E is the new P

Rianne de Heide

Vrije Universiteit Amsterdam joint work with Peter Grünwald, Wouter Koolen, Muriel Pérez-Ortiz, Tyron Lardy, Allard Henrdriksen

November 2, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Background (math)

Education

- BSc Math (Groningen), MSc Math (Leiden)
- BMus (Groningen/Hamburg), MMus (The Hague)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Background (math)

Education

- BSc Math (Groningen), MSc Math (Leiden)
- BMus (Groningen/Hamburg), MMus (The Hague)

Work

PhD at Centrum Wiskunde & Informatica and Leiden University, supervisors: Peter Grünwald and Wouter Koolen, promotores: Peter, Wouter and Jacqueline Meulman

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Postdoc at Otto von Guericke University Magdeburg, supervisor: Alexandra Carpentier
- Postdoc at INRIA Lille, supervisor: Emilie Kaufmann
- Rubicon grant INRIA Lille

Background (math)

Education

- BSc Math (Groningen), MSc Math (Leiden)
- BMus (Groningen/Hamburg), MMus (The Hague)

Work

PhD at Centrum Wiskunde & Informatica and Leiden University, supervisors: Peter Grünwald and Wouter Koolen, promotores: Peter, Wouter and Jacqueline Meulman

- Postdoc at Otto von Guericke University Magdeburg, supervisor: Alexandra Carpentier
- Postdoc at INRIA Lille, supervisor: Emilie Kaufmann
- Rubicon grant INRIA Lille
- March 2022 ... VU :)

Non-mathematical topics I love (to talk about during coffee)

Classical music

Non-mathematical topics I love (to talk about during coffee)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Classical music
- Running

Non-mathematical topics I love (to talk about during coffee)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Classical music
- Running
- Learning languages

Non-mathematical topics I love (to talk about during coffee)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Classical music
- Running
- Learning languages
- Chess

Work

Hypothesis testing (Stats)

- A new theory of hypothesis testing (this talk)
- Group invariance in hypothesis testing
- Optional stopping

Other topics I work on:

- Inductive logic (philosophy of science)
- Bayesian inference under model misspecification (learning theory — Stats/ML)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Best-arm-identification (bandits ML)
- Mathematics of explainable AI (XAI ML)

Hypothesis testing with E-values

- A new theory of hypothesis testing
- ► Main notion: E-variable / E-value
- Upshots: combining evidence; interpretation; flexibility
- Main mathematical contributions: existence of non-trivial E-values for composite H₀ and design criterion for optimal (GRO(W)) E-values (Safe Testing - Grünwald, De Heide, Koolen); group-invariance in hypothesis testing (Optional stopping with Bayes Factors - Hendriksen, De Heide, Grünwald; E-Statistics, Group Invariance and Anytime Valid Testing - Pérez-Ortiz, Lardy, De Heide, Grünwald; and Why optional stopping can be a problem for Bayesians - De Heide, Grünwald).

Menu

Why do we need a new theory for hypothesis testing?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- E-values
 - A lady tasting coffee
 - Highlights 1: interpretations
 - Highlights 2: RIPr and JIPr
 - Highlights 3: Combining experiments
 - Highlights 4: T-test simulations

Menu

Why do we need a new theory for hypothesis testing?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

E-values

- A lady tasting coffee
- Highlights 1: interpretations
- Highlights 2: RIPr and JIPr
- Highlights 3: Combining experiments
- Highlights 4: T-test simulations

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Reproducibility crisis in social and medical science

Reproducibility crisis in social and medical science

- Medicine: J. Ioannidis, Why most published research findings are false, PLoS Medicine 2(8) (2005).
- Social Science: 270 authors, Estimating the reproducibility of psychological science, Science 349 (6251), 2015.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Reproducibility crisis in social and medical science

Causes:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Reproducibility crisis in social and medical science

Causes:

Publication bias

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Reproducibility crisis in social and medical science

Causes:

- Publication bias
- Fraud

Reproducibility crisis in social and medical science

Causes:

- Publication bias
- Fraud
- Lab environment vs. natural environmnent

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Reproducibility crisis in social and medical science

Causes:

- Publication bias
- Fraud
- Lab environment vs. natural environmnent

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

use of P-values

We wish to test a null hypothesis \mathcal{H}_0 in contrast with an alternative hypothesis \mathcal{H}_1 .

