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Pyragas control [Pyragas ’92]

system with
unstable

periodic orbit NONINVASIVE
control term

gain matrix
or control gain

time
delay

x⇤(t + p) = x⇤(t)
<latexit sha1_base64="gRHBOtTvQQ6EcEKTTq8agFJnnnQ="></latexit>

ẋ(t) = f(x(t)) + B [x(t) � x(t � p)]
<latexit sha1_base64="eVyJHtpT2/luG//5RW29rV60ssQ="></latexit>

Is there a matrix B that makes x∗ stable?
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Spatio-temporal patterns: example

x1 x2
a

0 p
2

p

x1(t) = x2(t− p/2)

ẋ1(t) = f (x1(t)) + a(x1(t)− x2(t))+B
[
x1(t)− x2

(
t − p

2

)]
ẋ2(t) = f (x2(t)) + a(x2(t)− x1(t))+B

[
x2(t)− x1

(
t − p

2

)]
cf. [Nakajima, Ueda, ’98] and [Fiedler, Flunkert, Hövel, Schöll, ’10]
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Delay differential equations as dynamical systems

Method of steps

Consider

ẋ(t) = g(x(t), x(t − τ))

with g : RN × RN → RN ,
one time delay τ > 0 and
initial condition

x(t) = ϕ(t), t ∈ [−τ, 0]

for ϕ ∈ C
(
[−τ, 0],RN

)
.

−τ τ 2τ

For t ∈ [0, τ ]:
ẋ(t) = g(x(t), ϕ(t − τ)).

=⇒ solve and repeat.
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ẋ(t) = g(x(t), ϕ(t − τ)).

=⇒ solve and repeat.

Babette de Wolff Delayed feedback stabilization 3 / 16



Delay differential equations as dynamical systems

Method of steps

Consider
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Delay differential equations as dynamical systems

Delay differential equations as dynamical systems

Consider

ẋ(t) = g(x(t), x(t − τ))

with g : RN × RN → RN ,
one time delay τ > 0 and
initial condition

x(t) = ϕ(t), t ∈ [−τ, 0]

for ϕ ∈ C
(
[−τ, 0],RN

)
.

−τ t− τ t

Generate semiflow St(ϕ) with t ≥ 0 and ϕ ∈ C
(
[−τ, 0],RN

)
by

computing solution forwards

updating history segment xt(θ) = x(t + θ), θ ∈ [−τ, 0].
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Delay differential equations as dynamical systems

Delay differential equations as dynamical systems

Consider

ẋ(t) = G (xt)

with history segment

xt(θ) = x(t + θ), θ ∈ [−τ, 0]

and right hand side

G : C
(
[−τ, 0],RN

)
→ RN .

−τ τ

Semiflow St(ϕ) ∈ C
(
[−τ, 0],RN

)
with t ≥ 0 and ϕ ∈ C

(
[−τ, 0],RN

)
St(ϕ) is a C 1 function if t ≥ τ .
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Limitations to Pyragas control

Let x∗ be a p-periodic solution of

ẋ(t) = f (x(t), t) + B [x(t)− x(t − p)]

with f ( . , t + p) = f ( . , t). The linearized equation becomes

ẏ(t) = ∂1f (x∗(t), t)y(t) + B [y(t)− y(t − p)] . (1)

Stability of periodic orbit

The compact monodromy operator

Sp : C
(
[−p, 0],RN

)
→ C

(
[−p, 0],RN

)
captures how the system (1) evolves under a timestep p.

The non-zero eigenvalues of Sp determine the stability of x∗ and are
called the Floquet multipliers.

Count geometric multiplicity of Floquet multiplier µ by counting
solutions of (1) of the form y(t + p) = µy(t).
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Limitations to Pyragas control

Invariance principle [Schneider & dW ’21]

Geometric multiplicity of Floquet multiplier 1 is preserved under Pyragas
control.

Proof: y(t + p) = y(t) is a solution of

ẏ(t) = ∂1f (x∗(t), t)y(t) + B [y(t)− y(t − p)]

if and only if it is a solution of

ẏ(t) = ∂1f (x∗(t), t)y(t).
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Limitations to Pyragas control

Odd number limitation (cf. [Nakajima ’97])

If uncontrolled system has no Floquet multiplier 1 and odd number of
Floquet multipliers larger than 1: Pyragas control fails to stabilize.

Introduce homotopy parameter
α ∈ [0, 1]:

ẏ(t) = ∂1f (x∗(t), t)y(t)

+ αB [y(t)− y(t − p)] .

×

1

0
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Limitations to Pyragas control

Odd number limitation does not apply to autonomous systems!

