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Chapter 1 
Introduction

This chapter is adapted and extended from: 

de Geus, E.J.C, van Lien, R., Neijts, M., & Willemsen, G. (2015).  

Genetics of Autonomic Nervous System Activity (pp. 357-390).  

In: Canli, T. (ed), The Oxford Handbook of Molecular Psychology,  

Oxford University Press: London.
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Cardiovascular disease (CVD) is one of the main causes of death in Westernized countries. 

The etiology of CVD is complex, with many different factors (demographical, lifestyle, 

psychological, and genetic) contributing to an increased risk of CVD development (Brotman, 

Golden, & Wittstein, 2007; Brotman, Walker, Lauer, & O’Brien, 2005). The physiological 

risk factors that form the final common pathway to CVD include the metabolic syndrome, 

with hypertension, hyperlipidemia, hyperglycemia, and android obesity as core features 

(Bayturan et al., 2010); inflammation (Danesh et al., 2008); coagulation/fibrinolysis 

imbalance (Libby & Theroux, 2005); reduced heart rate variability (Dekker et al., 1997; 

Dekker et al., 2000); and increased heart rate (Fox et al., 2007). Strikingly, activity of the 

autonomic nervous system (ANS) is associated with all of these physiological risk factors 

(Charkoudian & Rabbitts, 2009; Lambert & Lambert, 2011; Malpas, 2010; Straub, Wiest, 

Strauch, Harle, & Scholmerich, 2006; Task Force of the European Society of Cardiology 

and the North American Society of Pacing and Electrophysiology, 1996; Tracey, 2009; 

von Kanel R., Mills, Fainman, & Dimsdale, 2001). Because the ANS is very sensitive to 

psychosocial stress, it plays a key role in almost all models in biobehavioral medicine 

that try to account for the well-known role of social (Karasek et al., 1988; Rosengren et 

al., 2004; Siegrist, Peter, Junge, Cremer, & Seidel, 1990) and psychological (Nicholson, 

Kuper, & Hemingway, 2006) sources of chronic stress in hypertension, diabetes, and 

cardiac disease.

There are large individual differences in the activity of the ANS in the basal resting 

state (Berntson, Cacioppo, & Quigley, 1994; Berntson, Norman, Hawkley, & Cacioppo, 

2008; Cacioppo et al., 1994; Grossman & Kollai, 1993; Light, Kothandapani, & Allen, 1998; 

Salomon, Matthews, & Allen, 2000). These differences in ANS activity are further amplified 

in response to brief laboratory stressors (de Geus, Kupper, Boomsma, & Snieder, 2007; 

Houtveen, Rietveld, & de Geus, 2002; Lucini, Norbiato, Clerici, & Pagani, 2002; Wang 

et al., 2009) as well as prolonged psychosocial stress (Riese, van Doornen, Houtman, 

& de Geus, 2000; Vrijkotte, van Doornen, & de Geus, 2004). This chapter reviews the 

contribution of genetic factors to the individual differences in ANS activity at rest and 

during stress. We first present a short overview of the ANS and of the measurement 

strategies used to study it, with a focus on (ambulatory) noninvasive measures that can 

be used in population-based samples that are sufficiently large to allow genetic analyses. 

Next, we review the twin studies on the heritability of these ANS measures and present a 

list of candidate genes that have already been found to influence ANS activity.
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The autonomic nervous system 

The ANS can be divided in two branches; the sympathetic nervous system (SNS) and the 

parasympathetic nervous system (PNS). The SNS is best known for its key role in the ‘fight-

or-flight’ response. Activity of the SNS causes, among other things, an increase in heart 

rate, contractility, blood pressure, breathing rate, bronchodilation, sweat production, 

epinephrine secretion, and a redistribution of blood flow favoring the muscles. The PNS, 

on the other hand, promotes the maintenance of the body by acquiring energy from food 

and getting rid of wastes. The PNS is therefore often labeled as the “rest and digest” 

branch of the ANS. Its activity causes slowing of the heart, constriction of the pupils, 

stimulation of the gut and salivary glands, and other responses that help restore energy. 

Many organs are innervated by both the sympathetic and the parasympathetic branches 

of the ANS, and an increase in the activity of these branches typically exerts opposing 

actions. However, some organs are not dually innervated (e.g., sweat glands) and, even 

for dually innervated organs, the autonomic branches may have synergistic rather than 

opposing effects (e.g., salivary glands).

The main function of the ANS is to coordinate bodily functions to ensure homeostasis 

and performing adaptive responses when faced with changes in the external and internal 

environment, such as those due to physical activity, posture change, food consumption, 

or hemorrhage. In addition, the ANS is capable of substantial heterostatic action; it can 

prepare the body for anticipated threats to homeostasis even in the absence of actual 

changes in bodily activity. The best known example is the anticipatory response that 

prepares the body for physical activity in response to a vast range of stressors that can 

be purely symbolic in nature and are often not followed by actual physical activity (fight-

or-flight) or changes in internal environment (e.g., through blood loss or infection). This 

response is called the physiological stress response.

In humans, subjective experience of stress can be sufficient to trigger the physio-

logical stress response. Subjective experience of stress typically occurs when there is 

an imbalance between perceived threats/demands and perceived abilities/resources. In 

the brain, the perception of internal (thoughts) or external (environmental events) threats 

by neocortical areas leads to the activation of limbic areas, in particular the amygdala 

(Lovallo, 2005). The amygdala, in turn, projects to paraventricular and other hypothalamic 

nuclei as well as to a network of neurons in the rostral ventrolateral medulla (RVLM) and 

the nucleus of the solitary tract (NTS) that initiates changes in the activity of sympathetic 
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neurons in the intermediolateral (IML) column and in activity of the parasympathetic 

neurons in the n. ambiguus.

Parasympathetic nervous system activity

The preganglionic fibers of the PNS leave from the cell bodies of the motor nuclei of 

cranial nerves (CN) III, VII, IX, and X in the brainstem and from the second, third, and 

fourth sacral segments of the spinal cord. The vagus nerve (CN X) carries fibers to the 

heart and lungs (as well as to other organs) and is the primary source of parasympathetic 

innervation of these organs. Many efferent fibers in the vagus originate in the n. ambiguus. 

The preganglionic axons terminate in parasympathetic ganglia, which lie within or very 

close to the organs innervated by the short postganglionic neurons. The preganglionic 

neurons employ acetylcholine (ACh) as the primary neurotransmitter, which binds to a 

nicotinic receptor subtype on the postganglionic neurons in the ganglia. Postganglionic 

parasympathetic fibers also employ ACh as a primary neurotransmitter, but the receptor 

subtypes on the target organ are commonly muscarinic. For instance, the parasympathetic 

postganglionic receptors in the sinoatrial (SA) node of the heart are type 2 muscarinic 

(M2) and their activation reduces heart rate.

Sympathetic nervous system activity

The preganglionic fibers from neurons in the IML column leave the central nervous system 

from the thoracic and lumbar regions of the spinal cord. They synapse onto a chain of 

sympathetic ganglia that lie close to the spinal cord, known as the sympathetic trunk. 

The preganglionic neurons from the IML column to the sympathetic ganglia employ 

ACh as the primary neurotransmitter. The postganglionic neurons from the sympathetic 

ganglia to the organs employ norepinephrine as the primary neurotransmitter, which 

can act on α1-adrenergic (e.g., in arterioles) or β1- and β2-adrenergic receptors (e.g., on 

the heart). Stimulation of the α1-adrenergic receptors causes vasoconstriction by acting 

on the smooth muscles in the medial layer of the blood vessels. Stimulation of the 

cardiac β-adrenergic receptors by norepinephrine released from the cardiac sympathetic 

nerves (nn. accelerantes) increases the pacemaker frequency of the SA node (i.e., heart 

rate), as well as contractility of the ventricles. Together, vasoconstriction and increased 

cardiac performance account for the increase in blood pressure seen during increased 

sympathetic activity.
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A first exception to the use of norepinephrine as the final effector in the SNS is found 

in the sympathetic innervation of eccrine sweat glands, which is cholinergic rather than 

adrenergic. A second exception is a set of preganglionic neurons that end in a special 

ganglion, namely the adrenal medulla. On activation by preganglionic neurons, the 

adrenal medulla releases a small amount of norepinephrine into the bloodstream, but 

most of the released norepinephrine is converted to epinephrine, which is excreted in 

much larger amounts than norepinephrine (5:1). Circulating epinephrine preferentially 

binds to β2-receptors in the vessels and on the heart, causing vasodilatation (mostly in 

muscle tissue) and increases in heart rate and contractility.

Measurements of autonomic nervous system activity

Many studies of the ANS have focused on the fight-or-flight response, which is often 

characterized by reciprocal increases in SNS activity and decreases in PNS activity. Such a 

pattern gives rise to increases in heart rate and blood pressure, and heart rate and blood 

pressure reactivity are still among the most used variables to indicate changes in ANS 

activity. However, a disadvantage of these variables is that they represent an unknown 

mix of sympathetic and parasympathetic effects. It has been shown that the classical 

reciprocal pattern of sympathetic activation with parasympathetic deactivation describes 

only a limited part of the total autonomic space (Berntson, Cacioppo, & Quigley, 1991). 

Different patterns of co-activation, reciprocal activation and co-inhibition are found across 

individuals performing the same task or within individuals performing different tasks. For 

example, dental phobia patients engaged in a stressful mental arithmetic task showed an 

increase in their SNS activity with decreased PNS activity; but, when exposed to phobic 

stimuli, the same subjects showed increased SNS activity with increased PNS activity 

(Bosch, de Geus, Veerman, Hoogstraten, & Nieuw Amerongen, 2003). Most important, 

health outcomes of sympathetic hyperreactivity need not be the same as those of 

parasympathetic hyperreactivity. Hyperactivity of the SNS has been mostly associated 

with an increased risk for hypertension, the metabolic syndrome, and left ventricular 

failure (Brotman et al., 2007; Esler, 2010; Esler et al., 2008; Lambert, Straznicky, Lambert, 

Dixon, & Schlaich, 2010), whereas loss of PNS activity causes a reduction in the electrical 

stability of the heart (Schwartz et al., 2003; Vanoli et al., 1991) and may play a key role in 

the pro-inflammatory state (Rosas-Ballina & Tracey, 2009; Tracey, 2009).
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Because heart rate and blood pressure do not reveal the underlying pattern of ANS 

activity, studies in the past two decades began indexing sympathetic and parasympathetic 

activity separately. Parasympathetic nervous system activity can be assessed invasively by 

parasympathetic microneurography, microdialysis, or pharmacological blockade (Berntson 

et al., 1994; Cacioppo et al., 1994; Cerati & Schwartz, 1991; Jewett, 1964; Kunze, 1972; 

Martinmaki, Rusko, Kooistra, Kettunen, & Saalasti, 2006; Shimizu et al., 2009), but also 

less invasively by measuring baroreflex sensitivity (BRS), or noninvasively by measuring 

heart rate variability (HRV), particularly HRV in the respiratory frequency range or RSA 

(Akselrod et al., 1981; Cerutti, Bianchi, & Mainardi, 2001; DiRienzo, Parati, Radaelli, & 

Castiglioni, 2009; Katona & Jih, 1975; La Rovere, Pinna, & Raczak, 2008; Sztajzel, 2004; 

Task Force of the European Society of Cardiology and the North American Society of 

Pacing and Electrophysiology, 1996). There are different ways to quantify HRV and several 

commonly used time- and frequency domain indices of HRV are summarized in Table 1.1. 

As is the case for PNS activity, SNS activity can also be measured invasively by means 

of sympathetic microneurography, regional norepinephrine spillover, or pharmacological 

blockade (Berntson et al., 1994; Cacioppo et al., 1994; Eisenhofer, 2005; Esler et al., 

1988; Esler & Kaye, 2000; Grassi & Esler, 1999; Hagbarth & Vallbo, 1968; Julius, Pascual, 

& London, 1971; Wallin, 1984; Wallin, 2004). Other commonly used measurements of 

the SNS are plasma or urinary catecholamines, salivary α-amylase activity, or the LF/HF 

ratio (Esler et al., 1990; Hjemdahl, 1990; Goldstein, Eisenhofer, & Kopin, 2003; Nater & 

Rohleder, 2009; Pagani & Malliani, 2000). However, together with electrodermal activity 

(Boucsein, 1992; Dawson, Schell, & Filion, 2000; Fowles, 1986) measurement of cardiac 

contractility is currently the preferred noninvasive method to measure SNS activity. 

Contractility is reflected in a larger ejection fraction which can be measured, e.g. by 

echocardiography, as the fraction of the end-diastolic volume ejected as stroke volume. 

Contractility is also reflected in a more rapid start of the ejection phase after the onset 

of ventricular depolarization, a time interval referred to as the pre-ejection period (PEP) 

(Sherwood et al., 1990). The different ways to quantify SNS activity non-invasively are 

summarized in Table 1.2.
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Table 1.1. Several commonly used noninvasive measures of heart rate variability (HRV).

