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-
Pyragas control [Pyragas '92]

system with
unstable
periodic orbit NONINVASIVE
zi(t+p) = x.(t) control term
A A

4 \

i(t) = F(x() + B [a(t) — a(t — p)]

/ |

gain matrix time
or control gain delay

Is there a matrix B that makes x, stable?
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Spatio-temporal patterns: example

z1(t) = xo(t — p/2)

(=)

[en}
RS
bS]

x(t) = F(a(t)) + aa(t) — x(t))

xo(t) = f(xa(t)) + alxa(t) — xi(t))
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Spatio-temporal patterns: example

z1(t) = xo(t — p/2)

(=)

[en}
RS
bS]

sa(t) = Fa(e) + abalt) = e(6) + B Pa(t) = (£ = 5]
a(t) = Fa(t) + albe(t) = x(6) + B Pe(t) —x (= 2]
cf. [Nakajima, Ueda, '98] and [Fiedler, Flunkert, Hovel, Schall, '10]
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Delay differential equations as dynamical systems

Limitations to Pyragas control

Control of spatio-temporal patterns
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Method of steps

Consider

x(t) = g(x(t), x(t — 7)) \
with g : RV x RV - RV, \\/
one time delay 7 > 0 and

initial condition

-7 T 2T
x(t) = ¢(t), te[-T,0]
for ¢ € C ([, 0],RN).
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Method of steps

Consider

x(t) = g(x(t), x(t — 7)) \
with g : RV x RV - RV, \\/
one time delay 7 > 0 and

initial condition

() = 6(1), te[-n0]
for p € C ([—7‘, 0],RN)_

For t € [0, 7]:
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Method of steps

Consider

x(t) = g(x(t), x(t — 7)) \
with g : RV x RV = RV, \\/
one time delay 7 > 0 and
initial condition -7 - o

x(t) =¢(t), te[-1,0]
for ¢ € C ([, 0],RN).

For t € [0, 7]:

—> solve and repeat.
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Delay differential equations as dynamical systems

Consider

x(t) = g(x(t), x(t — 7))
with g : RV x RN — RV,

one time delay 7 > 0 and \_/

initial condition

x(t) = ¢(t), te][-T,0]
for ¢ € C ([, 0],]RN).

Generate semiflow S¢(¢) with t >0 and ¢ € C ([, 0],RN) by
m computing solution forwards

m updating history segment x;(0) = x(t + ), 0 € [-7,0].
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Delay differential equations as dynamical systems

Delay differential equations as dynamical systems

Consider

x(t) = G(xt)

with history segment \

xt(0) =x(t+0), 0¢€][-T,0]

—r T
and right hand side

G:C ([—T, 0],RN) SRV,
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Delay differential equations as dynamical systems

Delay differential equations as dynamical systems

Consider

x(t) = G(xt)

with history segment \

xt(0) =x(t+0), 0¢€][-T,0]

and right hand side

G:C ([—7, 0],RN) SRV,

Semiflow S;(¢) € C ([-7,0],RY) with t > 0 and ¢ € C ([-,0], RV)
Si(#) is a C! function if t > 7.
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Limitations to Pyragas control

Delay differential equations as dynamical systems

Limitations to Pyragas control

Control of spatio-temporal patterns
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Limitations to Pyragas control

Let x, be a p-periodic solution of
x(t) = f(x(t), t) + Bx(t) = x(t — p)]

with f(.,t+ p) = f(.,t). The linearized equation becomes
y(t) = 0uf (x(1), t)y(t) + Bly(t) — y(t — p)]. (1)

Stability of periodic orbit

m The compact monodromy operator

Sp: C ([-p,0,RY) = C ([-p,0],RY)

captures how the system (1) evolves under a timestep p.

m The non-zero eigenvalues of S, determine the stability of x, and are
called the Floquet multipliers.

m Count geometric multiplicity of Floquet multiplier u by counting
solutions of (1) of the form y(t + p) = py(t).
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Limitations to Pyragas control

Invariance principle [Schneider & dW '21]

Geometric multiplicity of Floquet multiplier 1 is preserved under Pyragas
control.

Proof: y(t+ p) = y(t) is a solution of

y(t) = 0f (x(2), t)y(t) + Bly(t) — y(t - p)]

if and only if it is a solution of

y(t) = 8lf-(x*(t)? t)y(t)'
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Limitations to Pyragas control

Odd number limitation (cf. [Nakajima '97])

If uncontrolled system has no Floquet multiplier 1 and odd number of
Floquet multipliers larger than 1: Pyragas control fails to stabilize.