Definition Fix some $\alpha \in (0, 1)$. A P-value is a function mapping data $X^n = X_1, \ldots, X_n$ to [0, 1], such that for all $P \in \mathcal{H}_0$

 $P(P(X^n) \leq \alpha) \leq \alpha.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We wish to test a null hypothesis \mathcal{H}_0 in constrast with an alternative hypothesis \mathcal{H}_1 .

Type-I guarantee α :

 $P(\text{reject } \mathcal{H}_0) \leq \alpha.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Problems with P-values

Limited applicability: unknown probabilities

Consider two weather forecasters A and B. On sunny days, $P_A(RAIN) \ge P_B(RAIN)$. Is B better than A?

P-values rely on *counterfactuals*. See also:

A.P. Dawid, Present position and potential developments: Some personal views, statistical theory, the prequential approach, Journal of the Royal Statistical Society, Series A 147(2) (1984), 278–292.

P. Grünwald, The Minimum Description Length Principle, MIT Press, Cambridge, MA, 2007.

Problems with P-values

- Limited applicability: unknown probabilities
- Limited applicability: unknown stopping rules

Many practitioners don't know that *optional stopping* is forbidden with P-values, so they do it.

Many practitioners DO know that *optional stopping* is forbidden with P-values, and they still do it!

55% of psychologists admits to doing it — John et. al. (2012)

- ロ ト - 4 回 ト - 4 □

Problems with P-values

- Limited applicability: unknown probabilities
- Limited applicability: unknown stopping rules
- Interpretational problems: combining evidence from different experiments

Hospitals A and B perform similar trials, and they report P-values P_A and P_B . How to combine the evidence?

Neyman/Pearson: *significance tests*. Only report *reject* or *accept*. Fisher: P-values as measure of evidence, not for testing.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Problems with P-values

- Limited applicability: unknown probabilities
- Limited applicability: unknown stopping rules
- Interpretational problems: combining evidence from different experiments
- Interpretational problems: misunderstanding (hence misuse) of P-values

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

What do Doctors know about statistics?

A controlled trial of a new treatment led to the conclusion that it is significantly better than placebo: P < 0.05. Which of the following statements do you prefer? Go to menti com and use the code 3419 1778.

- 1. It has been proved that the treatment is better than placebo.
- 2. If the treatment is not effective, there is less than a 5 per cent chance of obtaining such results.
- 3. The observed effect of the treatment is so large that there is less than a 5 per cent chance that the treatment is no better than placebo.
- 4. I do not really know what a p-value is and do not want to guess.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

What do Doctors know about statistics?

A controlled trial of a new treatment led to the conclusion that it is significantly better than placebo: P < 0.05. Which of the following statements do you prefer?

- 1. It has been proved that the treatment is better than placebo. 20%
- 2. If the treatment is not effective, there is less than a 5 per cent chance of obtaining such results. 13%
- 3. The observed effect of the treatment is so large that there is less than a 5 per cent chance that the treatment is no better than placebo. 51%
- I do not really know what a p-value is and do not want to guess. 16%

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Menu

Why do we need a new theory for hypothesis testing?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- E-values
 - A lady tasting coffee
 - Highlights 1: interpretations
 - Highlights 2: RIPr and JIPr
 - Highlights 3: Combining experiments
 - Highlights 4: T-test simulations

Testing by betting Hypothesis testing with e-values and martingales

Rianne de Heide

A lady tasting tea

A lady tasting tea

Null hypothesis: the lady has no

ability to distinguish the teas.

A lady tasting tea

Null hypothesis: the lady has no

ability to distinguish the teas.

 $\binom{8}{4} = \frac{8!}{4!(8-4)!} = 70$

Safe Testing

e-values in stead of p-values

• intuitive interpretation: betting

sequential testing possible

A guy tasting coffee...

