# Delayed feedback stabilization of periodic orbits and spatio-temporal patterns

Babette de Wolff



Pyragas control [Pyragas '92]



Is there a matrix *B* that makes  $x_*$  stable?

Babette de Wolff

Spatio-temporal patterns: example



$$\dot{x}_1(t) = f(x_1(t)) + a(x_1(t) - x_2(t))$$
  
 $\dot{x}_2(t) = f(x_2(t)) + a(x_2(t) - x_1(t))$ 

Spatio-temporal patterns: example



$$\dot{x}_1(t) = f(x_1(t)) + a(x_1(t) - x_2(t)) + B\left[x_1(t) - x_2\left(t - \frac{p}{2}\right)\right]$$
$$\dot{x}_2(t) = f(x_2(t)) + a(x_2(t) - x_1(t)) + B\left[x_2(t) - x_1\left(t - \frac{p}{2}\right)\right]$$

cf. [Nakajima, Ueda, '98] and [Fiedler, Flunkert, Hövel, Schöll, '10]

Babette de Wolff

2 Limitations to Pyragas control

3 Control of spatio-temporal patterns

# Method of steps

Consider

$$\dot{x}(t) = g(x(t), x(t-\tau))$$

with  $g : \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N$ , one time delay  $\tau > 0$  and initial condition

$$x(t) = \phi(t), \quad t \in [-\tau, 0]$$

for  $\phi \in C([-\tau, 0], \mathbb{R}^N)$ .



# Method of steps

Consider

$$\dot{x}(t) = g(x(t), x(t-\tau))$$

with  $g : \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N$ , one time delay  $\tau > 0$  and initial condition

$$x(t) = \phi(t), \quad t \in [-\tau, 0]$$

for  $\phi \in C([-\tau, 0], \mathbb{R}^N)$ .

For  $t \in [0, \tau]$ :

$$\dot{x}(t) = g(x(t), \phi(t-\tau)).$$



# Method of steps

Consider

$$\dot{x}(t) = g(x(t), x(t-\tau))$$

with  $g : \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N$ , one time delay  $\tau > 0$  and initial condition

$$x(t) = \phi(t), \quad t \in [-\tau, 0]$$

for  $\phi \in C([-\tau, 0], \mathbb{R}^N)$ .

For  $t \in [0, \tau]$ :

$$\dot{x}(t) = g(x(t), \phi(t-\tau)).$$

 $\implies$  solve and repeat.



Consider

$$\dot{x}(t) = g(x(t), x(t-\tau))$$

with  $g : \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N$ , one time delay  $\tau > 0$  and initial condition

$$x(t) = \phi(t), \quad t \in [-\tau, 0]$$

for  $\phi \in C([-\tau, 0], \mathbb{R}^N)$ .



Generate semiflow  $S_t(\phi)$  with  $t \ge 0$  and  $\phi \in C([-\tau, 0], \mathbb{R}^N)$  by

- computing solution forwards
- updating history segment  $x_t(\theta) = x(t + \theta), \ \theta \in [-\tau, 0].$

Consider

$$\dot{x}(t) = G(x_t)$$

with history segment

$$x_t( heta) = x(t+ heta), \quad heta \in [- au, 0]$$

and right hand side

$$G: C\left([-\tau, 0], \mathbb{R}^N\right) \to \mathbb{R}^N.$$



Consider

$$\dot{x}(t) = G(x_t)$$

with history segment

$$x_t( heta) = x(t+ heta), \quad heta \in [- au, 0]$$

and right hand side

$$G: C\left([-\tau, 0], \mathbb{R}^N\right) \to \mathbb{R}^N.$$



Semiflow  $S_t(\phi) \in C([-\tau, 0], \mathbb{R}^N)$  with  $t \ge 0$  and  $\phi \in C([-\tau, 0], \mathbb{R}^N)$ 

 $S_t(\phi)$  is a  $C^1$  function if  $t \ge \tau$ .

