Equiangular lines \& eigenvalue multiplicities

Equiangular lines

$$
\begin{aligned}
& N(d)=\max \# \text { lines in } \mathbb{R}^{d} \text { pairwise same angle } \\
& \text { egg. } N(2)=3 \\
& N(3)=6
\end{aligned}
$$

$$
\begin{aligned}
& \text { in all constructions, pairwise angles } \rightarrow 90^{\circ} \text { as } d \rightarrow \infty
\end{aligned}
$$

Equiangular lines with a fixed angle
$N_{\alpha}(d)=$ max \#equiangular lines in \mathbb{R}^{d} with angle $\cos ^{-1} \alpha$

$\underset{\substack{\text { Lemmens-Seidel }}}{ } \quad N_{1 / 3}(d)=2(d-1) \quad \forall d \geqslant 15$
Neumann'73 $\quad N_{\alpha}(d) \leqslant 2 d \quad$ unless $\alpha=\frac{1}{\text { odd integer }}$
Neumaier' $89 \quad N_{15}(d)=\left\lfloor\frac{3}{2}(d-1)\right\rfloor \quad \forall d \geqslant d_{0}$
\checkmark Next interesting case $\alpha=1 / 7$?
Finally, we remark that the recent result of Shearer [13], that every number $t \geqslant t^{*}=(2+\sqrt{5})^{1 / 2} \approx 2.058$ is a limit point from above of the set of largest eigenvalues of graphs, makes it likely that the hypothesis of Theorem
2.6 can be satisfied if and only if $t<t^{*}$. (As communicated to me by Professor J. J. Seidel, Eindhoven, this has indeed been verified by A. J. Hoffman and J. Shearer.) Thus the next interesting case, $t=3$, will require substantially stronger techniques.
(1) (1) (1) Some decades later...

Bukh' 16

$$
N_{\alpha}(d) \leqslant C_{\alpha} d
$$

Balla-Dräxler -Keerash-Sudakov '18

$$
N_{\alpha}(d) \leqslant 1.93 d^{2} \quad \begin{gathered}
\forall d \geqslant d_{0}(k) \\
\alpha \neq 1 / 3
\end{gathered}
$$

Problem: determine $\lim _{d \rightarrow \infty} \frac{N_{\alpha}(d)}{d}$ with angle $\cos ^{-1} \alpha$

Our work completely solves this problem Lemmens-Sidel $\mathrm{F}_{3} N_{1 / 3}(d)=2(d-1) \quad \forall d$ ruff. large Neumeitr's9 $N_{1 / 5}(d)=\left\lfloor\frac{3}{2}(d-1)\right\rfloor \quad \forall d$ suff. large
Our results $N_{17}(d)=\left\lfloor\frac{4}{3}(d-1)\right\rfloor \quad \forall d$ suff. large

$$
N_{1 / 9}(d)=\left\lfloor\frac{5}{4}(d-1)\right\rfloor \quad \forall d \text { surf. large }
$$

Th (JTYZZ) $\quad \forall$ integer $k \geqslant 2$

$$
N_{\frac{1}{2 k-1}}(d)=\left\lfloor\frac{k}{k-1}(d-1)\right\rfloor \quad \forall d \geqslant d_{0}(k)
$$

And for other angles \forall fixed $\alpha \in(0,1)$
set $\quad \lambda=\frac{1-\alpha}{2 \alpha} \quad k=k(\lambda)$
(reparamiterization) "Spectral radius order"
Then

$$
N_{\alpha}(d)= \begin{cases}\left\lfloor\frac{k}{k-1}(d-1)\right\rfloor & \forall d \geqslant d_{0}(d) \\ \text { if } k<\infty \\ d+o(d) & \text { if } k=\infty\end{cases}
$$

$k(\lambda)=$ spectral radius oder
$=\min k$ st. $\exists k$-vertex graph G with $\lambda_{1}(G)=\lambda$

$$
(\text { set } k(\lambda)=\infty \text { if } \nexists \operatorname{such} G)
$$

spectral radius of G $=$ top eigenvalue of adjacency met of G

Examples

α	λ	k	G
$1 / 3$	1	2	\vdots
$1 / 5$	2	3	Δ
$1 / 7$	3	4	$\boxed{\Delta}$
$1 /(1+2 \sqrt{2})$	$\sqrt{2}$	3	Ω

$\lim _{d \rightarrow \infty} \frac{N_{\alpha}(d)}{d}=\frac{k(\lambda)}{k(\lambda)-1}$ was conjectured by Jiang - Polyanskii who proved it for $\lambda<\sqrt{2+\sqrt{5}} \approx 2.058$

$$
\left\{\begin{array}{c}
\left.\lambda_{1}(G): G\right\} \subset \mathbb{R}, ~ \\
\text { afrit }
\end{array}\right.
$$