Aaditya Ramdas (CMU)

Leila Wehbe (CMU)

 $B_1 = -1$

$B_1 = -1$

$B_1 = -1$

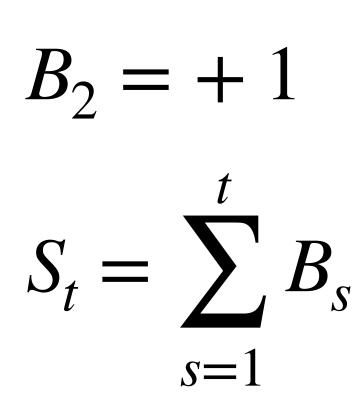
$B_1 = -1$

$B_1 = -1$

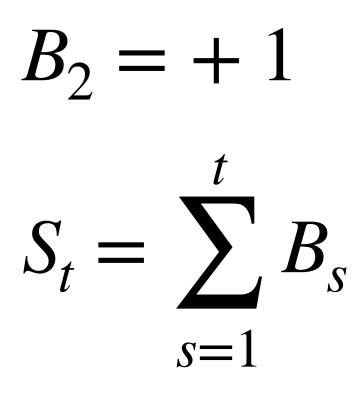
 $B_2 = +1$

 $B_2 = +1$

M C

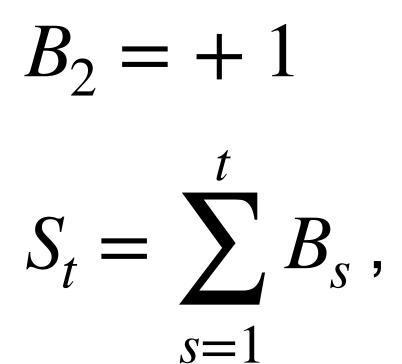


M C



 \mathscr{H}_0 : There is no difference between MC and CM.

M C

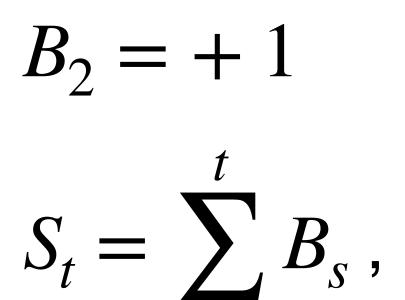


 \mathcal{H}_0 : There is no difference between MC and CM.

Under \mathcal{H}_0 , $(S_t)_{t \in \mathbb{N}}$ is a martingale: $\mathbb{E}[X_t]$

M C

$$S_t [S_1, \dots, S_{t-1}] = S_{t-1}.$$



s=1

 \mathscr{H}_0 : There is no difference between MC and CM.

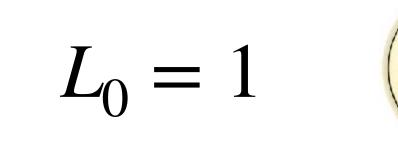
Under \mathcal{H}_0 , $(S_t)_{t \in \mathbb{N}}$ is a martingale: $\mathbb{E}[A$

Reject \mathscr{H}_0 if $|S_n| \ge \sqrt{\frac{1}{n} \left(1 + \frac{1}{n}\right)^n}$

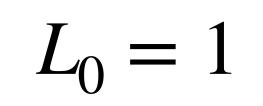
M C

$$S_t | S_1, \dots, S_{t-1}] = S_{t-1}.$$

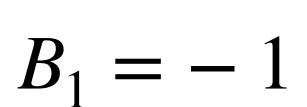
$$\log\left(\frac{n+1}{\alpha^2}\right)$$



 $L_0 = 1$

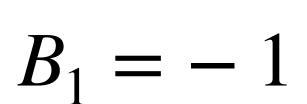


$\lambda_1 = 0.2$ (on heads)



 $L_0 = 1$

$\lambda_1 = 0.2$ (on heads)