2 Limitations to Pyragas control

3 Control of spatio-temporal patterns

Let  $x_*$  be a *p*-periodic solution of

$$\dot{x}(t) = f(x(t), t) + B\left[x(t) - x(t - p)\right]$$

with f(., t + p) = f(., t). The linearized equation becomes

$$\dot{y}(t) = \partial_1 f(x_*(t), t) y(t) + B[y(t) - y(t - p)].$$
 (1)

#### Stability of periodic orbit

The compact monodromy operator

$$S_{p}: C\left([-p,0],\mathbb{R}^{N}
ight) 
ightarrow C\left([-p,0],\mathbb{R}^{N}
ight)$$

captures how the system (1) evolves under a timestep p.

- The non-zero eigenvalues of S<sub>p</sub> determine the stability of x<sub>\*</sub> and are called the Floquet multipliers.
- Count **geometric multiplicity** of Floquet multiplier  $\mu$  by counting solutions of (1) of the form  $y(t + p) = \mu y(t)$ .

#### Invariance principle [Schneider & dW '21]

Geometric multiplicity of Floquet multiplier 1 is preserved under Pyragas control.

Proof: y(t + p) = y(t) is a solution of

$$\dot{y}(t) = \partial_1 f(x_*(t), t) y(t) + B\left[y(t) - y(t-p)\right]$$

if and only if it is a solution of

$$\dot{y}(t) = \partial_1 f(x_*(t), t) y(t).$$

#### Odd number limitation (cf. [Nakajima '97])

If uncontrolled system has no Floquet multiplier 1 and odd number of Floquet multipliers larger than 1: Pyragas control fails to stabilize.

Introduce homotopy parameter  $\alpha \in [0, 1]$ :

$$\dot{y}(t) = \partial_1 f(x_*(t), t) y(t) + \alpha B [y(t) - y(t - p)].$$



Odd number limitation does not apply to autonomous systems!

Always trivial multiplier 1 since  $\dot{x}_*$  is always a solution of

$$\dot{y}(t) = f'(x_*(t))y(t).$$

Example: stabilization close to Hopf bifurcation [Fiedler et al. '07]

But: need a non-scalar control gain: if uncontrolled system has any Floquet multiplier larger than 1,  $x_*$  is an unstable solution of

$$\dot{x}(t) = f(x(t)) + b[x(t) - x(t - p)]$$

with  $b \in \mathbb{R}$  [Schneider & dW '21]



2 Limitations to Pyragas control

3 Control of spatio-temporal patterns

Assume that the autonomous ODE

$$\dot{x}(t) = f(x(t))$$

is equivariant with respect to a compact group  $\Gamma \subseteq GL(N, \mathbb{R})$ , i.e.

$$f(\gamma x) = \gamma f(x)$$
 for all  $x \in \mathbb{R}^N$ ,  $\gamma \in \Gamma$ .



Given a periodic solution  $x_*$  with *minimal* period p > 0:

- group K ⊆ Γ of spatial symmetries
- group H ⊆ Γ of spatio-temporal symmetries

• map  $\vartheta: H \to \mathbb{R}/(\mathbb{Z}p)$ 

#### Equivariant control term

$$\dot{x}(t) = f(x(t)) + B[x(t) - hx(t - \vartheta(h))]$$
  
with  $B \in \mathbb{R}^{N \times N}$ .

Pattern selective in networks of coupled oscillators [Schneider, '13].



The solution  $x_*$  is a **discrete wave** if  $H/K \simeq \mathbb{Z}_n$  for some  $n \in \mathbb{N}$ .

Given a  $h \in H$ , define twisted monodromy operator as

 $h^{-1}Y_{\vartheta(h)}$ 

where  $Y_t$  is the fundamental solution of  $\dot{y}(t) = f'(x_*(t))y(t)$ .

## Stabilization of discrete waves: idea

# Without symmetry: monodromy operator $Y_p$



Pyragas control with scalar control gain fails to stabilize.

With symmetry: twisted monodromy operator  $h^{-1}Y_{\vartheta}(h)$ 



Equivariant control with scalar control gain can stabilize.