New result on eigenvalue multiplicity
The [JTyzz] Fix Δ. A connected n-vertex graph with max deg $\leqslant \Delta$ has second largest eigenvalue with multiplicity $O\left(\frac{n}{\log \log n}\right) \leftarrow$ sublimer o $(n) \quad$ adj mat

Chris Godsil Gordon Roble Algebraic Graph Theory

The problem that we are about to discuss is one of the founding problems of algebraic graph theory, despite the fact that at first sight it has little connection to graphs. A simplex in a metric space with distance function d is a subset S such that the distance $d(x, y)$ between any two distinct points of S is the same. In \mathbb{R}^{d}, for example, a simplex contains at most $d+1$ elements. However, if we consider the problem in real projective space then finding the maximum number of points in a simplex is not so easy. The points of this space are the lines through the origin of \mathbb{R}^{d}, and the distance between two lines is determined by the angle between them. Therefore, a simplex is a set of lines in \mathbb{R}^{d} such that the angle between any two distinct lines is the same. We call this a set of equiangular lines. In this chapter we show how the problem of determining the maximum number of equiangular lines in \mathbb{R}^{d} can be expressed in graph-theoretic terms.
Equiangular lines

put an edge if angle is $>90^{\circ}$

Given a list of vectors, $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{R}^{d}$
rank $\leqslant d$
is a symmetric positive semidefinite matrix (all eigenvalues $\geqslant 0$)

$$
=(1-\alpha) I-2 \alpha A_{G}+\alpha J \quad \text { (inge } v_{i} \cdot v_{j}= \pm \alpha
$$

Convert to spectral graph theory problem:
Given α, d, find graph G with $\max \#$ vertices N s.t

$$
(1-\alpha) I-2 \alpha A_{G}+\alpha J
$$

Recall: $N_{1 / 5}(d)=\left\lfloor\frac{3}{2}(d-1)\right\rfloor$ for all suff. large d Construction showing $\quad N_{\frac{1}{5}}(9) \geqslant 12$

Upper bound on $N_{\alpha}(d)$
Rank-nullity theorem: $N=$ rank + nullity

$$
J=\left(\begin{array}{l}
n!\prime \prime \\
\cdots \cdots \\
\cdots \cdots
\end{array}\right)
$$

$$
\begin{aligned}
N=\operatorname{rank}\left((1-\alpha) I-2 \alpha A_{G}+\alpha J\right) & +\operatorname{null}\left((1-\alpha) I-2 \alpha A_{G}+\alpha J\right) \\
\leqslant & d \\
\leqslant & +\operatorname{null}\left((1-\alpha) I-2 \alpha A_{G}+\alpha J\right) \\
& +\underbrace{\operatorname{null}\left((1-\alpha) I-2 \alpha A_{G}\right)}+1 \\
& =\operatorname{null}\left(\frac{1-\alpha}{2 \alpha} I-A_{G}\right)
\end{aligned}
$$

$$
=\text { muthiplicy of } \frac{(-2)}{22} \text { an an eigenvalue } T G
$$

Since $(1-\alpha) I-2 \alpha A_{G}+\alpha J$ is pos semidet,
If $\frac{1-\alpha-\lambda}{2 \alpha}$ is an eigral of A_{G}, it must be either the
(1) largest eigral OR (2) $2^{\text {nd }}$ largest

$$
\begin{aligned}
& G=\triangle \Delta \Delta \Delta
\end{aligned}
$$

Q: Must all connected graphs have small $2^{\text {nd }}$ eigral multiplicity?
Not all graphs can arise from equiangular lines
Switching operation
Thy (Balla-Dräxler-Keevah-Sudakov) $\forall \propto \exists \triangle$: can switch G to max deg $\leqslant \triangle$
Thm $[J T Y Z Z]$ A connected n-vertex graph with max deg $\leqslant \Delta$ has second largest eigenvalue with multiplicity $O_{\Delta}\left(\frac{n}{\log \log n}\right) \leftarrow$ sublinear on)

Near miss examples

- Strongly regular graphs eng. complete graphs. Paley graphs

Not bounded degree

- $V \vartheta V V_{0}^{1} \vartheta V$ mut $(0, G)$ linear, 0 : a middle eigrol $\triangle \triangle \triangle \triangle \Delta \Delta$ not connected

Open problem Max. possible 2 nd eigval multiplicity of a connected bounded degree graph?
Interesting to consider restrictions to (bad deg)

- regular graphs
- Cayley graphs

For expander graphs, milt $\left(\lambda_{2}, G\right)=O\left(\frac{n}{\log n}\right)$

$$
N(A) \geqslant(\mid+t)|A| \quad \forall A| |_{1 / 2}
$$

For non-expanding Cayley graphs, $\operatorname{mult}\left(\lambda_{2}, G\right)=O(1)$
Lee-Makarycher, building on Gromov, Colding-Minicozzi, Kleiner
Recently: Mckenzie-Rasmussen-Srivastava
for a connected d-reg graph, mull $\left(\lambda_{2}, G\right) \leqslant O_{d}\left(\frac{n}{\log _{\frac{1}{2}+\cdots \omega_{n}}^{n}}\right)$