Time domain measures

SDNN Standard deviation of all valid interbeat intervals

SDANN Standard deviation of the average interbeat intervals across all 5-minute 
segments of the entire recording 

RMSSD Root mean square of differences between valid, successive interbeat intervals

pvRSA Respiratoy Sinus Arrhythmia derived by peak-valley estimation. In the time 
domain, estimates of pvRSA are obtained by subtracting the shortest IBI 
during heart rate acceleration in the inspiration phase from the longest IBI 
during heart rate deceleration in the expiration phase 

BRS Baroreflex Sensitivity derived by the sequence method in combined 
continuous blood pressure and ECG recordings (can also be derived in the 
frequency domain as the cross time-series coherence)

Frequency domain measures

HF power Power in the respiratory frequency range of 0.15-0.40 Hz

LF power Power in the low frequency range (0.04-0.15 Hz)

VLF power Power at very low frequencies (0.003-0.04 Hz) 

ULF power Power in the ultra low frequency band (< 0.003 Hz)

Total power (TP) ULF + VLF + LF + HF

Table 1.2. Several commonly used noninvasive measures of sympathetic nervous system activity.

Plasma NE/E Measurements of concentrations of norepinephrine (NE) or epinephrine (E)  
in venous (or arterial) blood using liquid chromatography

Urinary NE/E Measurement of (24-h) urinary excretion of NE or E (relative to creatinine)

LF/HF The LF/HF ratio spectral power of the heart rate in the lower frequencies centered 
around 0.1 Hz (LF) divided by the power in the higher frequencies centered 
around the respiratory frequency (HF)

PEP The Pre-Ejection Period is the time interval between the onset of ventricular 
depolarization (the QRST complex, or Qonset) and the opening of the semilunar 
valves (sharp upstroke in the dZ/dt, or the B point in the impedance cardiogram)

EF Ejection Fraction is the fraction of the end-diastolic volume that is ejected with 
each heart beat. 

SCL The Skin Conductance Level representing slow tonic shifts in electrodermal activity 

nsSCR Skin Conductance Responses (SCRs) are more rapid transient events. nsSCR is 
the count or frequency of these nonspecific responses (also called electrodermal 
lability)

SVR Systemic Vascular Resistance is the resistance to blood flow that must be 
overcome to push blood into the peripheral circulation
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Genetics of autonomic nervous system activity

To determine the genetic contribution to the individual differences in ANS measures, we 

can resort to family studies. The essence of all family studies is that they relate the degree of 

genetic resemblance to the degree of trait resemblance. From basic biometrical principles, 

we can compute the estimated genetic covariance between two individuals based on the 

degree of their genetic relatedness (Falconer & Mackay, 1996; Lynch & Walsh, 1997). If 

two individuals are genetically unrelated, their expected genetic covariance is zero. It is 

important to note that this does not mean that they cannot show trait resemblance, but 

that such resemblance must be due to factors other than genetic ones (i.e., environmental 

factors). Things change when the covariance is computed between individuals who do 

have a genetic relationship. Relatives, for instance, parent and offspring, will more often 

have identical variants at a DNA locus than will unrelated individuals. If genetic factors 

contribute to the trait, the covariance between family members will vary systematically 

with the degree of genetic relatedness.

A general formula for the genetic part of the covariance between a trait measured 

in two relatives is:

Covariance (P1,P2) = u * VA + r * VD

where P1 is a trait measured in relative 1, P2 the same trait measured in relative 

2, VA the additive genetic variance caused by all loci contributing to the trait, VD the 

dominant genetic variance caused by all loci contributing to the trait, u the coefficient 

of relationship representing the correlation between the relatives for loci acting additive, 

and r the coefficient of dominance. 

A locus acts additively if both variants at a locus contribute equally to trait variance, 

whereas in dominance, one variant exerts a (much) stronger effect than the other variant. 

For parent–offspring pairs, u= ½ and r =0, for full siblings u = ½ and r = ¼, for uncles (aunts) 

with the nephews (nieces) u = ¼ and r = 0, for grandparent and grandchild u = ¼ and r = 0, 

and for single first cousins u = 1/8 and r = 0. When the covariance between family members 

in a trait is measured across many different family relationships (e.g., different values for 

u and r), this yields a set of equations that can be algebraically solved to estimate VA and 

VD. This is the essence of the use of pedigrees (parent–offspring, grandparent–grandchild, 

uncle–niece, siblings, etc.) studies to estimate the broad heritability of a trait, which is simply 

the genetic variance (VA and VD) in the trait divided by the total variance (VP) in the trait.
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Studying family resemblance is a powerful tool to detect genetic contribution to a trait 

but, as already noted by Sir Francis Galton (Galton, 1869), a major shortcoming of this 

type of family studies is that the degree of genetic relatedness can be confounded 

with the degree of shared family environment. Full siblings, for instance, do not only 

share more genes than nieces and nephews, they are also typically reared in the same 

household. The shared family environment includes potentially important factors like 

parental socioeconomic status (SES), neighborhood, school, sports club, family diet, and 

parental attitudes and general rearing style. The solution to separating the genetic and 

shared environmental effects on the trait resemblance of family members has been found 

in what Galton called “a unique experiment of nature”: monozygotic (MZ) and dizygotic 

(DZ) twin pregnancies.

Monozygotic twinning occurs when, for reasons that are still incompletely 

understood, a fertilized egg divides before it nestles in the uterus. Monozygotic twins 

are usually said to inherit identical genetic material. This is not entirely correct. Genetic 

imprinting patterns can be found to differ in MZ twins as is illustrated, for instance, in an 

MZ twin pair discordant for Beckwith-Wiedemann syndrome due to differential imprinting 

(Martin, Boomsma, & Machin, 1997). A number of other occurrences can make the 

genetic identity of MZ twins less than 100 percent. Since these occurrences are all rare, 

the assumption that MZs have 100 percent genetic identity is quite defensible, particularly 

since deviation from perfect identity will lead to an underestimation of genetic effects 

(i.e., the assumption is a conservative one).

If more than one egg is released from the ovaries during a menstrual cycle, and 

each egg is fertilized by a separate sperm, the result is a nonidentical twin also known 

as a DZ or fraternal twin. Dizygotic twinning rates have risen in the last decades in most 

countries because of artificial reproduction techniques and the higher age at which 

mothers get their first child, which may be paired to higher levels of follicle stimulating 

hormone. Genetically, DZ twins do not differ from singleton brother–brother, sister–sister, 

or brother–sister pairs; that is, they share on average 50 percent of their genetic material 

(Hoekstra et al., 2004). Opposite-sex (DOS) twins are always DZ twins.

In a twin study, four possible factors and their interactions and correlations are 

assumed to contribute to the total variance in a trait: unique environmental factors (E), 

shared environmental factors (C), additive genetic factors (A), and dominant genetic 

factors (D). Shared environmental factors and additive and dominant genetic factors can 

cause twin resemblance, whereas the extent to which twins do not resemble each other 
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is ascribed to the unique (or nonshared) environmental factors. These include all unique 

experiences such as differential jobs or lifestyle, accidents, or other life events, and, in 

childhood, differential treatment by the parents and nonshared peers. Twin researchers 

typically use structural equation modeling (SEM) to estimate the relative contribution of 

the A, D, C, and E factors to the individual differences in the trait. In SEM, the relationships 

between several latent unobserved variables (e.g., genetic and environmental factors) 

and observed variables (e.g., ANS measures) are summarized by a series of equations. 

Additional equations can specify the correlation between the latent genetic and 

environmental factors based on the known genetic relationship. For instance, the latent 

additive and dominant genetic factors influencing an ANS measure are correlated unity in 

MZ twins, but only 0.5 and 0.25, respectively, in DZ twins.

It is possible to derive the expected variance-covariance matrix implied by the 

total set of equations through the use of covariance algebra. Using maximum likelihood 

estimation, the fit of the expected covariance/variance matrix to the actual observed 

covariance/variance matrix is iteratively tested in a sample of hundreds or thousands of 

twins over a range of possible values for the path coefficients. From the best fitting model, 

the estimates for the path coefficients (e.g., a, c, d, and e) are used to estimate the relative 

contribution of the latent factors A, C, D, and E to the total variance in, for instance, an 

ANS measure. Heritability of the ANS measure, defined as the relative proportion of the 

total variance explained by genetic factors, is obtained as the ratio of a² + d²/(a² + d² + 

e² + c²). The heritability can also be expressed as a percentage by multiplying this ratio 

by 100.

Using the classic twin design, we can only estimate three components of variance 

at the same time (either A, C, and E, or A, D, and E). One solution is to add parents or 

offspring of twins to create an extended twin-family design (Keller et al., 2009). If such 

family data are not available, one needs to make the assumption that either C or D is 

absent. This can be inferred in twin studies by first inspecting the MZ and DZ correlations 

to see whether dominance or shared environmental effects are actually likely to play a 

role. The presence of dominance can be recognized because it yields DZ correlations 

that are much lower than half the MZ correlation. In contrast, the presence of shared 

environmental effects yields DZ correlations that are much higher than half the MZ 

correlations. If the MZ correlation is about twice as high as the DZ correlation an AE 

model will fit best.
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Twin studies of Indicators of Autonomic Nervous System Activity

Tables 1.3 and 1.4 summarize the results from twin studies on the heritability of various 

measures of ANS activity. Only studies with at least 50 twin pairs were included. Table 

1.3 focuses on studies that have estimated the heritability of cardiac vagal activity using 

the different measures of RSA. The table excludes a study on HF power in 5-month-old 

infants, in which HF power was only weakly influenced by genetic factors (11 percent), 

and unique environmental factors explained most of the HF variance, particularly in boys 

(Dubreuil et al., 2003). Because myelinization of vagal fibers is still incomplete up until 

age 2 (Loeliger, Tolcos, Leditschke, Campbell, & Rees, 2000), it is uncertain whether the 

relation between vagal activity and RSA in such young children is comparable to that 

in adolescents and adults. For completeness, Table 1.3 also includes the heritability 

estimates for the BRS and total heart rate variability, either measured as the standard 

deviation of all IBIs (SDNN) or the TP of the IBI spectrum, and for the VLF and ULF power. 

These HRV measures also reflect PNS effects on the heart but are less ‘purely’ PNS than 

RSA. Table 1.4 focuses on studies that have estimated the heritability of measures of 

SNS activity that, to date, only include muscle sympathetic nerve activity (MSNA), plasma 

catecholamines, SCL/nsSCRs, and PEP. The table excludes a study on nine MZ twin pairs 

that used the golden standard MSNA approach (Wallin, Kunimoto, & Sellgren, 1993). 

This study reported that the MZ twin resemblance was as good as the average test–retest 

reliability of the method.

Heritability of Measures of Cardiac Vagal Activity

In laboratory twin studies that record RSA in quiet resting conditions, a significant but 

modest genetic contribution has been systematically reported (Busjahn et al., 1998; de 

Geus et al., 2007; Kupper et al., 2004; Kupper et al., 2005; Riese et al., 2006; Riese et 

al., 2007; Su et al., 2010; Tank et al., 2001; Tuvblad et al., 2010; Uusitalo et al., 2007; 

Wang, Thayer, Treiber, & Snieder, 2005; Wang et al., 2009; Zhang et al., 2007). Heritability 

estimates at rest for pvRSA range from 25 to 55 percent, for RMSSD from 36 to 71 

percent, and for HF from 37 to 63 percent. Heritability estimates for BRS ranged from 

22 to 55 percent. Osztovits et al. (2011) were the only exception to this as heritability of 

RSA in their study was not significant. Heritability estimates for European Americans and 

African Americans were very similar (Wang et al., 2005), and none of the studies reported a 

sex difference in heritability or evidence for different genes being expressed in males and 

females.



18 Chapter 1

The difference in heritability estimates across studies and measures probably does not 

reflect a truly different genetic architecture. Instead, it may simply reflect the large age 

range across the studies (mean age 9 to mean age 55) and the different duration of 

the resting condition and the posture of the subject (sitting, supine). One study that 

used multiple measures in the same set of subjects found a very high correlation among 

SDNN, RMSSD, and HF, indicating that these three RSA measures may reflect the same 

underlying genetic factor (Wang et al., 2005).

Strikingly, heritability of ambulatory values of RSA tends to be higher than the values 

at rest. Three studies that measured pvRSA, HF, or BRS at rest and during a series of mental 

stressors reported increased genetic variance in these measures under stress (de Geus et 

al., 2007; Riese et al., 2006; Wang et al., 2009). This suggests that genetic influences 

on cardiac vagal activity become more pronounced when the subject is challenged by 

mentally and emotionally “engaging” conditions.

Table 1.3. Studies reporting heritability of cardiac parasympathetic nervous system activity.