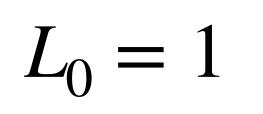


 $L_0 = 1$

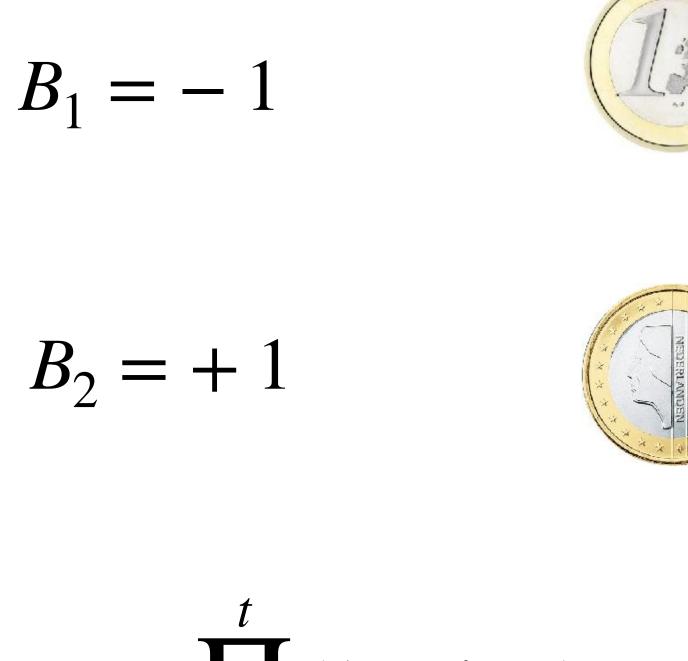
$\lambda_1 = 0.2$ (on heads) $L_1 = L_0 \cdot (1 + \lambda_1 B_1) = 0.8$

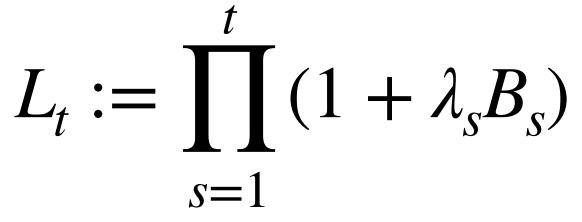
 $B_1 = -1$

 $B_2 = +1$



- $\lambda_1 = 0.2$ (on heads)
- $L_1 = L_0 \cdot (1 + \lambda_1 B_1) = 0.8$
 - $\lambda_2 = 0.4$ (on heads)
- $L_2 = L_1 \cdot (1 + \lambda_2 B_2) = 1.12$

