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Part I

Basics of survival analysis
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What is survival analysis?

A collection of statistical models and procedures for studying the time
until an event of interest takes place.

Other names

Survival analysis (time until death or onset of disease)

Reliability theory (time until equipment failure)

Duration analysis (time until stock market crash)

Event history analysis (time to first employment after graduation)
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Right censoring

In practice, for some subjects the event of interest cannot be observed:

the study ends before the event takes place

the subjects drops out of the study

another event happens before the event of interest

Survival time: T
Censoring time: C

Observed data:

Follow-up time: Y = min(T ,C )
Censoring indicator: ∆ = 1{T≤C}
Covariate vector: Z ∈ Rq

∗We assume T and C are independent
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Common functions in survival analysis

Survival function

S(t) = P(T > t) = 1− F (t)

Hazard function

λ(t) = lim
∆t→0

P(t ≤ T < t + ∆t | T ≥ t)

∆t

=
f (t)

S(t)

Cumulative hazard function

Λ(t) =

∫ t

0
λ(u)du = − log S(t)
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Nonparametric estimation

Given i.i.d. observations (Y1,∆1), . . . , (Yn,∆n) we want to estimate the
survival function S of the survival time T .

If there was no censoring, we could use the empirical survival function

Ŝn(t) =

∑n
i=1 1{Ti>t}

n

In the presence of censoring, we don’t always know whether Ti > t!
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Nonparametric estimation

Given i.i.d. observations (Y1,∆1), . . . , (Yn,∆n) we want to estimate the
survival function S of the survival time T .

Likelihood for n i.i.d. observations

L =
n∏

i=1

{f (Yi )[1− G (Yi )]}∆i {g(Yi )S(Yi )}1−∆i

where g and G denote the density and distribution function of C .

∗The factors [1− G(Yi )]
∆i , g(Yi )

1−∆i are uninformative.

Aim: find S that maximizes

n∑
i=1

[∆i log f (Yi ) + (1−∆i ) log S(Yi )]
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Kaplan-Meier estimator (1958)

Notations:

ordered distinct observed times Y(1),Y(2), . . . ,Y(r) (r ≤ n)

number of events at time Y(j) is d(j), j = 1, . . . , r

size of risk set at time Yj is R(j) =
∑n

i=1 1{Yi≥Y(j)}

The maximizer of log L is

Ŝn(t) =
∏

j :Y(j)≤t

(
1−

d(j)

R(j)

)
,

Ŝn(t) =


1 for t < Y(1)

1− d(1)

R(1)
for Y(1) ≤ t < Y(2)(

1− d(1)

R(1)

)(
1− d(2)

R(2)

)
for Y(2) ≤ t < Y(3)

. . .

Ŝn is step function with jumps at the event times
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Example: NCCTG Lung Cancer Data

Survival in patients with advanced lung cancer from the North Central
Cancer Treatment Group.

228 patients

time = survival time in days
(event: death from lung cancer)

status = censoring status

age = age in years

gender: 1=male, 2=female

inst = institution code
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Kaplan-Meier estimator

KM estimator for the whole population KM estimators based on gender
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Cox proportional hazards model (Cox, 1972)

The most popular model that incorporates covariate information

The conditional hazard rate is given by

λ(t|z) = λ0(t) eβ
′
0z .

where

the baseline hazard λ0 describes the variation over time
the vector of regression coefficients β0 describes the effect of the
covariates

Proportional hazards assumption

HR(z , z̃) =
λ(t|z)

λ(t|z̃)
=
λ0(t) eβ

′
0z

λ0(t) eβ
′
0z̃

= eβ
′
0(z−z̃)

The hazard ratio remains constant over time.
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Why is it so popular?

Easy interpretation:

HR(z , z̃) = eβ0,1 if z = z̃ + (1, 0, . . . , 0)

β0 can be estimated independently of λ0 by maximizing the partial
likelihood function

L(β) =
n∏

i=1

[
eβ
′Zi∑

Yj≥Yi
eβ
′Zj

]∆i

√
n(β̂n − β0)

d−→ N(0,Σ) and it is easy to estimate the asymptotic
variance-covariance matrix.
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Breslow estimator (Breslow and Crowley, 1974)

Λn(t) =
n∑

i=1

1{Ti≤t}∑n
j=1 e

β̂′nZj1{Tj≥Ti}
.