Reference
Number  
of subjects

 

Age Sex Protocol Measure Heritability (%)

Best 
fitting 
model

Boomsma, 
et al., 1990

MZ = 140
DZ = 180

16.7 m/f Laboratory 
(8-minute rest - 
quiet sitting)

pvRSA 25 AE

Snieder,  
et al., 1997

MZ = 182
DZ = 234

44.2 m/f Laboratory 
(8-minute rest - 
quiet sitting)

pvRSA 31 AE

Busjahn  
et al., 1998

MZ = 190
DZ = 92

33 Ambulatory 
30-minute 
recording

SDNN 60 ADE

RMSSD 65 ADE

HF 39 AE

Tank  
et al., 2001

MZ = 176
DZ =122

33 m/f Laboratory 
(10-minute rest –
semi-supine)

BRS 43 AE

Kupper  
et al., 2004

MZ = 218
DZ = 301
Sibs = 253

31 m/f Ambulatory 24-hour  
recor ding, analysis 
restricted to sitting 
activities and sleep

SDNN
SDNN
SDNN
SDNN

35 (morning)
36 (afternoon)
47 (evening)
43 (night)

AE
AE
AE
AE

RMSSD
RMSSD
RMSSD
RMSSD

41 (morning)
48 (afternoon)
48 (evening)
40 (night)

AE
AE
AE
AE
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Reference
Number  
of subjects

 

Age Sex Protocol Measure Heritability (%)

Best 
fitting 
model

Kupper  
et al., 2005

MZ = 222
DZ = 305
Sibs = 253

31 m/f Ambulatory  
24-hour recording, 
analysis restricted 
to sitting activities 
and sleep

pvRSA
pvRSA
pvRSA
pvRSA

40 (morning)
49 (afternoon)
55 (evening)
54 (night)

AE
AE
AE
AE

Wang  
et al., 2005

MZ = 104
DZ = 102

15.2 m/f Laboratory 
(10-minute rest – 
supine)

SDNN 66 AE

RMSSD 71 AE

HF 63 AE

LF 45 AE

de Geus  
et al., 2007

Re-analysis  
of 
Boomsma 
1990 
dataset

16.7 m/f Laboratory 
(8-minute rest - 
quiet sitting)
Laboratory  
(mental stress)
Laboratory 
(reactivity)

pvRSA

pvRSA

pVRSA

31

54

ns

AE

AE

Re-analysis 
of Snieder 
1997 
dataset

44.2 m/f Laboratory 
(3-minute rest - 
quiet sitting)
Laboratory  
(mental stress)
Laboratory 
(reactivity)

pvRSA

pvRSA

pvRSA

32

44

ns

AE

AE

Riese  
et al., 2006

MZ =148
DZ = 102

23.2 f Laboratory 
(5-minute rest - 
quiet sitting)
Laboratory  
(mental stress)

BRS

BRS

22

42

AE

AE

Riese  
et al., 2007

MZ = 115
DZ = 91

22.8 f Laboratory  
(rest + stress in a 
single latent factor)

BRS 53 AE

TP 51 AE

Zhang  
et al., 2007

MZ = 336
DZ = 106

15-
84

m/f Laboratory 
(5-minute rest – 
sitting)

BRS 55 AE

TP 23 AE

Uusitalo  
et al., 2007

MZ = 208  
(104 chronic 
diseased)
DZ = 296  
(173 chronic 
diseased)

51.5 m Laboratory 
(5-minute rest – 
supine)

RMSSD 36 ADE

LF 28 AE

HF 37 ADE
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Reference
Number  
of subjects

 

Age Sex Protocol Measure Heritability (%)

Best 
fitting 
model

Wang  
et al., 2009

MZ = 282
DZ = 372
Singleton 
twins = 81

17.8 m/f Laboratory 
(15-minute  
rest – supine)
Laboratory  
(mental stress)
Laboratory 
(reactivity)

RMSSD

RMSSD

RMSSD

48

58

18

AE

AE

AE

Laboratory  
(15 minute  
rest – supine)
Laboratory  
(mental stress)
Laboratory 
(reactivity)

HF

HF

HF

50

58

49

AE

AE

AE

Su et al., 
2010

198
MZ = 121
DZ = 77

55.0 m Ambulatory  
24-hour recording, 
physical activity 
restricted to light 
walking

TP 63 AE

ULF 59 AE

VLF 57 AE

LF 43 AE

HF 56 AE

Tuvblad  
et al., 2010

MZ = 482
DZ = 361

9.6 m/f Laboratory 
(3-minute rest – 
quiet sitting)

pvRSA 39 AE

Osztovits 
et al., 2011

MZ = 126 
DZ = 76

44.3 m/f Laboratory 
(15-minute rest – 
supine)

RMSSD ns CE

pNN50 ns CE

LF ns CE

HF ns CE 

BRS ns CE

Hightower 
et al., 2013

MZ = 350 
DZ = 198

38.6 m/f Laboratory 
(5-minute rest – 
sitting)

BRS 25/37 a -

MZ, monozygotic; DZ, dizygotic, Sibs, singleton siblings of the twins added in an extended twin design.
aDifferent estimate for upward/downward deflection
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Heritability of Measures of Sympathetic Nervous System Activity

Table 1.4 summarizes the twin studies that have estimated the heritability of (putative) 

measures of SNS activity. The studies on plasma and urinary norepinephrine levels 

reported heritability estimates of 42 to 70 percent for plasma and 46 to 76 percent for 

urinary levels. For epinephrine, heritability estimates of 64 to 74 percent were found for 

plasma and 65 to 78 percent for urinary levels (Jedrusik et al., 2004; Rao et al., 2007; 

Williams, Puddey, Beilin, & Vandongen, 1993; Hightower et al., 2013).

For electrodermal lability, heritability estimates between 30 and 43 percent have been 

found (Crider et al., 2004; Lykken, Iacono, Haroian, McGue, & Bouchard, Jr., 1988), and, 

for skin conductance level, heritability was 26 percent in males and 34 percent in females 

(Tuvblad et al., 2010). An echocardiographic study computing the sibling correlations 

in the ejection fraction estimated the familial variance in left ventricular contractility at 

40 percent (Fox et al., 2010). These familial factors appear to be of a genetic nature as 

shown by a more recent twin study estimating the heritability of contractility at 40 percent 

(Hightower et al., 2013). In our own studies in the Netherlands Twin Registry, we used 

the PEP to index left ventricular contractility (de Geus et al., 2007; Kupper, Willemsen, 

Boomsma, & de Geus, 2006). We found substantial heritability of the PEP in laboratory 

and ambulatory settings, which varied from 48 percent in nighttime recordings to 74 

percent during mental stress. In an adolescent sample, PEP reactivity to a mental stressor 

was also heritable (54 percent). This converges with the finding of significant genetic 

contribution to the stress reactivity of heart rate and blood pressure, the variables that 

strongly depend on cardiac SNS reactivity. Mental stress-induced increases in heart rate 

and systolic and diastolic blood pressure ranged between 26 percent and 43 percent 

(Wu, Snieder, & de Geus, 2010), respectively.

In the middle-aged groups, but not in the adolescents, the DOS correlation for PEP was 

lower than the correlation in same-sex DZ pairs (de Geus et al., 2007; Kupper et al., 2006). 

This indicates that different genes play a role in individual differences in cardiac sympathetic 

activity in adult men and women. The most likely explanation for this sex difference is an 

interaction between adrenoceptor signaling and the male and female sex hormones. 

Several studies have shown the presence of such interaction. Testosterone regulates 

gene expression of the major calcium regulatory proteins in isolated ventricular myocytes 

(Golden, Marsh, & Jiang, 2004; Golden, Marsh, Jiang, & Moulden, 2005). A role for female 

sex hormones is supported by several studies showing that estrogen inhibits β1-adrenergic 

receptor activation on the heart (Thawornkaiwong, Preawnim, & Wattanapermpool, 2003).
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Table 1.4. Studies reporting heritability of measures of sympathetic nervous system activity.

Authors
Number  
of subjects Age Sex Protocol Measure

Heritability 
(%)

Best 
fitting 
model

Williams  
et al., 1993

MZ + DZ = 
196

17–65 m/f Venipuncture in 
supine rest

Plasma 
[NE]

57 AE

Plasma 
[E]

74/64a AE

Crider  
et al., 2004

MZ = 325
DZ = 291

47.8 m 4 + 3 minutes  
rest – quiet sitting

nsSCR 43 AE

Jedrusik  
et al., 2004

MZ = 78
DZ = 74

34.5 m/f Venipuncture  
in rest

Plasma 
[NE]

42 AE

Urinary 
[NE]

76 AE

Plasma 
[E]

69 AE

Urinary 
[E]

65 AE

O’ Connor 
group 
(data re-
published 
in multiple 
papers; 
here (Rao 
et al., 
2007) was 
used

MZ = 238
DZ = 106

15–84 m/f Venipuncture  
in rest

Plasma 
[NE]

70 AE

Urinary 
[NE]

46 AE

Plasma 
[E]

67 AE

Urinary 
[E]

68 AE

Wang  
et al., 2005

MZ = 104
DZ = 102

15.2 m/f Laboratory 
(10-minute  
rest – supine)

LF /HF 32 AE

Kupper  
et al., 2006

MZ = 218
DZ = 301
Sibs = 253

31 m/f 24 hour recording, 
analysis restricted 
to sitting activities 
& sleep

PEP

PEP

PEP

PEP

62 
(morning)
62 
(afternoon)
55 
(evening)
48 (sleep)

AE
AE
AE
AE

de Geus  
et al., 2007

MZ = 140
DZ = 180

16.7 m/f Laboratory  
(8 minute rest - 
quiet sitting)
Laboratory  
(mental stress)
Laboratory 
(reactivity)

PEP

PEP

PEP

70

74

54

AE

AE

AE
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Authors
Number  
of subjects Age Sex Protocol Measure

Heritability 
(%)

Best 
fitting 
model

de Geus  
et al., 2007

MZ = 182
DZ = 234

44.2 m/f Laboratory  
(3 minute rest - 
quiet sitting)
Laboratory  
(mental stress)
Laboratory 
(reactivity)

PEP

PEP

PEP

64

56

ns

AE

AE

Uusitalo  
et al., 2007

MZ = 208 
(104 chronic 
diseased)
DZ = 296 
(173 chronic 
diseased)

51.5 m Laboratory 
(5-minute rest – 
supine)

LF/HF 28 AE

Tuvblad  
et al., 2010

MZ = 512
DZ = 484

9.6 m/f Laboratory  
(3 minute rest – 
quiet sitting)

SCL 26/34a AE

nsSCR 30 AE

Bosker  
et al., 
(2012)

MZ = 94
DZ = 74
Singleton 
twins = 24

18 m/f Overnight urine Urinary 
[NE]
Urinary 
[E]

68

74

AE

Hightower 
et al., 2013

MZ = 350 
DZ = 198

38.6 m/f Venipuncture  
in rest

Plasma 
[NE]

65 -

Urinary 
[NE]

49 -

Plasma 
[E]

67 -

Urinary 
[E]

78 -

Laboratory 
(5-minute rest – 
sitting) 

LV con-
tractility 
(dP/dT 
max)

40 -

Stroke 
volume

73 -

Stroke 
volume 
index

58 -

Systemic 
vascular 
compli-
ance

53 -

Systemic 
vascular 
resistan-
ce (SVR)

57 -
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Authors
Number  
of subjects Age Sex Protocol Measure

Heritability 
(%)

Best 
fitting 
model

Wu, 
Treiber, & 
Snieder, 
2013

MZ = 540 
DZ = 522

14.7 m/f Laboratory  
(15-min rest – 
supine)

Laboratory  
(15-min mental 
stress)
Laboratory 
(reactivity)

Stroke 
volume 
(SV)
SVR 
Index 
SV
SVR 
Index
SV
SVR 
Index

51/58a

49/44a

53/58a

55/39a

ns/6a

8/10a

AE

AE

AE
AE

AE

Noh et al., 
2015

MZ = 596 
DZ = 124 
Sibs = 567 
Parents = 
354

42.5 
(parents 
= 65.7)

m/f Laboratory 
echocardiography

Left Ven-
tricular 
Ejection 
Fraction

27 -

NE, norepinephrine; E, epinephrine; MZ, monozygotic; DZ, dizygotic; Sibs, singleton siblings of the 
twins added in an extended twin design.
aDifferent estimate in males/females

Which Genetic Variants Cause the Heritability of SNS and PNS Activity?

Although twin studies show that individual differences in basal ANS activity and its 

responses to stress are significantly influenced by genetic factors, these factors are 

modeled as latent factors, and the actual gene networks that harbor the DNA variants 

underlying the heritability of the ANS are left unspecified. Identification of these genes 

and their functional variants is an important next step because they could help elucidate 

the biological pathways through which ANS activity contributes to CVD risk.

One of the main gene finding strategies is a candidate gene association study. 

Such a study tests whether a particular variant in a candidate gene and a trait co-occur 

above chance level, given the frequency of the variant and the distribution of the trait 

in the population (McCaffery, Snieder, Dong, & de, 2007). The selection of genes is 

often based on the known biological pathways involved in the trait of interest. For the 

PNS, genes involved in biosynthesis, transport, and breakdown of ACh seem obvious 

candidates, as are the genes for the muscarinic receptors. For the SNS, likely candidates 

are genes controlling catecholamine synthesis and metabolism, neuronal norepinephrine 

reuptake, and adrenergic receptor function. The variants to be typed within the candidate 

gene – for example, single nucleotide polymorphisms (SNPs), repeat polymorphisms, 

or insertion/deletion polymorphisms – are prioritized by their location within coding, 



 Introduction 25

1

promoter, or splice regions, or, if known, their functional effects on the gene product or 

on gene expression.