Introduce homotopy parameter

a € [0,1]: . /

y(t) = o f(x(t), t)y(t)
+aBly(t) — y(t—p)].
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Limitations to Pyragas control

Odd number limitation does not apply to autonomous systems!

Always trivial multiplier 1 since x, is always a solution of

y(t) = £ (a(t)y(t).

Example: stabilization close to Hopf bifurcation [Fiedler et al. '07]

But: need a non-scalar control gain:
if uncontrolled system has any
Floquet multiplier larger than 1,

X, is an unstable solution of

x(t) = f(x(1))
+b[x(t) — x(t - p)]

e
N

e
2

with b € R [Schneider & dW '21]
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Limitations to Pyragas control

Delay differential equations as dynamical systems

Limitations to Pyragas control

Control of spatio-temporal patterns
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Control of spatio-temporal patterns

Assume that the autonomous ODE
(1) = F(x(1))
is equivariant with respect to a compact group I' C GL(N,R), i.e.
f(yx) = ~f(x) forall x e RV, v e,

= heH G!ven a.\ .perlodlc. solution x
A S with minimal period p > 0:

m group K C T of spatial
symmetries

m group H C T of
spatio-temporal
symmetries

m map ¥ : H— R/(Zp)
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Equivariant control term
x(t) = f(x(t))+B [x(t) — hx(t — I(h))]

with B € RNxN,

Pattern selective in networks of cou-
pled oscillators [Schneider, "13].

The solution x, is a discrete wave if H/K ~ 7, for some n € N.

Given a h € H, define twisted monodromy operator as
h~t Yﬂ(h)

where Y; is the fundamental solution of y(t) = f/(x.(t))y(t).
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Control of spatio-temporal patterns

Stabilization of discrete waves: idea

With symmetry:
twisted monodromy
operator h=1Yy(h)

Without symmetry:
monodromy operator Y,

—oe o—)
1 1
Pyragas control with scalar Equivariant control with scalar
control gain fails to stabilize. control gain can stabilize.
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Control of spatio-temporal patterns

Stabilization of discete waves [dW, '21]

Assume that x, is a discrete wave and that there exists a spatio-temporal
symmetry h € H such that the twisted monodromy operator h™! Yo(h)
satisfies:

m the eigenvalue 1 € o(h~! Yy(n)) is algebraically simple and h1 Yo(n)
has no other eigenvalues on the unit circle;
m if p€o(h™'Yyp)) and || > 1, then —e® < pu < —1.
Then x, is a stable solution of
x(t) = f(x(t)) + b[x(t) — hx(t — I(h))]

for some b < 0.
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Control of spatio-temporal patterns

Characteristic matrix function

Definition [Kaashoek & Verduyn Lunel]

Let T : X — X a bounded linear operator on a complex Banach space X
and let A : C — CV*N an analytic matrix-valued function. Then A is a
characteristic matrix function for T if there exist analytic functions

E,F:C— L(CVe X)

whose values are bijective operators, and such that

(A(()z) It))( ) _E() (/%N I—OzT> Fl2)

for all z € C.
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Control of spatio-temporal patterns

A ‘summarizes’ the spectral information of the operator T:

m Determine existence and algebraic multiplicity of eigenvalues from
det A(z) = 0.

m Determine geometric multiplicity of eigenvalues from dim ker A(z).

Theorem [Kaashoek & Verduyn Lunel, "21]

Assume that bounded operator T : X — X is of the form

T=V+R

with V : X — X a Volterra operator and R : X — X an operator of finite
rank N. Then there exists a characteristic matrix function

. NxN
A:C—C
for T.
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Control of spatio-temporal patterns

Applications to feedback control

Without symmetry [Kaashoek & VL '94 & '21]

The monodromy operator S, of the linearized equation

y(t) = £ (a(t)y(t) + K [y(t) — y(t = p)]

has a characteristic matrix.

With symmetry [dW '21]

The twisted monodromy operator h_ISg(h) of the linearized equation

y(t) = £ (x(t)y(t) + K [y(t) — hy(t = 9(h)p)]

has a characteristic matrix function.
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Control of spatio-temporal patterns
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