Lower bound constructions

- a Cayley graph on $\operatorname{PSL}(2, p)=\left\{\left(\begin{array}{l}a b \\ c \\ d\end{array}\right): a, b, c, d \in F_{p} a d-b=1\right\} / \pm I$ (order $n \sim \frac{1}{2} p^{3}$)
gives 2 nd eigral multiplicity $\gtrsim n^{1 / 3}$
since all nontrivial representations hare $\operatorname{dim} \geqslant \frac{p-1}{2}$ (Froberius)
- With

Milan Maiman

Carl Schildkraut

Shengtong Zhang we constructed

- Connected bounded dey graph with $2^{\text {nd }}$ eigral mult

$$
\gtrsim \sqrt{\frac{n}{\log n}}
$$

- Conn. bold dey Cayley graphs with $2^{\text {nd }}$ egad molt

$$
\gtrsim n^{2 / 5}
$$

- group representations to get light mut.
- further manipulations to ensure $2^{\text {nd }}$ largest eigral

Open problem $\leqslant n^{1-c}$?

Thu If G is connected, n vtx, max $\operatorname{deg} \leqslant \Delta$ then its and largest eigral has multiplicity $O\left(\frac{n}{\log _{\log } n}\right)$
Proof ideas

Lem (Net removal significantly reduces spectral radius)

$$
\text { If } H=G-(\text { an } r \text {-net of } G)
$$

then $\lambda_{1}(H)^{2 r} \leqslant \lambda_{1}(G)^{2 r}-1$
If $\quad A_{H}^{2 r} \leqslant A_{G}^{2 r}-I \quad$ entrywise $\quad\left(\begin{array}{c}A_{H}=A_{\text {a }} \text { with the } \\ \text { defected edges zeroed })\end{array}\right.$ to check diagonal entries, count closed walks
Suffice to exhibit a closed walk' $\vee \theta$ in G not in H

Lem	(Local versus global spectra)	
	$\sum_{i=1}^{\|H\|} \lambda_{i}(H)^{2 r} \leqslant \sum_{v \in V(H)} \lambda_{1}(\underbrace{\left(B_{H}(v, r)\right.}_{r-\text { neighberthod }})^{2 r}$	\square

Pf

| \# closed walks of | $\left.\begin{array}{l}\text { \#such walks staring at } v\left(\begin{array}{c}\text { necessarily } \\ \text { length } \\ \text { stays } \\ B_{H}(v, r)\end{array}\right)\end{array}\right)$ |
| :---: | :--- | $\begin{aligned} \text { length } 2 r \text { in } H \mid & =1_{\nu}^{\top} A_{B_{H}(l u r)}^{2 r} 1_{\nu}^{2} \\ & \leqslant \lambda_{1}\left(B_{H}(v, r)\right)^{2 r}\end{aligned}$

Tool: Cauchy eigenvalue interlacing theorem

Real sym matin A

Then eigenvalues of A \& A^{\prime} interlace

\Rightarrow Deleting a vertex cannot reduce mult (λ, G) by more than 1

Proof sketch that $\operatorname{mult}\left(\lambda_{2}, G\right)=0(n)$ assume all r-balls have spec rad $\leqslant \lambda:=\lambda_{2}$

$$
H=G-\left(a \text { snell } r_{1}-n e t\right) \quad r_{1}=c \log \log n, r_{2}=c \log n
$$

By local-gloal

$$
\begin{aligned}
& \operatorname{mult}(\lambda, H) \lambda^{2 r_{2}} \leqslant \sum_{i} \lambda_{i}(H)^{2 r_{2}} \leqslant \sum_{v \in(H)} \lambda_{1} \frac{\lambda_{1}\left(B_{H}\left(v, r_{2}\right)\right)^{2 r_{2}}}{\langle\lambda-\varepsilon} d u \text { to net-a,ting } \\
& \Rightarrow \quad \operatorname{mult}\left(\lambda_{1} H\right)=o(n)
\end{aligned}
$$

By interlacing, $\operatorname{mut}\left(\lambda, G_{0}\right) \leqslant \operatorname{mut}(\lambda, H)+|\operatorname{net}|=o(n)$
Summary:

- bound moment by counting closed $2 r_{2}$-walks
- net removal significantly reduces local closed $2 r_{1}$-walks
- relate these via local spectral radii

Limitations of trace method
"Approximate $2^{\text {nd }}$ eigual" multiplicity
Above proof shows $\leqslant O\left(\frac{n}{\log \log n}\right)$ eigenvalues within $O\left(\frac{1}{\log n}\right)$ of λ_{2}
[Hainan, Schildkrout, Zhang, z.$] A construction with$ a matching \# of approx. $2^{\text {nd }}$ eigenvalues