Table 1.5 presents a sample of the genetic variants that have been found, at least 

once, to be significantly associated with an ANS measure in human subjects (Adam et 

al., 2014; Baccarelli et al., 2008; Beetz et al. (2009); Boccardi et al., 2010; Busjahn et al., 

1998; Chang, Chang, Chen, Fang, & Huang, 2014; Chang, Fang, Chang, Chen, & Huang, 

2014; Huntgeburth et al., 2011; Ellis, Beevers, Hixon, & McGeary, 2011; Kurnik et al., 

2007; Masuo et al., 2005; Matsunaga et al., 2005; Matsunaga et al., 2007; Matsunaga et 

al., 2009; Matsunaga et al., 2010; Milan et al., 2005; Nagai, Sakane, Tsuzaki, & Moritani, 

2011; Neumann, Lawrence, Jennings, Ferrell, & Manuck, 2005; Neumann et al., 2006; 

Neumann et al., 2009; Neumeister et al., 2005; Newton-Cheh et al., 2007; Nishikino et 

al., 2006; Park et al., 2006; Probst-Hensch et al., 2008; Rao et al., 2008; Seppala et al., 

2014; Shihara et al., 1999; Shihara et al., 2001; Stolarz et al., 2004; Su et al., 2009a; Suzuki 

et al., 2003; Thayer et al., 2003; Tingley et al., 2007; Viola, James, Archer, & Dijk, 2008; 

Yang et al., 2010; Yasuda et al., 2004; Ylitalo et al., 2000; Zhang et al., 2010). Such a list is, 

by its nature, unfinished, because ongoing progress in the understanding of the biology 

of the ANS will increase the list, whereas failure to replicate typically does not lead to 

removal of the gene as a “candidate” (because it still meets the criterion “associated at 

least once”). If the more rigorous demands were made that (1) an association needs to be 

detected in a sample that was a priori sufficiently powered and (2) the association needs 

to be replicated exactly (same SNP, same variant, same direction of effect, same ANS 

variable) in independent samples (Sullivan, 2007), then none of the candidates on the list 

would survive. This is probably too rigid, and at least two genes are very likely to be truly 

involved in ANS activity based on experimental confirmation in animal studies; namely, 

the genes encoding the G-protein-regulated phosducin and the dual-specific A kinase-

anchoring protein 2 (Beetz et al., 2009; Tingley et al., 2007, respectively).

Mice with a targeted deletion of Pdc displayed elevated catecholamine turnover, and 

their postganglionic sympathetic neurons showed prolonged action potential firing after 

stimulation with Ach and increased firing frequencies during membrane depolarization 

(Beetz et al., 2009). Interestingly, Pdc –/– mice displayed exaggerated increases in blood 

pressure in response to stress, and in two different human populations several SNPs in the 

PDC gene were associated with stress-induced blood pressure reactivity. These findings 

suggest that phosducin is an important modulator of sympathetic activity. For the PNS, 

subjects with a variant in the dual-specific A kinase-anchoring protein 2 (AKAP10) gene 
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were found to have lower SDNN in a small patient sample (Tingley et al., 2007). In a 

much larger sample of healthy middle-aged adults, the same variant was again found 

to be associated with SDNN and also with RMSSD. The importance of this gene for 

cardiac vagal activity was further confirmed by experimental disruption of the gene in 

mouse embryonic stem cells that were differentiated into cardiac cells (Tingley et al., 

2007). Mutation of mouse AKAP10 increased the sensitivity of cultured cardiac cells to 

cholinergic signals, and this result was reproduced in living mice.

In a very recent study by Riese et al. (2014) data of seven cohorts were used in a large 

candidate gene study including 443 genotyped and imputed common genetic variants 

in eight key genes (CHAT, SLCI8A3, SLC5A7, CHRNB4, CHRNA3, CHRNA, and ACHE) of 

the acetylcholinergic pathway. It was tested whether these variants were associated with 

the RMSSD. Results showed that none of the variants were significantly associated with 

RMSSD after correction for multiple testing. 

A fair summary of the current state of the art is that the yield of the candidate gene 

approach has been modest. This may reflect a general disadvantage of an approach 

that capitalizes entirely on existing biological disease models. Many of the hundreds or 

thousands of genes relevant to the disease may not have been properly annotated, or 

they may reside in pathways that have not been linked to the disease before. Increasingly, 

gene finding attempts in large-scale samples have used the more agnostic strategy of 

a genome-wide association study (GWAS) that makes no a priori assumptions on the 

biological pathways involved (Manolio et al., 2009). Genome-wide association studies 

exploit the availability of the human genome sequence and the rapid development 

across the past decades of affordable, high-accuracy, high-throughput technologies to 

genotype from SNPs scattered across the entire genome. Although a single subject will 

deviate in around 4 million SNPs from the major variant in the base population, a subset 

of 500,000 to 1 million well-chosen tagging SNPs can capture the whole genome of that 

subject. Single-nucleotide polymorphisms that lie in proximity on the same chromosome 

are often transmitted together across generations as a block of SNP genotypes (also called 

a haplotype block). Recombination among the SNPs in the haplotype block is infrequent, 

and combining the tagSNPs with the detailed inventory of the haplotype structure of the 

world’s main populations in the HapMap/1000 genomes projects allows the imputation 

of the unmeasured SNPs with high precision. The final set of (imputed) SNPs can be used 

to test genetic association to ANS parameters on a genome-wide scale.

At the time of writing, two GWA studies had been published that focused specifically on 
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the ANS (Fox et al., 2013; Newton-Cheh et al., 2007). In the Framingham Heart Study, 

548 subjects were typed on the Affymetrix 100K SNP chip (Newton-Cheh et al., 2007). 

No genome-wide association test results for SDNN/TP nor for the LF/HF ratio met the 

stern p-value criterion of 5 × 10e-8 commonly applied in GWAS to deal with the huge 

multiple testing burden when half a million SNPs are tested. Taken the current experience 

of the GWA field, this study was a priori underpowered to detect a significant effect of a 

single SNP, which will typically contribute no more than 0.1–0.01 percent to the genetic 

variance in the trait. To detect significant SNP contribution in GWAS, analyses on tens 

to hundreds of thousands of subjects are needed for which whole-genome SNP data 

and ANS traits are available. No single research group can mount such numbers, and 

large GWA consortia have been formed worldwide that exchange their association results 

in an across-study meta-analysis. These meta-analyses have been hugely successful  

(http://www.genome.gov/gwastudies/) for many traits, including cardiovascular risk 

factors (Demirkan et al., 2011; Dehghan et al., 2011; Eijgelsheim et al., 2010; Dupuis et 

al., 2010; Wain et al., 2011).

For this reason, Fox et al. (2013) joined data of nine cohorts on several variables 

related to cardiac structure and systolic function, including ejection fraction, as measured 

by fractional shortening on two-dimensional echocardiography. A genome-wide signi-

ficant hit on chromosome 13 for rs9530176 in KLF5 was found. This locus contains two 

genes that are associated with left ventricular systolic dysfunction and ejection fraction, 

Chromogranin B (CHGB) and forkhead box A2 (FOXA2), respectively. CHGB is involved 

in catecholamine secretion and may contribute to beta-adrenergic effects on contractility. 

FOXA2 controls multiple genes implicated in metabolism-secretion coupling of glucose-

induced insulin release and hyperinsulinemia may ultimately affect ejection fraction 

because of an increase in mitogen-activated protein kinase activity that influences 

myocyte hypertrophy (Fox et al., 2013). 
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Table 1.5. Studies reporting association of candidate genes with measures of autonomic nervous 

system activity.

Reference
ANS 
measure Genetic variant Finding Remarks

Busjahn  
et al., 1998

HF
RMSSD
SDNN

Angiotensin-
converting enzyme 
(ACE)

The DD variant of an insertion
deletion polymorphism was 
associated with increased 
RSA at rest.

Association 
opposite to that 
found in African 
Americans by 
Thayer et al.

Ylitalo  
et al., 2000

BRS Aldosterone 
synthase gene 
(CYP11B2)

BRS became incrementally 
lower with more C-alleles in 
the promoter C-344T SNP.

Findings were 
stronger in women 
than in men.

Shihara  
et al., 2001

VLF Uncoupling 
protein 1 (UCP1)
β3 adrenergic 
receptor (β3AR)

GG homozygotes of the 
UCP1 promoter A-3826G 
SNP had lower VLF at supine 
rest.

The inhibitory 
effect of UCP1 
on VLF was 
observed only with 
occurrence of the 
Trp64Arg variant of 
the β3AR gene.

Suzuki  
et al., 2003

LF
VLF

α-adrenergic 
receptor type 2B 
(ADRA2B)

Short/Short homozygotes 
of a three-amino acid 
deletion polymorphism 
had significantly greater LF 
and VLF than Long/Long 
homozygotes.

Thayer  
et al., 2003

HF Angiotensin-
converting enzyme 
(ACE)

The II variant of an insertion
deletion polymorphism was 
associated with increased 
RSA at rest.

Association 
opposite to that 
found in European 
Americans by 
Busjahn et al.

Stolarz  
et al., 2004

LF/HF
LF
HF

Aldosterone 
synthase 
(CYP11B2)

Supine LF and LF/HF 
increased whereas HF 
decreased with the number 
of T-alleles at the CYP11B2 
C-344T promoter SNP.

Association only 
seen in subjects 
with sodium 
excretion > 190 
mmol.

Stolarz  
et al., 2004

LF/HF
LF
HF

Type-1-angiotensin 
receptor (AT1R)

Orthostatic changes in LF, HF, 
and LF/HF were blunted in 
C-allele carriers of the AT1R 
A1166C SNP.

Association only 
seen in subjects 
with sodium 
excretion > 190 
mmol.

Yasuda  
et al., 2004

HF α-Subunit Gs-
protein (GNAS1)

T-allele carriers at the GNAS1 
T393C SNP had lower supine 
HF, but not standing HF.

Zhang  
et al., 2004

Plasma [E]
Urinary 
[NE]

Tyrosine 
Hydroxylase (TH)

Increased number of the 
(TCAT)10i allele of a repeat 
polymorphism was associated 
with higher levels of plasma E 
and urinary NE.
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Reference
ANS 
measure Genetic variant Finding Remarks

Matsunaga 
et al., 2005

LF/HF G-Protein β3 
Subunit (GNB3)

CC homozygotes for the 
GNB3 C825T SNP had lower 
LF/HF and higher HF/TP 
ratio’s than CT/TT genotypes 
while standing.

Milan et 
al., 2005

BRS Bradykinin β2 
receptor gene 
(B2R)

The BRS increased with the 
number of T-alleles at the B2R 
C258T SNP.

B2R genotype 
was a strong 
independent 
predictor of BRS, 
accounting for 12% 
of its variation.

Neumann 
et al., 
2005, 
2006.

HF
LF
LF/HF

Acetylcholine 
transporter (CHT1, 
SLC5A7)

G-allele homozygotes for a 
CHT1 non-coding 3′ UTR 
SNP (rs333229) had lower HF 
power and higher LF power 
and higher LF/HF ratio.

Same SNP is also 
associated to 
depressed mood 
and brain activity 
in regions of the 
“central autonomic 
network.”

Neumeister 
et al., 2005

Total 
body NE 
spillover

α-Adrenergic 
receptor type 2C 
(ADRA2C)

At rest, homozygotes for the 
Del322-325 polymorphism 
had higher total body NE 
spillover than heterozygotes 
or noncarriers.

The same In-
frame deletion 
of ADRA2C 
increases the risk 
of congestive heart 
failure.

Kurnik et 
al., 2006

plasma 
[NE]

α-Adrenergic 
receptor type 2A 
(ADRA2A)

Two uncommon variants 
(G>C at -1903 and C>G at 
-1607, identified in 3 black 
subjects) were associated 
with higher plasma NE levels.

Nishikino 
et al.,2006

LF Type-1-angiotensin 
receptor (AT1R)

Higher LF in C-allele carriers 
of the AT1R A1166C SNP.

Park et al., 
2006

HF Hemochromatosis 
gene (HFE)

C282Y(rs1800562) and H63D 
(rs1799945) major alleles 
were associated with lower 
HF.

Association was 
conditional on high 
level of particulate 
air pollution.

Matsunaga 
et al., 2007

HF
LF/HF
LF

β-Adrenergic 
receptor type 1 
(ADRB1)
β-Adrenergic 
receptor type 2 
(ADRB2)

At supine rest, ADRB1 Arg16 
homozygotes had lower 
LF/HF and higher HF than 
the Gly16 allele carriers. 
ADRB2 Glu27 allele carriers 
had higher LF than Gln27 
homozygotes.

Newton-
Cheh et 
al., 2007

SDNN α-Adrenergic 
receptor type 1A 
(ADRA1A)

6 SNPs in the gene reached 
significance at classical p <.05

As the SNPs were 
part of a genome-
wide association 
scan, the 
significance level 
may have been too 
liberal.
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Reference
ANS 
measure Genetic variant Finding Remarks

SDNN/TP α-Adrenergic 
receptor type 1B 
(ADRA1B)

1 SNP(rs2195926) in the 
gene reached significance at 
classical p <.05

As the SNP was 
part of a genome-
wide association 
scan, the 
significance level 
may have been too 
liberal.

TP α-Adrenergic 
receptor type 2B 
(ADRA2B)

1 SNP(rs9325124) in the 
gene reached significance at 
classical p <.05

As the SNP was 
part of a genome-
wide association 
scan, the 
significance level 
may have been too 
liberal.

Tingley et 
al., 2007

SDNN Alpha-kinase 
anchoring protein 
10 (AKAP10)

Homozygotes for the G-allele 
(Val) at the AKAP10 I646V 
SNP (rs203462) have lower 
SDNN.

In mice AKAP10 
was shown to 
modulate the 
sensitivity of 
cardiac cells 
to cholinergic 
stimulation.

Baccarelli 
et al., 2008

SDNN  Methylene-
tetrahydrofolate 
reductase (MTHFR)

T-allele carriers of the MTHFR 
C677T SNP (rs1801133) 
had lower SDNN than CC 
homozygotes.