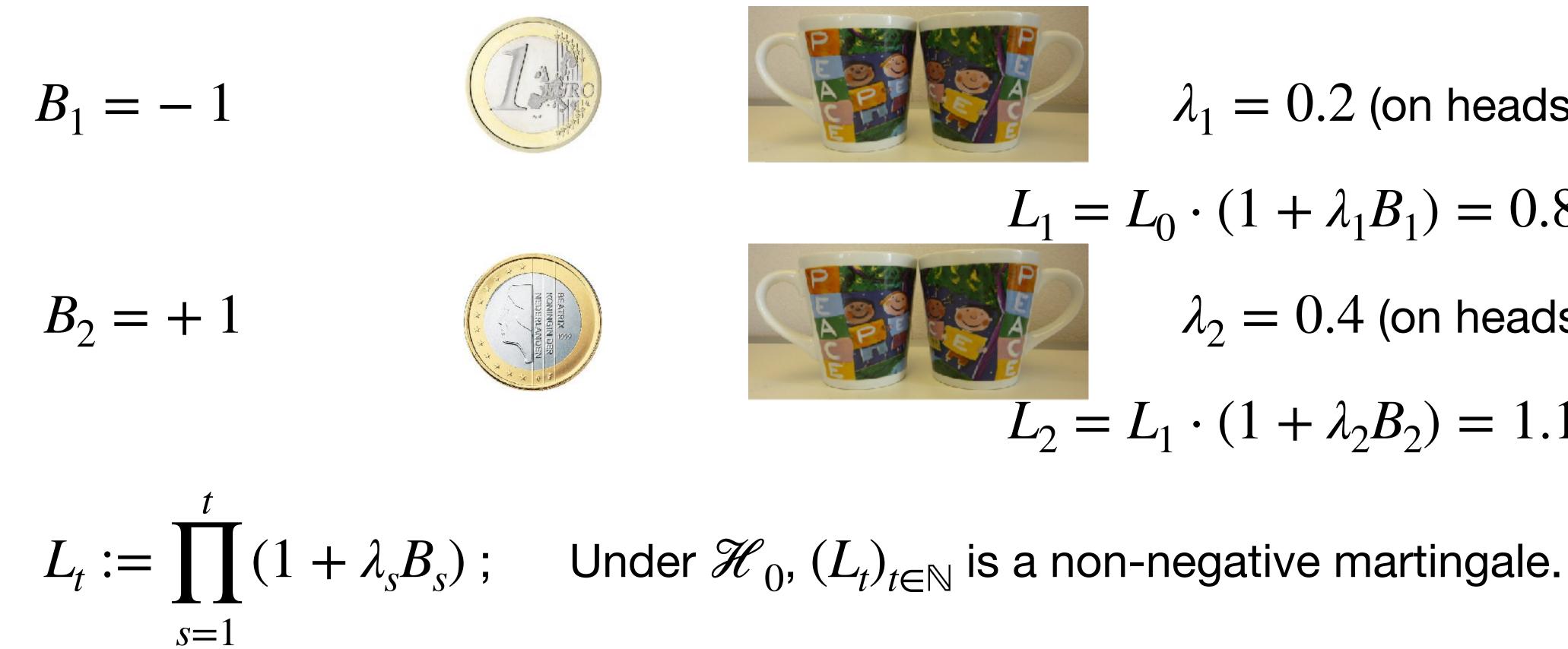




 $L_0 = 1$

 $\lambda_1 = 0.2$ (on heads) $L_1 = L_0 \cdot (1 + \lambda_1 B_1) = 0.8$ $\lambda_2 = 0.4$ (on heads)

 $L_2 = L_1 \cdot (1 + \lambda_2 B_2) = 1.12$



 $L_0 = 1$

- $\lambda_1 = 0.2$ (on heads) $L_1 = L_0 \cdot (1 + \lambda_1 B_1) = 0.8$ $\lambda_2 = 0.4$ (on heads) $L_2 = L_1 \cdot (1 + \lambda_2 B_2) = 1.12$

$$L_t := \prod_{s=1}^t (1 + \lambda_s B_s); \quad \text{Under } \mathcal{X}$$

At any stopping time τ , we have $\mathbb{E}_{\mathscr{H}_0}[L_{\tau}] = 1$ (optional stopping theorem).

 \mathcal{H}_0 , $(L_t)_{t\in\mathbb{N}}$ is a non-negative martingale.

$$L_t := \prod_{s=1}^t (1 + \lambda_s B_s); \quad \text{Under } \mathcal{A}$$

At any stopping time τ , we have $\mathbb{E}_{\mathcal{H}_0}[L_{\tau}] = 1$ (optional stopping theorem). Ville's inequality: p-value equivalent: $\mathbb{P}(\exists t \in \mathbb{N} : p_t > 1/\alpha) = 1$

 $\mathbb{P}(\exists t \in \mathbb{N} : L_t > 1/\alpha) \leq \alpha$

 \mathcal{H}_0 , $(L_t)_{t \in \mathbb{N}}$ is a non-negative martingale.

$$L_t := \prod_{s=1}^t (1 + \lambda_s B_s); \quad \text{Under } \mathcal{X}$$

At any stopping time τ , we have $\mathbb{E}_{\mathscr{H}_0}[L_{\tau}] = 1$ (optional stopping theorem). p-value equivalent: $\mathbb{P}(\exists t \in \mathbb{N} : p_t > 1/\alpha) = 1$

Ville's inequality:

 $\mathbb{P}(\exists t \in \mathbb{N} : L_t > 1/\alpha) \leq \alpha$

 L_t is called an e-value

 L_t measures evidence against \mathcal{H}_0

 \mathcal{H}_0 , $(L_t)_{t \in \mathbb{N}}$ is a non-negative martingale.