It is the maximizer of the Cox log-likelihood

l(β,Λ) =
n∑

i=1

∆i log λ(Yi ) + ∆iβ
′Zi − eβ

′Zi Λ(Yi )

for fixed β = β̂n.
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Example: NCCTG Lung Cancer Data

exp(coef) = HR


= 1 no effect

> 1 increase in hazard

< 1 reduction in hazard

Going from male to female results in nearly 40% reduction in hazard.

One year increase in age results in nearly 2% increase in hazard.
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Example: NCCTG Lung Cancer Data

Estimator of survival probability for a given patient

Ŝn(t|z) = exp
{
−Λ̂n(t) exp

(
β̂1 ∗ Sex + β̂2 ∗ Age

)}
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Part II

Beyond standard methods
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What if the PH assumption is violated?

Some alternatives to the Cox model

Cox model with time-varying effects

S(t|z) = exp
{
−Λ0 (t) exp(β′tz)

}
The effect of certain variables might get stronger or weaker with time.

accelerated failure time model

S(t|z) = exp
{
−Λ0

(
t exp(β′z)

)}
If exp(β′z) > 1 things happen faster in the life history of an individual.
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Some other non-standard settings

Noparametric estimation under shape constraints: the hazard
rate after a successful medical treatment is expected to be decreasing.

Mismeasured covariates: some variables such as the systolic blood
pressure, tumor size, dietary intake cannot be measured precisely.

Dependent censoring: patients may withdraw from the study
because their condition is deteriorating or improving

Competing risks: many mutually exclusive events are of interest,
such as death from different causes, and the occurrence of one of
these will prevent any other event from ever happening.
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Part III

Cure rate models
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The concept of ‘cure’

In classical survival analysis we assume that all the subjects will experience
the event of interest

lim
t→∞

S(t) = 0.

In some situations, such assumption is not realistic. Instead we have

lim
t→∞

S(t) > 0.

Curable diseases: some patients will never die from that disease

Demography: time to a second child after a first one

Finance: time until a bank or a business goes bankrupt

Marketing: time until someone buys a new product

We refer to all the subjects that do not experience the event of interest as
being cured and to the others as susceptibles.
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Who is cured?

As a result of censoring, cured individuals cannot be distinguished from
the uncured ones.

Cure status: B ∈ {0, 1}
Survival time:

T = BT ∗ + (1− B)∞

Censoring time: C <∞

Observed data:

Follow-up time: Y = min(T ,C )
Censoring indicator: ∆ = 1{T≤C}
Covariate vector: Z ∈ Rq
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When can we use cure models?

Medical evidence of cure

Inspection of the Kaplan Meier survival curve (it levels up at some
value larger than zero)

Sufficient follow-up: long plateau with heavy censoring

Figure from Amico & Van Keilegom (2018)

Kaplan-Meier estimator of the relapse free
survival for breast cancer patients (Wang,
2005)

286 patients, 179 are censored out of which
88% are in the plateau
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Eastern Cooperative Oncology Group (ECOG) Data

phase III clinical trial to evaluate the high dose interferon alpha-2b
(IFN) regimen against the placebo as the postoperative adjuvant
therapy for melanoma patients

284 observations, 30% censored, 13 observations in the plateau

The response variable is relapse free survival in years
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The concept of cure in medical applications

Is not always well defined, does not consider long-term adverse effects
of cancer treatment

It is reasonable to claim ‘cure’ for those who survive beyond a
particular time point (long term survivors) when there is a negligible
risk of the event of interest

The patient survives until his mortality risk reaches the same level as
the general population mortality risk (relative survival).
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Why do we need cure models?

The heterogeneity of the population leads to a violation of the PH
assumption. Standard analysis might give misleading results.

Cure models provide additional information: distinguish between a
curative or a life-prolonging effect.

Assessing the chances of being ‘cured’ is of interest for more informed
decision making (for planning further treatment).
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Family I: promotion time cure models (Yakovlev et al. 1996)

Known also as bounded cumulative hazard model or PH cure model.

S(t|z) = exp {−θ(z)Λ0(t)}

where

The baseline cumulative hazard is bounded limt→∞ Λ0(t) = 1

Usually θ(z) = exp(β′z) and the vector of covariates Z contains an
intercept

The cure rate is exp(−θ(x)) and the PH assumption is still satisfied.
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Biological interpretation: modelling cancer relapse

After a first cancer, N ≥ 0 carcinogenic cells can stay active in the
organism

It takes a certain time T̃k , k = 1, . . . ,N for each such cell to become
an active tumor

For individuals for whom N ≥ 1 (for uncured observations), the
survival time T is min{T̃1, . . . , T̃N}.

For cured individuals N = 0 and hence T =∞.