Rao et al., 
2008

plasma 
[NE]

Tyrosine 
hydroxylase (TH)

TH promoter haplotype 
#2 (TGGG) increased NE 
excretion during stress.

Beetz et 
al., 2009

Plasma 
[NE]

G-protein 
regulated 
phosducin (PDC)

Compared with Pdc +/+ 
mice, Pdc -/- mice showed 
elevated catecholamine 
turnover, their post-
ganglionic neurons showed 
prolonged action potential 
firing after stimulation 
with Ach and increased 
firing frequencies during 
membrane depolarisation 

Pdc -/- mice also 
showed greater 
increases in BP 
in response to 
stress compared 
with Pdc +/+ 
mice. And in two 
different human 
populations, 
several SNPs in the 
PDC gene were 
associated with 
stress-induced BP 
reactivity

Matsunaga 
et al., 2009

HF
LF/HF

Uncoupling 
proteins 2 & 3 
(UCP2, UCP3)

At supine rest the II variant 
of the UCP2 45-bp insertion/
deletion polymorphism was 
associated higher LF/HF ratio.
Carriers of the T-allele of the 
UCP3 S55 C/T SNP had lower 
LF/HF ratio and higher HF 
than CC homozygotes.

The II variant 
of the UCP2 
insertion/deletion 
polymorphism was 
also associated 
with higher blood 
pressure.
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Reference
ANS 
measure Genetic variant Finding Remarks

Neumann 
et al., 2009

SDNN
RMSSD

Alpha-kinase 
anchoring protein 
10 (AKAP10)

G-allele (Val) carriers at 
the AKAP10 I646V SNP 
(rs203462) have lower SDNN 
and RMSSD.

SDNN exactly 
replicates Tingley 
et al., 2007

Rana et al., 
2009

plasma [E] Nicotinic 
acetylcholine 
receptor (CHRNA)

CHRNA3 K95K (G) allele 
(rs3743075) was associated 
with higher E levels.

Su et al., 
2009a

ULF C-reactive protein 
(CRP)

Subjects homozygous for the 
T-allele at CRP SNP rs1205 
had higher ULF than CC 
homozygotes.

The SNP was 
significantly 
associated with 
both CRP and ULF 
and explained 11% 
of their genetic 
covariance.

Viola et al., 
2009

SDNN
LFnu

Circadian clock 
gene PERIOD3
(PER3)

Homozygotes for the longer 
allele (5/5) in a variable 
number tandem repeat 
polymorphism in the coding 
region of PER3 had higher 
LFnu and lower SDNN
compared to 4/4 
homozygotes, in particular 
during baseline sleep.

The PER3 VNTR 
polymorphism also 
affected slow wave 
sleep duration.

Boccardi 
et al., 2010

Transcription factor 
7-like 2 (TCF7L2)

TT homozygotes of a TCF7L2 
G/T SNP (rs12233572) had 
higher LF/HF ratio during 
glucose ingestion compared 
to heterozygotes and CC 
homozygotes.

No effects of the 
TCF7L2 SNP were 
found on baseline 
LF/HF.

Ellis et al., 
2010

HF Serotonin 
transporter  
(5-HTT) repeat 
polymorphism

The short variant of the 
5-HTTLPR was associated 
with lower HF at rest.

Matsunaga 
et al., 2010

HF
LF
VLF
TP

Estrogen receptor 
α gene (ESR1)

Haplotype analysis based 
on the PvuII and XbaI 
polymorphisms showed that 
ESR1 haplotype 2 (PvuII C 
allele and XbaI A allele) had 
lower TP, VLF, LF, and HF at 
supine rest.

Carriers of the 
ESR1 haplotype 2 
also had a higher 
systolic and mean 
arterial blood 
pressure.

Probst-
Hensch et 
al., 2010

TP
LF

Glutathione 
S-transferase (GST)

Participants missing both 
copies of the GSTT1 gene 
had lower TP and LF.

Yang et al., 
2010

HF
RMSSD
LF/HF

Brain-derived 
neurotrophic
factor (BDNF)

Met/Met homozygotes 
at the BDNF Val66Met 
polymorphism had lower HF, 
RMSSD and higher LF/HF 
ratio compared to the Val/Val 
homozygotes.
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Reference
ANS 
measure Genetic variant Finding Remarks

Hunt-
geburth  
et al., 2011

Fractional  
shortening 
(FS) Rate-
corrected 
velocity  
of circum-
ferential 
fiber 
shortening 
(Vcfc)

Arg389Gly β1-
adrenoreceptor 
gene 
polymorphism

Homozygous Arg389 carriers 
showed significant higher FS 
at baseline. In response to 
dobutamine treatment both 
FS and Vcfc were higher in 
the homozygous Arg389 
carriers. Pre-treatment with 
metropolol decreased the 
levels of the Arg/Arg carriers 
to the levels of the Gly-
carriers. 

In Arg/Gly or Gly/
Gly participants, 
modest effects 
of dobutamine-
induced increase 
in FS only at low 
not at higher 
concentrations of 
dobutamine was 
found after pre-
treatment with 
metropolol 

Nagai  
et al., 2011

VLF
LF
HF
TP

Uncoupling 
protein 1 (UCP1)-
3826 A/G

G/G carriers showed lower 
VLF

Adam  
et al., 2014

SDNN
TP
ULF
VLF
LF
HF
LF/HF

Functional 
IL-6-174 G/C 
polymorphism

Compared with IL6-174 
GG genotypes, participants 
with one or no G-risk allele 
showed higher SDNN, TP, 
and lower LF/HF.

An inverse 
association 
between traffic-
related particulate 
matter exposure 
and the IL6-
174 G/C on 
change in HRV 
was found with 
higher exposure 
being related to 
lower SDNN and 
LF for -174 GG 
genotypes. 

Chang  
et al., 2014

RMSSD
TP
VLF
LF
HF
LF/HF

BDNF Males bearing the Val/Val 
genotype had higher LF 
and LF/HF ratio, compared 
to Met/Met homozygotes 
at the BDNFVal66Met 
polymorphism.

Females showed 
the opposite 
association, but 
nonsignificant 

Chang  
et al., 2014

HF
RMSSD

Functional 
nerve growth 
factor (NGF) 
polymorphism

Males with any T-allele 
showed lower HF and RMSSD 
compared to men with the 
C/C genotype.

Females showed 
the opposite 
association, but 
nonsignificant 

Seppälä  
et al., 2014

LF
HF
LF/HF

Alanine-glyoxylate 
aminotransferase 2 
(AGXT2)

Both rs37369 and rs16899974 
were associated with LF/
HF and rs16899974 was 
additionally associated with 
the HF component alone.

This finding was 
part of a GWAS in 
which symmetric 
dimethylarginine 
(SDMA) levels 
were significantly 
associated with 
both AGXT2 
variants. 

NE, norepinephrine; E, epinephrine
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Conclusion

Although the molecular genetics of ANS activity remains to be elucidated in full, twin 

studies demonstrate significant genetic contributions to the main indices of the SNS and 

PNS. For the main indicator of cardiac vagal activity, RSA, heritability estimates range 

between 25 and 71 percent and for a second indicator, BRS, heritability estimates range 

between 22 and 53 percent. For the SNS, diverse indicators of activity to different organs 

converge on an even more substantial contribution of genetic factors. Heritability of 

plasma and urinary norepinephrine varied between 42 and 76 percent, heritability of 

epinephrine levels between 64 and 74 percent, heritability of nsSCR/SCL between 26 and 

43 percent, and heritability of PEP between 48 and 74 percent. 

This thesis

A weakness of the research conducted so far is that the majority of studies on the genetics 

of ANS activity have focused on laboratory recordings. Laboratory studies generally 

involve the measurement of ANS activity during one or more rest periods and during 

mental and physical challenges, with each period often lasting no more than 5–15 

minutes. Such studies have been instrumental in establishing the existence of stable 

individual differences in basal ANS activity and its responses to stress. However, these 

individual differences in ANS (re)activity may not transfer well to actual real-life situations 

because the association between laboratory and ambulatory measurements has been 

shown to be moderate at best (Gerin, Rosofsky, Pieper, & Pickering, 1994; Johnston, 

Tuomisto, & Patching, 2008; Kamarck, Debski, & Manuck, 2000; Kamarck & Lovallo, 2003; 

van Doornen, Knol, Willemsen, & de Geus, 1994). It is possible that the psychological and 

physiological processes induced by laboratory conditions are only a poor reflection of the 

actual processes in everyday real-life situations. Perhaps as a consequence, the predictive 

value of cardiovascular reactivity to laboratory challenges for future CVD is low, with the 

response to a challenge hardly contributing to the prediction of disease when basal levels 

have been taken into account (Barnett, Spence, Manuck, & Jennings, 1997; Carroll et 

al., 1998; Coresh, Klag, Mead, Liang, & Whelton, 1992). As an alternative to bringing 

“everyday situations to the laboratory,” researchers have increasingly tried to bring the 

“laboratory to everyday situations.” This is done by using miniaturized versions of the 
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recording equipment to perform prolonged ambulatory monitoring in naturalistic settings 

(Fahrenberg, Myrtek, Pawlik, & Perrez, 2007; Houtveen & de Geus, 2009; Wilhelm & 

Grossman, 2010). The expectation is that ambulatory measurement of physiological levels 

and reactivity in the natural environment will lead to better prediction of morbidity and 

mortality. For blood pressure, the added value of the ambulatory approach has already 

been amply demonstrated (Mallion, Baguet, Siche, Tremel, & De, 1999; Palatini & Julius, 

2004; Verdecchia, 2000; Verdecchia, Schillaci, Reboldi, Franklin, & Porcellati, 2001).

For the research project described in this thesis, an already existing dataset of 816 

adult participants with 24-h ANS activity measurements collected between August 1998 

and June 2003 (ANS Study 1, [Kupper et al., 2006; Kupper et al., 2005]) was further 

expanded with a new data collection round in 592 adult participants between November 

2010 and June 2012 (ANS Study 2). This led to a unique dataset large enough to allow 

extensive genetic analyses. Data from these two studies was used to investigate the 

role of genetic and environmental factors in individual differences in ambulatory levels 

and reactivity (calculated as the absolute difference between ambulatory rest and stress 

levels) of the two main indicators of ANS activity, PEP and RSA. Between these two 

ANS studies, the NTR undertook a large biobank study, assessing biodata from blood 

samples in over 9000 twins and their family members between January 2004 and July 

2008 (Willemsen et al., 2010). Data of all three studies was combined to investigate the 

prospective bi-directional association between ambulatory PEP/RSA level and reactivity 

and pro-inflammatory and metabolic risk factors. In chapter 2, an overview of the data 

and variables that were used for the current research project is provided. The main focus 

is on the data collection procedures for ANS Study 2, as this data was collected within the 

current PhD project. 

In the research described in chapter 3, data of the two large 24-h ambulatory ANS 

studies was combined to explore heritability of the three most commonly used HRV 

measures in the largest ambulatory dataset to date. Because previous research has shown 

that ceiling effects may strongly impact HRV at low heart rates - a result that was recently 

confirmed by our group (van Lien et al., 2011), a secondary goal of this research was to 

test whether these effects confounded heritability estimates, at different levels of physical 

activity. 

Chapter 4 focuses on the quantification of ambulatory ANS reactivity to real-life 

situations. ANS activity during real life stress is typically measured during a concrete event 

or stressor taking place in the daily life of the subject. In this chapter, we systematically 
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explored the possibilities of capturing real life stress in unstructured settings without 

preset (stressful) events. Several resting baseline and periods of stress were quantified 

and the temporal stability and heritability of these measures was inventoried. We further 

tested whether we could replicate the increase in genetic variance when going from rest 

to stress, as previously observed in a laboratory setting (de Geus et al., 2007). 

In chapter 5, several clinically relevant cardiac repolarization and depolarization 

parameters were extracted from the continuous ECG registrations that were assessed in 

the second 24-hour ambulatory ANS study. The reliability of this approach was inventoried 

by researching the heritability of these parameters and by comparing the heritability 

estimates to those of the same parameters obtained from a typical 10 sec resting ECG 

as commonly used in clinical practice. Among the repolarization parameters studied was 

the T-wave amplitude (TWA). Because of its alleged link to sympathetic influences on 

cardiac repolarization, the TWA was recently coined as a valuable addition to the PEP 

in characterizing cardiac sympathetic activity (van Lien, Neijts, Willemsen, & de Geus, 

2015). As heart rate was a major co-determinant of TWA, we specifically tested whether 

the same or different genetic factors operated on repolarization at different heart rates. 

Furthermore, it was tested whether the same or different genetic factors were at the basis 

of the different repolarization parameters. 

In chapter 6, focus temporarily shifted from ANS functioning to inflammation 

processes, more specifically to pro-inflammatory activity which forms yet another impor-

tant correlate of cardiovascular disease risk. The heritability of the plasma levels of two 

important cytokines and two acute phase reactants was assessed in an extended twin  

design which included not only twins and their siblings, but also the mothers and fathers  

of the twins. Various sources of noise were taken into account (batch effects, oral contra-

ception-induced or cyclic variation in estrogen, and seasonal variation) after which the 

heritability of these parameters was established. These data were then used in chapter 7  

to research the prospective association between ambulatory ANS level and reactivity, 

and pro-inflammatory and metabolic risk in two independent tests. In the first test ANS 

functioning was linked to inflammatory and metabolic risk factors measured 4.9 years 

later. In the second test the reverse association was researched linking inflammatory and 

metabolic risk to ANS functioning measured 5.4 years later.