• e-value: non-negative random variable E satisfying

for all
$$P \in \mathcal{H}_0$$
: \mathbb{E}_P

$[E] \leq 1.$

- e-value: non-negative random variable E satisfying
 - for all $P \in \mathcal{H}_0$: $\mathbb{E}_P[E] \leq 1$.
- We can define hypothesis tests based on e-values.

- e-value: non-negative random variable E satisfying
 - for all $P \in \mathcal{H}_0$: $\mathbb{E}_P[E] \leq 1$.
- But what is a good e-value?

• e-value: non-negative random variable E satisfying

for all
$$P \in \mathcal{H}_0$$
: \mathbb{E}_P

- But what is a good e-value?

 $\max_{E:E \text{ is an e-value } P \in \mathscr{H}_1} \mathbb{E}_P[\log E]$

 $[E] \leq 1.$

• GROW: Growth-Rate Optimal in Worst case: the e-value E^* that achieves

Safe Testing with e-values: Main Theorem

- The GROW e-value $E_{W_1}^*$ exists (for composite \mathcal{H}_0), and satisfies $\mathbb{E}_{Z \sim P_{W_1}}[\log E_{W_1}^*] = \sup_{E \in \mathscr{C}} \mathbb{E}_{Z \sim P_{W_1}}[\log E_{W_1}^*]$
- if the inf is achieved by some W_0° , the GROW e-value takes a simple form: $E_{W_1}^* = p_{W_1}(Z)/p_{W_0^*}(Z)$
- GROW e-values $E^*_{\mathcal{W}_1} = p_{W^*_1}(Z)/p_{W^*_0}(Z)$ can be found by a double KLminimization problem min min $D(P_{W_1} \parallel P_{W_0})$ and they satisfy $W_1 \in \mathcal{W}_1 \ W_0 \in \mathcal{W}_0$

$$\inf_{W \in \mathscr{W}_1} \mathbb{E}_{Z \sim P_W}[\log E^*_{\mathscr{W}_1}] = \sup_{E \in \mathscr{E}} \inf_{W \in \mathscr{W}_1}$$

$$E] = \inf_{W_0 \in \mathcal{W}_0} D(P_{W_1} \parallel P_{W_0})$$

 $\mathbb{E}_{Z \sim P_{W}}[\log E] = D(P_{W_{1}^{*}} \parallel P_{W_{0}^{*}})$

Menu

Why do we need a new theory for hypothesis testing?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- E-values
 - A lady tasting coffee
 - Highlights 1: interpretations
 - Highlights 2: RIPr and JIPr
 - Highlights 3: Combining experiments
 - Highlights 4: T-test simulations

Highlights: 1. Interpretations

- 1. Kelly Gambling
- 2. P-value, Type I error probability
- 3. Bayes Factors

$$\mathsf{BF} \coloneqq \frac{p_{W_1}(Z)}{p_{W_0}(Z)} \tag{1}$$

Simple $\mathcal{H}_0 = \{P_0\}$: Bayes factor is also an E-test statistic, since

$$\mathbf{E}_{P}[\mathbf{B}] \coloneqq \int p_{0}(z) \cdot \frac{p_{W_{1}}(z)}{p_{0}(z)} dz = 1.$$

$$(2)$$

(and e-values for more complicated problems can also be interpreted as Bayes factors (but not always vice versa), see the main theorem)

Menu

Why do we need a new theory for hypothesis testing?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- E-values
 - A lady tasting coffee
 - Highlights 1: interpretations
 - Highlights 2: RIPr and JIPr
 - Highlights 3: Combining experiments
 - Highlights 4: T-test simulations

Highlights 2. The JIPr - Main Theorem (1)