If N ∼ Poisson(θ) and T̃1, . . . , T̃n are i.i.d. with distribution F , then

P(T > t) = exp{−θF (t)}
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Family II: mixture cure models (Boag, 1949)

The survival of a general individual of the population is given by

S(t|x , z) = P(T > t|X = x ,Z = z) = 1− π(x) + π(x)Su(t|z).

where

X ∈ Rp, Z ∈ Rq are two covariate vectors containing the variables
affecting the probability of being cured and the survival of the
susceptibles

π(x) = P(B = 1|X = x) is the probability of being susceptible,

Su(t|z) = P(T > t|B = 1,Z = z) is the survival function of the
susceptibles.

We have

lim
t→∞

Su(t|z) = 0 and lim
t→∞

S(t|x , z) = 1− π(x) > 0
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Most common mixture cure model

Parametric logistic model for the incidence

π(x) = P(B = 1|x) = φ(γ0, x) =
eγ
′
0X

1 + eγ
′
0X

where X contains an intercept.

Semi-parametric Cox PH model for the latency

Su(t|z) = P(T > t|z ,B = 1) = exp
{
−Λ0(t) exp(β′0z)

}
At the level of the whole population the PH assumption is not satisfied!
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Semi-parametric estimation

Identifiability condition:

τFu < τG

Partial likelihood method does not work

The most common approach of maximizing the likelihood is via the
EM algorithm (smcure package)

Zero-tail constraint

Standard errors of the estimators are computed using bootstrap
procedures
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Semi-parametric estimation

Observed likelihood

L(γ, β,Λ) =
n∏

i=1

{
φ(γ,Xi )λ(Yi ) exp(β′Zi ) exp

[
−Λ(Yi ) exp(β′Zi )

]}∆i

{
1− φ(γ,Xi ) + φ(γ,Xi ) exp

[
−Λ(Yi ) exp(β′Zi )

]}1−∆i

Full likelihood

L(γ, β,Λ) =
n∏

i=1

{1− φ(γ,Xi )}1−Bi φ(γ,Xi )
Bi

×
{
λ(Yi ) exp(β′Zi )

}Bi∆i
{

exp
[
−Λ(Yi ) exp(β′Zi )

]}Bi
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EM algorithm

Iterative procedure

β̂
(m+1)
n = argmax

β

n∏
i=1

[
exp(β′Zi )∑

Yj≥Yi
Wm

j exp(β′Zj)

]∆i

Λ̂
(m+1)
n (t) =

n∑
i=1

1{Yi≤t}∆i∑
Yj≥Yi

Wm
j exp(β′Zj)

γ̂
(m+1)
n = argmax

γ

n∏
i=1

φ(γ,Xi )
Wm

i [1− φ(γ,Xi )]1−W
m
i

where
Wm

i = E
[
Bi | Yi ,∆i ,Xi ,Zi , γ̂

m
n , β̂

m
n , Λ̂

m
n

]
In particular Wm

i = 1 if ∆i = 1.
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Estimation based on presmoothing

1. Estimate the cure probability 1− π(x) non-parametrically by Ŝn(Y(r)|x)
where

1− π̂(x) = Ŝn(t|x) =
∏
t∈R

(
1− Ĥ1(dt|x)

Ĥ([t,∞)|x)

)
and

Ĥk([t,∞)|x) =
n∑

i=1

Kb(x − Xi )∑n
j=1 Kb(x − Xj)

1{Yi≤t,∆i=k}, k = 0, 1

2. ‘Project’ this nonparametric estimator to the class of logistic functions

γ̂n = argmax
γ

n∏
i=1

φ(γ,X )π̂(x) [1− φ(γ, x)]1−π̂(x)

3. Estimate β and Λ using the EM algorithm
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Results breast cancer data

Table from Amico & Van Keilegom (2018)
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Results ECOG melanoma data
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Results ECOG melanoma data

Cox model

Treatment reduces the risk by 30% (HR= 0.7)

Mixture cure model (smcure)

For patients that are not cured, treatment reduces the risk by 14% for
the patients (HR= 0.86)

Treatment increases the probability of being cured for a male patient
with age equal to the mean of the sample from 0.2 to 0.31.

Mixture cure model (presmoothing)

For patients that are not cured, treatment reduces the risk by 9% for
the patients (HR= 0.91)

Treatment increases the probability of being cured for a male patient
with age equal to the mean of the sample from 0.16 to 0.32.
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Cécile Durot (Université Paris Nanterre, France)

40



41



42


	 Basics
	Beyond standard methods
	Cure models
	closing slides