Chapter 8 summarizes the main results of this thesis and provides new hypotheses 

for future cardiovascular research regarding the causes and consequences of ANS 

regulation in daily life.





Chapter 2 
Research design and data collection
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All data used in this project was collected in participants who were registered with the 

(adult) Netherlands Twin Register (NTR). Since 1991, ongoing large-scale longitudinal data 

is being collected by means of surveys on health, lifestyle and personality and through 

experimental projects in which data on biological, psychological and/or behavioral 

processes are actively collected. For an overview of the data that is collected in adults by 

the NTR, see Willemsen et al. (2013). For this project we used data from a large biobank 

study conducted by the NTR and two large 24-hour ambulatory ANS studies. The first 

ambulatory ANS study took place between August 1998 and June 2003 (ANS Study 1) 

and biobank data was collected between January 2004 and July 2008. As part of this 

PhD project, additional ambulatory 24-hour ANS data was collected between November 

2010 and June 2012 (ANS Study 2). Figure 2.1 gives an overview of these three studies. A 

total of 465 participants who took part in the first ambulatory ANS study, also took part in 

the biobank study and all participants participating in the second ambulatory ANS study, 

were selected based on participation in the biobank study.

Figure 2.1. Overview of the data(structure) used for this thesis.

1998 -2003  
ANS Study 1 - wave 1 & 2 
 
Ambulatory ANS  
Recordings 
 
Cortisol 
 
Demographic, lifestyle, and 
physical and mental health 
assessment 
 
N = 797 

2004 – 2008 
Biobank Study 
 
 
DNA and Biomarker 
Assessment 
 
 
Demographic, lifestyle, and 
physical and mental health 
assessment 
 
N = 9 530 

2010 – 2012 
ANS Study 2 – wave 3 
 
Ambulatory ANS  
Recordings 
 
Cortisol 
 
Demographic, lifestyle, and 
physical and mental health 
assessment 
 
N = 592 

Follow-up 
 
 N = 592 

Follow-up 
 
 N = 465 

ANS Study 1 - wave 2 
 
Retest study 
 
Demographic, lifestyle, 
and physical and 
mental health 
assessment 
 
N = 62 

The study protocol and the data collection for the two ambulatory studies was essentially 

the same. The main differences between the first ANS data collection round and the second 

one, is that software and hardware improvements have been made over time. The ANS 

assessments in Study 2 were performed with an improved version of the VU Ambulatory 

Monitoring System (VU-AMS) and, compared with Study 1, the protocol of Study 2 was 

complemented by several (subscales of) questionnaires concerning physical health and 
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psychological wellbeing. We also made some changes in the protocol concerning the 

cortisol data collection. For more detailed information on the previous ANS study, you 

are referred to the dissertations of Mireille van den Berg who was involved in the first 

wave of data collection of Study 1 (van den Berg, 2002), Nina Kupper who was involved 

in the data collection of wave 2 of Study 1 (Kupper, 2005), and Annebet Goedhart who 

was mainly involved in the retest part of this study (Goedhart, 2008). Below, a detailed 

description of the research set up and protocol for the current 24-hour ambulatory ANS 

study is provided, followed by a brief overview of the biobank study.

Figure 2.2. Overview of the subject selection for the current ambulatory ANS recording study.

N = 107 

Reached by phone? 

N = 873 

no 

N = 766 

yes 

-  Not reached at all (82) 
-  Not reached anymore  
   after first contact (17) 
-  Living abroad (8) 

Met inclusion criteria? 

N = 136 N = 592 

N = 38 N = 728 

no yes 

-  Pregnant (17) 
-  Cardiovascular disease (6) 
-  Other disabling disease (5) 
-  Not able to conform to  
   protocol because of work (10) 

Interested in participation? 

no yes 

-  Too demanding (14) 
-  Too busy/not interested (68) 
-  No participation because family did not participate (11) 
-  Reason not specified (43) 
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Ambulatory ANS Study 2

Participants

Healthy twins aged between 21 and 50, and non-twin siblings within an age range of 

three years of the twins were considered eligible. Additional requirements were that they 

had also participated in the biobank study and that they had not participated in the first 

ambulatory ANS study. Furthermore, only participants with DNA data for at least two 

multiples within the family were selected for participation. The resulting sample was then 

pre-screened for known cardiovascular disease or other disease related states that could 

compromise the ambulatory recordings (i.e. multiple sclerosis). This screening was based 

on their health status as assessed during the biobank study. A total of 873 participants 

that met the inclusion criteria were contacted for participation in the current ANS Study. 

Ultimately, 592 (81.3%) of the 728 participants who were reached by phone and who met 

the inclusion criteria as verified by telephone interview participated in the current study 

(see figure 2.2 for an overview).

Testing procedure

All participants that were eligible for participation received a letter by mail informing 

them about the study and providing them with background information. The invitation 

letter and brochure are in Appendix I. About one to two weeks after the invitations 

were sent, participants received a phone call and were asked if they were interested in 

participating in the current study. During the phone call their health status was shortly 

screened. A priori reasons for exclusion were pregnancy (until half a year after delivering 

the baby), heart transplantation, presence of a pacemaker, known ischemic heart disease 

or congestive heart failure or other physical complaints that could compromise the 

ambulatory assessment (i.e. severe illness, broken leg). When the inclusion criteria were 

met, an appointment was made on a representative weekday, preferably a working day. 

The appointment was then confirmed in a letter (Appendix II) which was accompanied by 

the informed consent form (Appendix III), three Salivettes, instructions for saliva collection 

(Appendix IV) and a survey. Included in the survey were a questionnaire on sleep quality 

(Pittsburgh Sleep Quality Index, Buysse, Reynolds III, Monk, Berman, & Kupfer, 1989), life 

events, and neuroticism and extraversion were assessed by means of the Amsterdamse 

Biografische Vragenlijst which is a personality questionnaire similar in content to the 

Eysenck Personality Questionnaire (Eysenck & Eysenck, 1975). Participants were asked 
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to fill out the survey the day(s) prior to the ambulatory recording. They were asked to 

refrain from excessive physical exertion the day prior to the ambulatory recording and 

on the recording day itself. On the first morning of the testing day, participants collected 

two fasting saliva samples; the first one was collected immediately after awakening. The 

second was collected 30 minutes later. They were then visited by the researcher and the 

research assistant in the morning, between 6 am and 12 pm at home, or when preferred 

at work. Figure 2.3 shows an overview of the testing day. 

During the visit, the procedure was explained, the informed consent was signed 

and the Salivettes that were used prior to the visit were collected. The researcher then 

conducted an interview on socioeconomic status, lifestyle and health status, including an 

inventory of medication use, current health complaints and adherence to the protocol. 

Meanwhile participants were asked about their height, weight was measured with a 

calibrated scale, and waist and hip circumference were assessed using measuring tape, 

and consecutively the VU-AMS was attached by the research assistant (see Appendix V 

for the interview/protocol of the visit). After this, participants were asked to sit down in a 

secluded part of the house/work area, they were attached with a blood pressure monitor 

and asked to fill out a second survey about their perceived quality of life (Cantril, 1965), 

life satisfaction (Satisfaction with Life Scale, Diener, Emmons, Larsen, & Griffin, 1985), 

anxiety by means of the Young Adult Self Report (Verhulst, Van der Ende, & Koot, 1997) 

and the State Trait Anxiety Inventory (Van der Ploeg, Defares, & Spielberger, 1979), and 

a questionnaire assessing self-esteem (Rosenberg Self-Esteem Scale, Rosenberg, 1965). 

Consecutively, two 2-min cognitive performance (mental stress) tasks were completed 

(the Stroop Colour/Word Test and the Serial Substraction Task). Blood pressure was 

assessed twice during the resting period while the participant filled out the survey, and 

twice during the stress period, once during each task. The total protocol took about 

45 minutes. Finally, participants received a diary (Appendix VI), that also included the 

shortened Dutch version of the Profile of Mood States (POMS) that contains 32 items (Wald 

& Mellenberg, 1990), and a questionnaire on their perceived sleep quality concerning the 

night of the ambulatory recording (GSKL, Groningse Slaap Kwaliteit Lijst Meijman, de 

Vries-Griever, de Vries, & Kampman, 1988). They were additionally provided with three 

more Salivettes, and instructions for the rest of the day, the following night and the next 

morning. 

During waking hours, participants were asked to chronologically report about their 

activities, social situation, location and posture every 60-min in the diary to relate to the 
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continuously recorded tri-axial accelerometer and ECG signals of the VU-AMS device. At 

11.30 pm, or earlier if participants wanted to go to bed earlier, participants were asked to 

collect one saliva sample after a 30-min period of fasting. At the end of the day, before 

going to bed, they were asked to fill out the POMS. The next morning, participants 

collected two fasting saliva samples again, the first one immediately after awakening 

and the second one half an hour later. They additionally filled out the GSKL. After having 

worn the ambulatory recording device for 24 hours, participants detached the VU-AMS 

themselves. The VU-AMS, the diary and the saliva samples were then sent back by mail 

to the VU University Amsterdam. 

Figure 2.3. Overview of the testing day.

       0                           6                       12                     18            24 

T -1 Awakening 

Cortisol 1 

T -0.5 Awakening + 30 

Cortisol 2 

T 0 Home visit 

Interview 

Body measurements  

Blood pressure 

Connecting VU-AMS device 

Questionnaire 2 

Stroop Colour/Word Test 

Serial Subtraction Task 

T 15 Sleep 

Cortisol 3 

POMS 

T 23 Awakening 

Cortisol 4 

Sleep Quality Questionnaire (GSKL) 

T 23.5 Awakening + 30 

Cortisol 5 

T 24 End of testing day 

Disconnecting  VU-AMS 

Time 

The Salivettes were stored immediately at -20˚C upon arrival at the VU. They were sent 

to the laboratory in Dresden for cortisol determination in two waves, once after the first 

year of data collection (fall 2011) and once after the second year, at the end of the data 

collection (fall 2012). 

The ANS data was visually inspected immediately after delivery of the device by 

mail. The ECG signal was checked and scored, and generally within two weeks, the 

participants received a report on their blood pressure and their heart rate during the 24-

hour ambulatory recording (see Appendix VII for an example). The respiration, RSA, and 
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impedance signals were scored at the end of the data collection. Methods on how the 

ECG and ICG signals were derived with the VU-AMS and details on how this data was 

scored is outlined in the chapters specifically focusing on these measures. Table 2.1 gives 

an overview of the variables we extracted from the 24-h ECG and ICG for this research 

project. 

Table 2.1. The ANS variables extracted from the ECG and ICG that were used in this research project.

Measures From Comment

Heart rate,
Heart Rate Variability (SDNN, RMSSD, 
HF-IBI power, LF IBI-power, VLF-IBI power, 
peak-valley RSA), Respiration Rate

Ambulatory ECG & 
respiration signal;  
24-hour recording

HF, RSA, and RMSSD 
assess relatively pure 
cardiac vagal control.

Pre-ejection period (PEP) Ambulatory ECG & 
ICG signal; 24-hour 
recording

PEP assesses relatively 
pure cardiac sympathetic 
control.

T-Wave Amplitude (TWA) Ambulatory ECG signal TWA is associated more 
strongly with PEP than 
with RSA

 

Data loss

Of the 592 participants who wore the VU-AMS device, VU-AMS data of 16 participants 

were discarded for the following reasons: Data of one participant were missing because 

we never received back the device. ECG and ICG data of four participants were lost 

due to equipment failure, data of eight participants were discarded because their ECG 

showed many arrhythmias or preventricular contractions, and data of three participants 

were excluded because we did not receive back the diary. The resulting sample 

comprised 297 families with 576 family members, of which 3 participants were triplets 

and 518 participants were twins: 282 MZ twins (128 complete pairs) and 236 DZ twins (98 

complete pairs). Furthermore, 55 non-twin siblings, 21 brothers and 34 sisters, of twins 

participated (see Table 2.2). 
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Biobank study 

For the biobank study, a total of 9 530 adult twins and their family members were visited 

between 7 am and 10 am at home or, when preferred, at work, to collect fasting blood 

and urine samples. They were instructed to abstain from physical exertion and, if possible, 

not to take medication at the day of the home visit, and to refrain from smoking one hour 

before the home visit. Fertile women were visited on the 2nd-4th day of their menstrual 

cycle or, if they took oral contraceptives, in their pill-free week. During the home visit, a 

brief interview was conducted on health status, including an inventory of medication use, 

illness (last time occurrence, duration and type of illness), and adherence to the protocol. 

Also, height, weight and waist circumference were assessed. Blood tubes were collected 

in the following order; 2 × 9 ml EDTA, 2 × 9 ml heparin, 1 × 4.5 ml CTAD, 1 × 2 ml EDTA, 

1 x 4.5 ml serum. From these samples, the levels of several biomarkers were determined, 

including inflammatory and metabolic parameters. Table 2.3 provides an overview of the 

biomarkers that were used in this project. For more details about this study, you are 

referred to the paper of Willemsen et al. (2010), which gives an overview of the data that 

was collected during this study.

Table 2.2. Family composition ANS Study 2.