#### Stabilization of discete waves [dW, '21]

Assume that  $x_*$  is a discrete wave and that there exists a spatio-temporal symmetry  $h \in H$  such that the twisted monodromy operator  $h^{-1}Y_{\vartheta(h)}$  satisfies:

• the eigenvalue  $1 \in \sigma(h^{-1}Y_{\vartheta(h)})$  is algebraically simple and  $h^{-1}Y_{\vartheta(h)}$ has no other eigenvalues on the unit circle;

• if 
$$\mu \in \sigma(h^{-1}Y_{\vartheta(h)})$$
 and  $|\mu| > 1$ , then  $-e^2 < \mu < -1$ .

Then  $x_*$  is a stable solution of

$$\dot{x}(t) = f(x(t)) + b[x(t) - hx(t - \vartheta(h))]$$

for some b < 0.

# Characteristic matrix function

#### Definition [Kaashoek & Verduyn Lunel]

Let  $T: X \to X$  a bounded linear operator on a complex Banach space Xand let  $\Delta : \mathbb{C} \to \mathbb{C}^{N \times N}$  an analytic matrix-valued function. Then  $\Delta$  is a **characteristic matrix function** for T if there exist analytic functions

$$E, F: \mathbb{C} \to \mathcal{L}(\mathbb{C}^N \oplus X)$$

whose values are bijective operators, and such that

$$\begin{pmatrix} \Delta(z) & 0 \\ 0 & I_X \end{pmatrix} = E(z) \begin{pmatrix} I_{\mathbb{C}^N} & 0 \\ 0 & I - zT \end{pmatrix} F(z)$$

for all  $z \in \mathbb{C}$ .

 $\Delta$  'summarizes' the spectral information of the operator  $\mathcal{T}$ :

Determine existence and algebraic multiplicity of eigenvalues from

 $\det \Delta(z) = 0.$ 

Determine geometric multiplicity of eigenvalues from dim ker  $\Delta(z)$ .

Theorem [Kaashoek & Verduyn Lunel, '21]

Assume that bounded operator  $T: X \rightarrow X$  is of the form

T = V + R

with  $V : X \to X$  a Volterra operator and  $R : X \to X$  an operator of finite rank N. Then there exists a characteristic matrix function

$$\Delta: \mathbb{C} \to \mathbb{C}^{N \times N}$$

for T.

# Applications to feedback control

Without symmetry [Kaashoek & VL '94 & '21]

The monodromy operator  $S_p$  of the linearized equation

$$\dot{y}(t) = f'(x_*(t))y(t) + K[y(t) - y(t - p)]$$

has a characteristic matrix.

#### With symmetry [dW '21]

The twisted monodromy operator  $h^{-1}S_{\vartheta(h)}$  of the linearized equation

$$\dot{y}(t)=f'(x_*(t))y(t)+K\left[y(t)-hy(t-artheta(h)
ho)
ight]$$

has a characteristic matrix function.

### References

- [dW21] B. de Wolff. *Delayed feedback stabilization with and without symmetry*. PhD thesis, Freie Universität Berlin, 2021.
- [dW22] B. de Wolff. Characteristic matrix functions for delay differential equations with symmetry. *arXiv preprint arXiv:2201.12190*, 2022.
- [dWS21] B. de Wolff and I. Schneider. Geometric invariance of determining and resonating centers: Odd-and any-number limitations of pyragas control. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 31(6):063125, 2021.
- [FFS10] B. Fiedler, V. Flunkert, and E. Schöll. Delay stabilization of periodic orbits in coupled oscillator systems. *Phil. Trans. Rol. Soc. A*, 368, 2010.
- [KV21] M. Kaashoek and S. Verduyn Lunel. Completeness theorems, characteristic matrices and applications to integral and differential operators. Birkhäuser, 2021. to appear.
- [Nak97] H. Nakajima. On analytical properties of delayed feedback control of chaos. *Physics Letters A*, 232:207–210, 1997.
- [NU98] H. Nakajima and Y. Ueda. Half-period delayed feedback control for dynamical systems with symmetries. *Physical Review E*, 58, 1998.
- [Pyr92] K. Pyragas. Continuous control of chaos by self-controlling feedback. *Physics Letters* A, 170(6):421–428, 1992.