(Ah)(S,l’) - 1}:?(} hil]E[h(S + h7Xs+h) - h(57Xs) ‘ Xs = ZE}

0
(Lh)(s,x) + ah(s, x).
e Obtain = — h(S, z) from solving
(Ah)(s,z) =0 subject to h(T,-).
e / induces a change of measure from X to the process X* with inf,
generator

Guided process Continuous time transitions 36

Continuous time transitions

Define the of the space-time process (¢, X;): for
S<s<s+h<T

(Ah)(S,l’) - 1}3?3 hil]E[h(s + h7Xs+h) - h(57Xs) ‘ Xs = ZE}

(Lh)(s,x) + %h(s, x).

e Obtain = — h(S, z) from solving
(Ah)(s,z) =0 subject to h(T,-).

e / induces a change of measure from X to the process X* with inf,
generator

/\ Solving Kolmogorov backward equation is usually intractable.

Guided process Continuous time transitions 36

Defining the guided process via its inf.generator

e Backward filter with £ instead of L, such that solving
(Lg)(s,x) + %q(s x) = 0 becomes tractable.

Guided process Continuous time transitions 37

Defining the guided process via its inf.generator

e Backward filter with £ instead of L, such that solving
(Lg)(s,x) + %q(s x) = 0 becomes tractable.

e ¢ induces a change of measure from X to X° with inf. generator

Identify guided process from

Guided process Continuous time transitions 37

Defining the guided process via its inf.generator

e Backward filter with £ instead of L, such that solving
(Lg)(s,x) + %q(s x) = 0 becomes tractable.

e ¢ induces a change of measure from X to X° with inf. generator

Identify guided process from
e Correct for “wrong” h by weight

L-Dg,
exp (/n g(u7Xu)du> .

Guided process Continuous time transitions 37

Example 2: branching diffusion

X1
os | S it
o2 | r/'"," ’Dq/d J.&’
0 v"*wvr" "lr‘ P
a1k
00
o1k W /e
00 02 0.4 06 08
X2
A
15 A / W\t
v e
10 F . ”'\'ﬂ '
oy
0s L "N -\\‘ AN A 18
00 5
—05 E
00 02 0.4 06 08

SDE on a tree where on each branch

=61 0
dX; = tanh. X, | dt
! an 92 —92 ! + 0 g9

o1 aw,.

Guided process Numerical illustration 38

Numerical illustration: SDE on a tree

[=T N S T
T

Guided process Numerical illustration 39

Numerical illustration: SDE on a tree

X1
1.5 | E
1.0 | 5
05 | 3
0.0 [2
0.5 ;
-1.0 | 3
0 1 2 3 4
X2
3 f=
2 :
1 ’
T |
_1 =
_2 =
bl
3k M
0 1 2 3 4

Guided process Numerical illustration 39

Numerical illustration: SDE on a tree

On each branch

dX; = tanh. —0 0 X | dt+
0y —0s

g1 0
0 g9

] dW;.

Guided process Numerical illustration 40

Numerical illustration: SDE on a tree

On each branch
dX; = tanh. —0 0 X | dt+
0y —0y

e Backward filter a linear process (essentially)

Guided process Numerical illustration 40

Numerical illustration: SDE on a tree

On each branch
dX; = tanh. —0 0 X | dt+
0y —0y

e Backward filter a linear process (essentially)
e Write X° as pushforward of (x¢,&, Z), with £ = (61,602,01,02)
e MCMC on (¢, Z)

Guided process Numerical illustration 40

Numerical illustration: SDE on a tree

On each branch
dX; = tanh. —0 0 X | dt+
0y —0y

e Backward filter a linear process (essentially)
e Write X° as pushforward of (x¢,&, Z), with £ = (61,602,01,02)
e MCMC on (¢, Z)

Implementation in MitosisStochasticDiffEq. j1 by Frank Schafer
(MIT).

Guided process Numerical illustration 40

Numerical illus SDE on a tree

19%” 1 W‘

0 2500 5000 7500 10000

Guided process Numerical illustration 41

Numerical illustration: SDE on a tree

01
0.5
0.0 |
0.5 +
15 F i
A W |
ol U Iy
0 2500 5000 7500 10000
a2
0.6 |
0.4
0.2 | I.
0.0 | ('}
—0.2 =
_0_4 b=
0.6
0 2500 5000 7500 10000

Guided process Numerical illustration 42

Wrap-up / conclusions

Backward Filtering Forward Guiding: framework for doing likelihood
based inference in directed acyclic graphs, where transitions over edges
may correspond to the evolution of a stochastic process for a certain time
span.

e Defining guided processes on graphical models
(for “non-tree”-case: see preprint).

e Both discrete-time and continuous-time transitions incorporated.

Wrap-up / conclusions 43

Backward Filtering Forward Guiding: framework for doing likelihood
based inference in directed acyclic graphs, where transitions over edges
may correspond to the evolution of a stochastic process for a certain time
span.

e Defining guided processes on graphical models
(for “non-tree”-case: see preprint).
e Both discrete-time and continuous-time transitions incorporated.
e lllustrations for interacting particle process and branching diffusion.

e Not covered: (some category theory, see
preprint).

Wrap-up / conclusions 43

Backward Filtering Forward Guiding: framework for doing likelihood
based inference in directed acyclic graphs, where transitions over edges
may correspond to the evolution of a stochastic process for a certain time
span.

e Defining guided processes on graphical models
(for “non-tree”-case: see preprint).
e Both discrete-time and continuous-time transitions incorporated.
e lllustrations for interacting particle process and branching diffusion.
e Not covered: (some category theory, see

preprint).

Ongoing: SPDEs, SDEs on manifolds, chemical reaction networks.

Wrap-up / conclusions 43

e Continuous-discrete smoothing of diffusions
MIDER, SCHAUER, VDM, Electronic Journal of Statistics

Wrap-up / conclusions 44

e Continuous-discrete smoothing of diffusions
MIDER, SCHAUER, VDM, Electronic Journal of Statistics

Bayesian inference for partially observed diffusions.

Wrap-up / conclusions

References

e Continuous-discrete smoothing of diffusions
MIDER, SCHAUER, VDM, Electronic Journal of Statistics

Bayesian inference for partially observed diffusions.

e Automatic Backward Filtering Forward Guiding for Markov processes
and graphical models, VDM AND SCHAUER, preprint on arXiv.

A generalisation to Markov processes on graphical models including
ideas on compositionality from category theory.

Wrap-up / conclusions 44

References

e Continuous-discrete smoothing of diffusions
MIDER, SCHAUER, VDM, Electronic Journal of Statistics
Bayesian inference for partially observed diffusions.

e Automatic Backward Filtering Forward Guiding for Markov processes
and graphical models, VDM AND SCHAUER, preprint on arXiv.
A generalisation to Markov processes on graphical models including
ideas on compositionality from category theory.

e Introduction to Automatic Backward Filtering Forward Guiding,
VDM, preprint on arXiv.
Gentle introduction to the more advanced paper.

e Inference in Hidden Markov Models, CAPPE, MOULINES AND
RYDEN

Good source on filtering, smoothing, parameter estimation in HMM.

Wrap-up / conclusions 44

	Warming up
	General problem setting
	Conditioning, Doob's h-transform and the Backward Information Filter
	Conditioning on a tree
	Conditioning on a tree
	Conditioning on a tree
	Conditioning on a tree
	Conditioning on a tree
	Conditioning on a tree
	Doob's h-transform

	Guided process
	Discrete case
	Numerical illustration
	Continuous time transitions
	Numerical illustration

	Wrap-up / conclusions