Always trivial multiplier 1 since ẋ∗ is always a solution of

ẏ(t) = f ′(x∗(t))y(t).

Example: stabilization close to Hopf bifurcation [Fiedler et al. ’07]

But: need a non-scalar control gain:
if uncontrolled system has any
Floquet multiplier larger than 1,
x∗ is an unstable solution of

ẋ(t) = f (x(t))

+ b [x(t)− x(t − p)]

with b ∈ R [Schneider & dW ’21] 1

0

Babette de Wolff Delayed feedback stabilization 8 / 16



Limitations to Pyragas control

1 Delay differential equations as dynamical systems

2 Limitations to Pyragas control

3 Control of spatio-temporal patterns

Babette de Wolff Delayed feedback stabilization 8 / 16



Control of spatio-temporal patterns

Assume that the autonomous ODE

ẋ(t) = f (x(t))

is equivariant with respect to a compact group Γ ⊆ GL(N,R), i.e.

f (γx) = γf (x) for all x ∈ RN , γ ∈ Γ.

x∗(t)
x∗(t+ ϑ(h))

k ∈ K
h ∈ H

Given a periodic solution x∗
with minimal period p > 0:

group K ⊆ Γ of spatial
symmetries

group H ⊆ Γ of
spatio-temporal
symmetries

map ϑ : H → R/(Zp)
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Control of spatio-temporal patterns

Equivariant control term

ẋ(t) = f (x(t))+B [x(t)− hx(t − ϑ(h))]

with B ∈ RN×N .

Pattern selective in networks of cou-
pled oscillators [Schneider, ’13].

x∗(t)
x∗(t+ ϑ(h))

k ∈ K
h ∈ H

The solution x∗ is a discrete wave if H/K ≃ Zn for some n ∈ N.

Given a h ∈ H, define twisted monodromy operator as

h−1Yϑ(h)

where Yt is the fundamental solution of ẏ(t) = f ′(x∗(t))y(t).
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Control of spatio-temporal patterns

Stabilization of discrete waves: idea

Without symmetry:
monodromy operator Yp

1

0

Pyragas control with scalar
control gain fails to stabilize.

With symmetry:
twisted monodromy
operator h−1Yϑ(h)

1

0

Equivariant control with scalar
control gain can stabilize.
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Control of spatio-temporal patterns

Stabilization of discete waves [dW, ’21]

Assume that x∗ is a discrete wave and that there exists a spatio-temporal
symmetry h ∈ H such that the twisted monodromy operator h−1Yϑ(h)

satisfies:

the eigenvalue 1 ∈ σ(h−1Yϑ(h)) is algebraically simple and h−1Yϑ(h)

has no other eigenvalues on the unit circle;

if µ ∈ σ(h−1Yϑ(h)) and |µ| > 1, then −e2 < µ < −1.

Then x∗ is a stable solution of

ẋ(t) = f (x(t)) + b [x(t)− hx(t − ϑ(h))]

for some b < 0.
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Control of spatio-temporal patterns

Characteristic matrix function

Definition [Kaashoek & Verduyn Lunel]

Let T : X → X a bounded linear operator on a complex Banach space X
and let ∆ : C → CN×N an analytic matrix-valued function. Then ∆ is a
characteristic matrix function for T if there exist analytic functions

E ,F : C → L(CN ⊕ X )

whose values are bijective operators, and such that(
∆(z) 0
0 IX

)
= E (z)

(
ICN 0
0 I − zT

)
F (z)

for all z ∈ C.
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Control of spatio-temporal patterns

∆ ‘summarizes’ the spectral information of the operator T :

Determine existence and algebraic multiplicity of eigenvalues from

det∆(z) = 0.

Determine geometric multiplicity of eigenvalues from dim ker∆(z).

Theorem [Kaashoek & Verduyn Lunel, ’21]

Assume that bounded operator T : X → X is of the form

T = V + R

with V : X → X a Volterra operator and R : X → X an operator of finite
rank N. Then there exists a characteristic matrix function

∆ : C → CN×N

for T .
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Control of spatio-temporal patterns

Applications to feedback control

Without symmetry [Kaashoek & VL ’94 & ’21]

The monodromy operator Sp of the linearized equation

ẏ(t) = f ′(x∗(t))y(t) + K [y(t)− y(t − p)]

has a characteristic matrix.

With symmetry [dW ’21]

The twisted monodromy operator h−1Sϑ(h) of the linearized equation

ẏ(t) = f ′(x∗(t))y(t) + K [y(t)− hy(t − ϑ(h)p)]

has a characteristic matrix function.

Babette de Wolff Delayed feedback stabilization 15 / 16



Control of spatio-temporal patterns
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