1. The GROW E-value $E_{W_1}^*$ exists, and satisfies

$$\begin{aligned} \mathbf{E}_{Z \sim P_{W_1}}[\log E^*_{W_1}] = \\ \sup_{E \in \mathcal{E}(\Theta_0)} \mathbf{E}_{Z \sim P_{W_1}}[\log E] = \inf_{W_0 \in \mathcal{W}(\Theta_0)} D(P_{W_1} \| P_{W_0}) \end{aligned}$$

2. Suppose that the inf is achieved by some W_0° , i.e. $\inf_{W_0 \in \mathcal{W}(\Theta_0)} D(P_{W_1} || P_{W_0}) = D(P_{W_1} || P_{W_0^\circ})$. Then the minimum is achieved uniquely by this W_0° and the GROW E-value takes a simple form: $E_{W_1}^* = p_{W_1}(Z)/p_{W_0^\circ}(Z)$.

Highlights 2. The JIPr -Main Theorem (2)

3. Now let $\Theta'_1 \subset \Theta_1$ and let \mathcal{W}'_1 be a convex subset of $\mathcal{W}(\Theta'_1)$ such that for all $\theta \in \Theta_0$, all $W_1 \in W'_1$, P_{θ} is absolutely continuous relative to P_{W_1} . Suppose that $\min_{W_1 \in W'_1} \min_{W_0 \in W_0} D(P_{W_1} \| P_{W_0}) = D(P^*_{W_1} \| P^*_{W_0}) < \infty$ is achieved by some (W_1^*, W_0^*) such that $D(P_{W_1} \| P_{W_0^*}) < \infty$ for all $W_1 \in \mathcal{W}'_1$. Then the minimum is achieved uniquely by (W_1^*, W_0^*) , and the GROW E-value $E_{W'_1}^*$ relative to W'_1 exists, is essentially unique, and is given by

$$E_{\mathcal{W}_{1}^{*}}^{*} = \frac{p_{\mathcal{W}_{1}^{*}}(Z)}{p_{\mathcal{W}_{0}^{*}}(Z)},$$
(3)

and it satisfies

$$\inf_{W \in \mathcal{W}'_1} \mathbf{E}_{Z \sim P_W}[\log E^*_{\mathcal{W}'_1}] =$$

$$\sup_{E \in \mathcal{E}(\Theta_0)} \inf_{W \in \mathcal{W}'_1} \mathbf{E}_{Z \sim P_W}[\log E] = D(P_{W_1^*} || P_{W_0^*}). \quad (4)$$
If $\mathcal{W}'_1 = \mathcal{W}(\Theta'_1)$, then by linearity of expectation we further
have $E^*_{\mathcal{W}'_1} = E^*_{\Theta'_1}.$

Highlights 2. The JIPr - The RIPr and the JIPr

- $\inf_{W_0 \in \mathcal{W}(\Theta_0)} D(P_{W_1} \| P_{W_0}) = D(P_{W_1} \| P_{W_0^\circ})$
- We call P_{W[◦]} the *Reverse Information Projection (RIPr)* of P_{W1} on {P_W : W ∈ W(Θ₀)}.

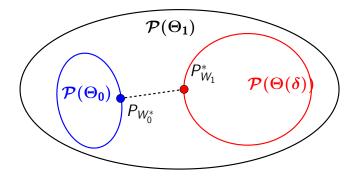
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Highlights 2. The JIPr - The RIPr and the JIPr

- $\min_{W_1 \in W_1'} \min_{W_0 \in W_0} D(P_{W_1} \| P_{W_0}) = D(P_{W_1}^* \| P_{W_0}^*) < \infty$
- We call (P_{W1}^{*}, P_{W0}) the Joint Information Projection (JIPr) of {P_W : W ∈ W'₁} and {P_W : W ∈ W(Θ₀)} onto each other.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Highlights: 2. The JIPr



・ロト・日本・日本・日本・日本・日本

Menu

Why do we need a new theory for hypothesis testing?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- E-values
 - A lady tasting coffee
 - Highlights 1: interpretations
 - Highlights 2: RIPr and JIPr
 - Highlights 3: Combining experiments
 - Highlights 4: T-test simulations