Number of additional non-twin siblings

0 1 2 3 Total

MZ Twin pair 112 13 3 - 128

Single twin 23 3 - - 26

DZ Twin pair 84 10 2 2 98

Single twin 33 5 2 - 40

Triplet 1 - - - 1

No twin - 4 - - 4

Total number of families 253 35 7 2 297
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Table 2.3. Variables that were collected in the biobank study and used in this thesis.

Measures From

Pro-inflammatory markers

Tumor Necrosis Factor (TNF)-
alpha, Interleukin-6 (IL-6)

EDTA plasma, using an UltraSensitive ELISA (R&D systems, 
Minneapolis, USA, Quantikine HS HSTA00C)

C-Reactive protein (CRP) CRP was measured in heparin plasma, using Immulite 1000 
CRP assay (Diagnosic Product Corporation, USA)

Fibrinogen Fibrinogen levels were measured in citrate plasma, on a STA 
Compact Analyzer (Diagnostica Stago, France), using STA 
Fibrinogen (Diagnostica Stago, France)

Metabolic markers

Fasting glucose Glucose was measured using the Vitros 250 Glucose assay 
(Johnson & Johnson, Rochester, USA)

Total Cholesterol (TC), High 
Density Lipoprotein Cholesterol 
(HDL-C), Triglycerides (Trig)

TC, HDL-C, and triglycerides were measured in heparin 
plasma, using Vitros 250 direct HDL cholesterol and Vitros 250 
Triglycerides assays (Johnson & Johnson, Rochester, USA)

Low Density Lipoprotein 
Cholesterol (LDL-C)

LDL-C was calculated using the Friedewald Equation 
(Friedewald, 1972)
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Abstract

This study estimated the heritability of 24-h heart rate variability (HRV) measures, 

while considering ceiling effects on HRV at low heart rates during the night. HRV 

was indexed by the standard deviation of all valid interbeat intervals (SDNN), the 

root mean square of differences between valid, successive interbeat intervals 

(RMSSD), and peak-valley respiratory sinus arrhythmia (pvRSA). Sleep and waking 

levels of cardiac vagal control were assessed in 1,003 twins and 285 of their non-

twin siblings. Comparable heritability estimates were found for SDNN (46%-53%), 

RMSSD (49%-54%), and pvRSA (48%-57%) during the day and night. A nighttime 

ceiling effect was revealed in 10.7% of participants by a quadratic relationship 

between mean pvRSA and the interbeat interval. Excluding these participants did 

not change the heritability estimates. The genetic factors influencing ambulatory 

pvRSA, RMSSD, and SDNN largely overlap. These results suggest that gene 

finding studies may pool the different cardiac vagal indices and that exclusion of 

participants with low heart rates is not required. 



 Heritability of 24-h heart rate variability 49

3

Introduction

Reduced heart rate variability (HRV) is a predictor for all-cause mortality and adverse car dio-

vascular events, including atrial fibrillation, myocardial infarction, congestive heart failure, 

and coronary artery disease in pre-morbid populations and samples of cardiac patients 

(Bigger, Jr., Fleiss, Rolnitzky, & Steinman, 1993; Bigger, Jr. et al., 1992; Bigger, Jr., Hoover, 

Steinman, Rolnitzky, & Fleiss, 1990; Buccelletti et al., 2009; Dekker et al., 1997; Dekker et al., 

2000; Kleiger, Miller, Bigger, Jr., & Moss, 1987; Singer et al., 1988; Tsuji et al., 1996; Vikman 

et al., 2003). A proposed mechanism that can explain the risk conveyed by low HRV is that it 

reflects a decrease in cardiac vagal activity which increases the chance of arrhythmic events 

(La Rovere et al., 2001; Schwartz, Billman, & Stone, 1984; Schwartz et al., 1988). 

A useful noninvasive measure of vagal activity is the HRV in the respiratory frequency 

range (0.15-0.4 Hz), also called respiratory sinus arrhythmia (RSA). RSA is generated when 

tonic firing of motor neurons in the nucleus ambiguus is modulated by phasic inhibition 

and excitation coupled to the respiratory cycle (Berntson, Cacioppo, & Quigley, 1993). 

This modulation is caused by connections between the nuclei that control the respiratory 

generator in the pre-Bötzinger and Bötzinger complexes and the vagal motor neurons, 

which lie in close proximity in the brainstem (Rekling & Feldman, 1998) and is further 

influenced by input from baro-, mechano-, and chemoreceptors. Respiration-autonomic 

nervous system (ANS) coupling yields an oscillatory pattern in the release of acetylcholine 

in the sinoatrial (SA) node, such that acetylcholine levels increase during expiration and 

decrease during inspiration. The effect of this respiratory ‘gating’ (Eckberg, 2003) is that 

heart rate increases during inspiration and decreases during expiration. The effect of 

the respiratory-related changes in vagal gating on RSA shows relatively little sensitivity 

to sympathetic blockade but is affected in a dose-response way by muscarinic blockers 

in humans (Martinmaki et al., 2006) and vagal cooling in animals (Katona & Jih, 1975). 

This has led to the use of RSA as a proxy for individual differences in cardiac vagal 

activity (Berntson et al., 1997; Task Force of the European Society of Cardiology and 

the North American Society of Pacing and Electrophysiology, 1996), although it must 

be acknowledged that differences in the sensitivity of the muscarinic receptor signaling 

pathway and differences in respiratory behavior can influence RSA independently of true 

differences in cardiac vagal activity (Grossman & Kollai, 1993; Grossman, Wilhelm, & 

Spoerle, 2004; Ritz & Dahme, 2006). RSA, therefore, is more appropriately considered a 

measure of cardiac vagal control, rather than of vagal activity.
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RSA can be measured directly from the combined ECG and respiration signal as peak 

valley RSA (pvRSA), but two HRV measures derived only from the interbeat interval (IBI) 

time series are also often used to index vagal control over the heart, namely the standard 

deviation of all valid IBIs (SDNN) and the root mean square of differences between valid, 

successive IBIs (RMSSD). Age is a major source of interindividual differences in cardiac 

vagal control, with younger participants having higher RSA levels than older participants 

across the entire adolescent/adult age range (de Geus et al., 2007; De Meersman & 

Stein, 2007; Quilliot, Fluckiger, Zannad, Drouin, & Ziegler, 2001; Vallejo, Marquez, Borja-

Aburto, Cardenas, & Hermosillo, 2005). Sex, BMI and lifestyle variables like smoking and 

regular exercise have also been shown to affect RSA, although these effects are generally 

modest (de Geus et al., 2007; De Meersman & Stein, 2007; McNarry & Lewis, 2012; 

Sacknoff, Gleim, Stachenfeld, & Coplan, 1994; Umetani, Singer, McCraty, & Atkinson, 

1998; Valentini & Parati, 2009; van Lien et al., 2011). 

In contrast, a substantial portion of the interindividual variance in RSA appears to 

be due to genetic variation. Twin studies that record RSA in quiet resting conditions in the 

laboratory systematically reported a significant genetic contribution to RSA (Boomsma et 

al., 1990; de Geus et al., 2007; Riese et al., 2006; Riese et al., 2007; Snieder et al., 1997; 

Tank et al., 2001; Tuvblad et al., 2010; Uusitalo et al., 2007; Wang et al., 2009; Wang 

et al., 2005; Zhang et al., 2007). Heritability estimates at rest range from 25% to 71%. 

Ambulatory studies report heritabilities ranging from 35% to 65% (Busjahn et al., 1998; 

Kupper et al., 2004; Kupper et al., 2005) and from 35% to 55% when confined to sleeping 

or sitting conditions only (Kupper et al., 2004; Kupper et al., 2005). Estimates were very 

similar for European and African Americans (Wang et al., 2005), across the three different 

measures used (Goedhart, van der Sluis, Houtveen, Willemsen, & de Geus, 2007; Kupper 

et al., 2004), and none of these twin studies reported a sex difference in heritability or 

evidence for different genes being expressed in males and females. 

Interestingly, three independent studies that measured cardiac vagal control at rest 

during a series of mental stressors all reported increased genetic variance in these measures 

under stress (Riese et al., 2006; de Geus et al., 2007; Wang et al., 2009). Compared to the 

heritability of resting baseline levels, the genetic contribution to the variance in measures 

of vagal control increased on average up to 10-20% when participants were exposed to 

various stress tasks. These findings have been taken to suggest that genetic influences 

on cardiac vagal control become more pronounced when the participant is challenged 

by mentally and emotionally ‘engaging’ conditions, i.e. they seem to provide evidence 
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of Gene x Stress interaction (de Geus et al., 2007). This would lead to the prediction that 

RSA heritability estimates might vary across an ambulatory recording day, for instance 

by being higher during daytime than at night. In addition, physical stressors may also 

give rise to higher genetic variance, as vagal withdrawal may not be as strong in each 

individual. Therefore, across the daytime, heritability of RSA measures may be lower 

during sitting conditions than during more physically active conditions.

Previous ambulatory twin studies have only indirectly addressed these questions and, 

importantly, failed to take into account the key observation that RSA can be paradoxically 

lowered at very low heart rates due to ceiling effects (Malik & Camm, 1993; van Lien 

et al., 2011). Normally, respiratory gating will result in a larger difference between the 

shortest IBI in inspiration and the longest IBI in expiration if tonic levels of vagal control 

over the heart are larger (Berntson et al., 1993; Eckberg, 2003). However, when cardiac 

vagal control is very high, a ceiling effect may prevent the lengthening of the IBI during 

expiration more than during inspiration (Malik & Camm, 1993). The biological basis of this 

ceiling effect is that high cardiac vagal control causes a large occupancy of the available 

muscarinic receptors on the SA node, and at this level of saturation any further increases 

in acetylcholine may no longer linearly increase the IBI as it would at low to moderate 

levels of cardiac vagal control (illustrated in Figure 3.1). As expiration is characterized by 

higher vagal control than inspiration the beats during expiration suffer more strongly from 

the ceiling effect than beats during inspiration. 

Figure 3.1. Graphical representation of the occurrence of a ceiling effect, showing that there is little 

room left for RSA at very long inter beat intervals (IBIs).
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This ceiling effect is expected to cause a quadratic relationship between IBI and RSA at 

low heart rates. This quadratic shape of the IBI-RSA relationship has indeed been found in 

laboratory studies inducing variance in vagal control by phenylephrine and nitroprusside 

infusion (Goldberger, Challapalli, Tung, Parker, & Kadish, 2001). More recently, the 

occurrence of the quadratic shape was shown under naturalistic settings in 24-hour 

recordings (van Lien et al., 2011). In a subset of 13 out of 52 participants, with half of them 

selected as being engaged in regular vigorous exercise, a ceiling effect on RSA was found 

during the nighttime. Based on these findings it was hypothesized that cardiac vagal 

control in conditions of low heart rate levels will be underestimated by RSA in participants 

with a quadratic shape of the IBI-RSA relationship compared to participants with a linear 

shape of the IBI-RSA relationship (van Lien et al., 2011). Here, we further hypothesize that 

the variation in the shape of the IBI-RSA curve may lead to an underestimation of the 

heritability of nighttime cardiac vagal control when it is based on RSA measures.

In this study we aim to test whether heritability of RSA at night differs from that of 

daytime RSA during sitting and physically active conditions. For this, we use the largest 

sample with 24-h ambulatory cardiac recordings to date. We assessed the shape of the 

IBI-RSA relationship in 24-h ambulatory recordings of 486 monozygotic (MZ) twins, 517 

dizygotic (DZ) twins, and 285 of their singleton siblings. Based on the scatter plots of 

the mean of RSA and IBI in 10-min bins we made a qualitative distinction between linear 

IBI-RSA shapes showing no evidence of ceiling/saturation effects and quadratic IBI-RSA 

shapes suggesting reduction of RSA at long IBIs through ceiling/saturation effects. First, 

heritability of three often used RSA measures were computed during sleep and daytime by 

comparing MZ and DZ/sibling resemblance using the established twin methodology (Neale 

& Cardon, 1992). Next, heritability estimates of these RSA measures were re-estimated 

after removing the participants with evidence of ceiling effects. Furthermore, heritability 

of pvRSA was estimated after replacing the nighttime pvRSA values by (a) the maximal 

observed pvRSA at the peak of their quadratic IBI-RSA curve, and (b) by the pvRSA value 

at the longest nighttime IBI obtained from extrapolating from the linear part of their IBI-

RSA curve. Although these virtual maxima may still underestimate the true level of cardiac 

vagal control, they preserve all the participants for the analysis and may better capture the 

total genetic variance. The rationale behind this approach is akin to the correction of blood 

pressure in medicated participants by adding the average effect of the antihypertensive 

medication to the observed blood pressure. This was shown to preserve genetic variance 

compared to removing participants with medication (Cui, Hopper, & Harrap, 2003). 
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Our foremost goal was to establish the heritability of RSA measures across the 24-h 

period while accounting for ceiling effects on RSA at low heart rate levels during the 

night. We expected the heritability estimates for the nighttime RSA measures to be 

significantly moderated by the IBI-RSA shape, such that heritability of cardiac vagal 

control is underestimated unless the ceiling effect is taken into account. As a secondary 

goal we tested the degree of overlap in the genetic factors influencing pvRSA, RMSSD 

and SDNN, and their potential sensitivity to the ceiling effects. As these measures are all 

used to capture individual differences in cardiac vagal control, the expectation is that the 

genetic factors influencing them are highly correlated.