Highlights 3.: Optional Continuation Proposition

Suppose that *P* satisfies the assumptions. Let $E_{(0)} := 1$ and let, for $k = 1, \ldots, k_{\max}$, $E_{(k)} = e_k(Z_{(k)})$ be a function of $Z_{(k)}$ that is an E-value, i.e. $\mathbf{E}_{Z \sim P}[E_{(k)}] \leq 1$. Let $E^{(K)} := \prod_{k=0}^{K} E_{(k)}$, and let $K_{\text{STOP}} := K - 1$ where $K \geq 1$ is the smallest number for which $B_{(K)} = \text{STOP}$. Then

- 1. For all $k \ge 1$, $E^{(k)}$ is an E-value.
- 2. $E^{(K_{\text{STOP}})}$ is an E-value.

Corollary: $P_0 \in \mathcal{H}_0$, for every $0 \le \alpha \le 1$,

$$P_0(\mathrm{T}_{\alpha}(\mathsf{E}^{(\mathsf{K}_{\mathrm{STOP}})}) = \mathrm{REJECT}_0) \ (= P_0(\mathsf{E}^{(\mathsf{K}_{\mathrm{STOP}})} \geq \alpha^{-1}) \) \ \leq \alpha,$$

i.e. Type *I*-error guarantees are preserved under optional continuation, even for the most aggressive continuation rule which continues until the first *K* is reached such that either $\prod_{k=1}^{K} E_{(k)} \geq \alpha^{-1} \text{ or } K = k_{\max}.$

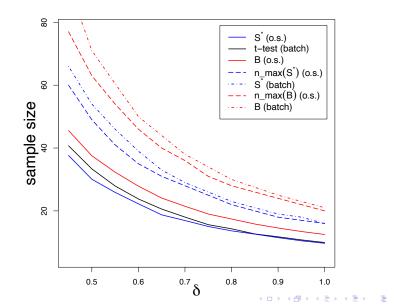
Menu

Why do we need a new theory for hypothesis testing?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- E-values
 - A lady tasting coffee
 - Highlights 1: interpretations
 - Highlights 2: RIPr and JIPr
 - Highlights 3: Combining experiments
 - Highlights 4: T-test simulations

Highlights 4: The GRO(W) in practice: the t-test (1)



900

Highlights 4: The GRO(W) in practice: the t-test (2)

- Our default GRO(W) *t*-test E-value preserves Type I error probabilities under optional stopping,
- it needs more data than the classical *t*-test in the worst-case, but

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

but not more on average under H₁!

Papers

- Safe Testing P.D. Grünwald, R. de Heide, W.M. Koolen (arXiv 1906.07801). Forthcoming in JRSS-B.
- Why optional stopping can be a problem for Bayesians -R. de Heide, P.D. Grünwald (Psychonomic Bulletin & Review 28(3):795-812, 2021)
- Optional stopping with Bayes factors A. Hendriksen, R. de Heide, P.D. Grünwald (Bayesian Analysis, 16(3):961–989, 2021)
- E-statistics, group invariance and any time valid testing -M.F. Pérez-Ortiz, T. Lardy, R. de Heide, P.D. Grünwald (arXiv 2208.07610, submitted)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Time for questions!

References

- P.D. Grünwald, R. de Heide, W.M. Koolen Safe Testing (2019)
- R. de Heide Bayesian learning: Challenges, Limitations and Pragmatics (2021)
- J. Ioannidis Why Most Published Research Findings Are False (2005)
- L.K. John, G. Loewenstein, D. Prelec Measuring the prevalence of questionable research practices with incentives for truth telling (2012)
- A. Ramdas, L. Wehbe The lady keeps tasting coffee (preprint)
- A. Ramdas Lecture: <u>http://stat.cmu.edu/~aramdas/betting/Feb11-class.pdf</u>
- H.R. Wulff, B. Andersen, P. Brandenhoff, F. Guttler What do doctors know about statistics? (1987)

about statistics? (1987)