Method
Participants

Participants were all registered in the Netherlands Twin Register and took part in a 

large cardiac ambulatory monitoring project in which 24-h recordings were collected 

in three data collection waves. A priori reasons for exclusion were pregnancy, heart 

transplantation, presence of a pacemaker and known ischemic heart disease, congestive 

heart failure, or diabetic neuropathy. We excluded data of 8 participants showing much 

arrhythmias. Valid ambulatory HRV recordings were available for 1,373 participants, of 

which 797 participated in the first two waves between 1998 and 2003. Sixty-seven of 

these participants took part in both waves, as part of a study on temporal stability of the 

ambulatory recordings (Goedhart, Kupper, Willemsen, Boomsma, & de Geus, 2006). In 

Wave 3, running between 2010 to 2012, the sample was further expanded with 576 new 

participants. 

Data for 71 participants (75 recordings) were excluded due to the use of cardio vascular 

medication (beta blockers, ATC C07, cardiac therapy, ATC C01), or antidepressants (ATC 

N06A) at the time of the ambulatory assessment. Of the remaining 1,302 participants, 

63 had duplicate ambulatory recordings from which we selected a single recording only. 

When the difference in the duration between the duplicate recordings was greater than 

or equal to 200 min, the shorter recording was excluded (12 recordings). Next, preference 

was given to the recordings of the data collection wave in which both twins participated, 

by excluding the recordings for the wave when only one of the twins participated (25 

recordings excluded). For the remaining duplicate recordings, the recording of the wave 

in which most family members participated was retained (26 recordings excluded). 
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To simplify genetic modeling, we excluded the third member of triplets and included a 

maximum of two singleton brothers and two singleton sisters per family. Therefore, eleven 

participants from larger families were additionally excluded: the third member of a triplet 

(N = 1), nine siblings when more than two brothers and two sisters participated, and one 

twin who belonged to a second twin pair in the family. For the latter, we selected the 

siblings who were closest in age to the twins. We additionally excluded three participants 

who took part in the first two waves while all other family members participated in the 

third wave. 

 The final sample comprised 1,288 participants belonging to 624 families, with 486 

MZ twins (210 complete pairs), 517 DZ twins (205 complete pairs), and 285 non-twin 

siblings. Mean age was 33.5 years (SD = 9.2 years), and 61.6% of the sample was female. 

Zygosity of the twins was determined by DNA typing for 97.9% of the same-sex twin pairs. 

For the remaining same-sex pairs, zygosity was based on survey questions on physical 

similarity and the frequency of confusion of the twins by parents, other family members, 

and strangers. Agreement between zygosity based on these items and zygosity based on 

DNA is 96.1% (Willemsen et al., 2013). The Medical Ethics Committee of the VU University 

Medical Center approved of the study protocol and all participants gave written consent 

before entering the study.

Ambulatory Measurements of Heart Rate and Heart Rate Variability

For the first two data collection waves, the VU University Ambulatory Monitoring System 

(VU-AMS) version 4.6 was used (VU University, Amsterdam, The Netherlands, www.vu-ams.

nl). This version of the VU-AMS continuously recorded the ECG and changes in thoracic 

impedance (dZ) from a six-electrode configuration (de Geus & van Doornen, 1996; de 

Geus, Willemsen, Klaver, & van Doornen, 1995; Riese et al., 2003). The device automatically 

detects each R wave in the ECG signal, at which it reads out and resets a millisecond 

counter to obtain the heart period time series. The thoracic impedance (Z), assessed against 

a constant current of 50 KHz, 350 microamperes, was amplified and led to a precision 

rectifier. The rectified signal was filtered at 72 Hz (low pass) to give basal impedance Z. 

Filtering Z at 0.1 Hz (high pass) supplied the dZ signal, which was band pass filtered with 0.1 

and 0.4 Hz cutoffs, after tapering with (sin(x))2, to yield the respiration signal. 

The IBI time series was obtained from the ECG by an online automated R-wave 

peak detector, where IBI is the interval in milliseconds between two adjacent R waves of 

the ECG. Artifact processing was performed on the IBI data offline. When the IBI deviated 
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more than 3 SD from the moving mean of a particular period it was automatically coded 

as an artifact and the IBI was either rejected during visual inspection or new IBIs were 

created by summing too short IBIs or too long IBIs were split in two IBIs of equal length.

For the third wave, the 5fs version of the VU-AMS was used, which improved on 

the 4.6 version in that it stores the entire ECG for offline analysis rather than online 

R-wave peak-detection (van Dijk et al., 2013). The ECG signal was imported into the VU-

DAMS software (version 3.2, VU University Amsterdam, www.vu-ams.nl). After automated 

detection of bad ECG signal fragments (artifacts), R-wave peak detection was done using 

a modified version of the algorithm by Christov (Christov, 2004). From the R-wave peaks, 

the IBI time series was again constructed and visually displayed for interactive correction 

of missed or incorrect R-wave peaks. In addition to the ECG, the 5fs version also stores 

the entire dZ at 1000 Hz to obtain the respiration signal. The dZ signal is filtered using 

a second order band pass filter that passes all frequencies in the range of 0.1 to 0.4 

Hz. An Exponential Smoothing Average technique is then applied on the filtered DZ 

signal, which acts as an additional low pass filter. The output of this filter is a weighted 

combination of previous smoothed value and the newest measured data, or in formula: 

St = α* St −1 + (1 − α) *xt
where St is the smoothed average, α is the tunable smoothing factor (which is in the range 

of 0 to 1), xt is the observation at time t, and St−1 is the previous smoothed value.

Computation of the RSA measures was done in the same way for all three waves. 

Combining the IBI time interval series with the respiration signal extracted from the thorax 

impedance signal (dZ), the ‘peak–valley’ RSA method was used to asses pvRSA (de Geus 

et al., 1995; Grossman, van Beek, & Wientjes, 1990; Grossman & Wientjes, 1986). In this 

method, RSA is scored from the combined respiration and IBI time series by detecting the 

shortest IBI during inspiration and the longest IBI during expiration on a breath-to-breath 

basis according to the procedures detailed elsewhere (de Geus et al., 1995; Houtveen, 

Groot, & de Geus, 2005; van Lien et al., 2011). Breathing cycles that showed irregularities 

like gasps, breath holding and coughing, were considered invalid and were removed 

from further processing. If no shortest or longest IBI could be detected in inspiration and 

expiration respectively, the breath was either set to missing or to zero when computing the 

average per condition for pvRSA. Similar results were found for pvRSA computed either 

way and we employed only one (breaths set to missing) in further statistical analyses. The 

two other measures of RSA were derived from the IBI time series by taking the standard 

deviation of all valid IBIs (SDNN) and the root mean square of differences between valid, 
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successive IBIs (RMSSD):

Chapter 1 
 
Covariance (P1,P2) = u * VA + r * VD 

 
 
Chapter 3 
 
St  = α ∗ St −1  + (1 − α ) ∗ xt 

 

         
                    

   

   
 

 

pvRSAmax_virtual = intercept + (daytime_slope * IBImax) 

 

Chapter 4 
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Procedure

Participants were visited at home, before starting their normal daily activities. During a 

short interview, information on health status and current medication use was obtained. 

The VU-AMS was attached and its operation explained. Participants were instructed to 

wear the device the entire day and night up until awakening the next morning. Instructions 

were supplied that explained how to respond to potential alarm beeps (e.g., on loose 

electrode contacts), and telephone assistance was available during waking hours. 

Participants were requested to keep a diary and to write down a chronological account of 

activity, posture, location, and social situation over the time period. For Wave 1 and 2 this 

was done every 30 min, for Wave 3 every 60 min. Participants were instructed to refrain 

from vigorous exercise during the ambulatory recording day.

Data Reduction

Using the activity diary entries in combination with a visual display of the output of an 

inbuilt accelerometer (measuring movement), the entire 24-h recording was divided into 

fixed periods. These periods were coded for posture (supine, sitting, standing, walking, 

bicycling), activity (e.g. desk work, dinner, meetings, watching TV), and physical load 

(no load, light, intermediate and heavy). Minimum duration of periods was 5 min and 

maximum duration was 1 h. If periods with similar activity and posture lasted more than 

1 h (e.g., during sleep), they were divided into multiple periods of maximally 1 h. All 

periods were classified into three main ambulatory conditions: (1) lying asleep, (2) sitting 

during the day, or (3) mild physical activity (e.g. standing/walking) based on the dominant 

posture/ activity reported in that period; the exact timing of changes in posture/activity 

was verified using the accelerometer signal from the ambulatory device. 

To determine the shape of the relationship between IBI and pvRSA we divided 

the entire 24-h recording into bins no longer than 10 min, thereby making a distinction 

between waking and sleeping periods. For the majority of the bins (83%), condition within 

the bin was uniform. The other bins did not fall within a single condition because it was 

not always determined for the entire bin, or the bin covered more than one condition. 
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The mean IBI and pvRSA were determined per bin and the correlation across these IBI 

and pvRSA means was depicted in a separate scatter plot for each of the participants 

in the study. Four examples of the IBI-RSA relationship are shown in Figure 3.2 (full set 

of scatter plots available upon request from the corresponding author). Significance of 

the regression weights (β1 and β2) in the linear and quadratic terms was tested by the 

SPSS CURVEFIT procedure. First automated classification of the shape was used. To be 

classified as quadratic, the β2 parameters had to be significantly different from zero, the 

quadratic solution had to explain 20% of the variance in RSA, and the quadratic solution 

had to improve on the linear solution by at least 10% additional explained variance. Two 

human raters (MN and GW) independently verified this algorithmic classification of the 

scatter plots by visual inspection; a third rater (EG) resolved remaining discrepancies. For 

all participants, the intercept and standardized beta (daytime_slope) of the IBI-RSA curve 

was assessed in the waking part of the data, where it was found to be non-quadratic in 

all participants. 

Figure 3.2. Representative IBI-RSA curves of three participants without ceiling effects (panel a,b,c) 

and one participant with ceiling effects (panel d). The lines represent the best fitting linear and  

quadratic function for each participant.
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For IBI, respiration rate and the three HRV measures (SDNN, RMSSD, pvRSA) a mean 

value was computed across the sleep, sitting and physically active periods in the 

recordings. In addition two separate measures were computed to index maximal cardiac 

vagal control during the night. First, the median value of the six 10-min bins with the 

highest pvRSA value during the night (pvRSAmax) was obtained. For participants without 

ceiling effects these bins occurred mostly around the end of the night. For participants 

with a ceiling effect, the highest pvRSA values were obtained in an earlier phase of the 

night, corresponding to the moment of occurrence of the peak in the quadratic IBI-RSA 

curve. Second, a virtual pvRSAmax (pvRSAmax_virtual) was calculated on the basis of 

the intercept and slope of the daytime IBI-RSA association during sitting activities, by 

extrapolating the pvRSA to the value that would have been obtained at the nighttime  

10-min bin with the longest IBI value (IBImax in seconds) by the following formula:

pvRSAmax_virtual = intercept + (daytime_slope * IBImax)

The rationale behind this virtual value is that by extrapolating the observed daytime IBI-

RSA relationship to nighttime RSA, an RSA value may be obtained that may prove a valid 

alternative to excluding data of participants showing ceiling effects. 

Statistical Analyses

SDNN and IBImax showed a continuous normal distribution. A LogN (LN) transformation 

(for pvRSAmax, pvRSAmax_virtual, pvRSA, and RMSSD) or a squared transformation (for 

daytime_slope) was applied to obtain a normal distribution. 

Group and Condition effects

We used a mixed model ANOVA (IBM SPSS 20.0) and included age, sex, and respiration 

rate (the latter for pvRSA and RMSSD only) as covariates and family as a random factor. 

Respiration rate was only included as a covariate in the analyses for pvRSA and RMSSD, 

because SDNN does not specifically capture HRV related to cadiorespiratory coupling. 

We tested the fixed effects of group (ceiling vs no ceiling), ambulatory condition 

(sleep, sitting, active) and the Group x Condition interaction. Significant interaction was 

followed by post-hoc tests of the ceiling effect within each of the ambulatory conditions. 

Mixed model ANOVA was also used to test the effects of group on the two alternative 

measures of maximal pvRSA at nighttime, pvRSAmax and pvRSAmax_virtual. Effects were 

considered significant when p < .01.
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Genetic Analyses 

In a twin study, the observed variance can be decomposed into four possible sources 

of variance: variance due to additive genetic effects (A), non-additive genetic effects 

(D), common environment (C) shared by family members, and nonshared or unique 

environment (E) (Boomsma & Gabrielli, Jr., 1985). However, in a design that includes 

identical twins, fraternal twins, and sibling pairs, estimates of C and D are confounded 

and the observed variances and covariances only provide sufficient information to model 

either an ACE model or an ADE model, but not both. Based on the pattern of twin and 

sibling correlations we chose to model A, C, and E. For identical twins, fraternal twins, 

and sibling pairs alike, common environmental factors are correlated 1. Genetic factors 

are correlated 0.5 in siblings and DZ twins and 1.0 in MZ twins. By definition, nonshared, 

or unique, environmental factors are uncorrelated in family members.

To answer the question to what extent A, C, and E factors contribute to the variance 

in the RSA measures, biometrical genetic models were fitted to the observed data using 

the structural equation modeling program Mx (Neale, Boker, Xie, & Maes, 2006). First, 

fully saturated models were fitted for each variable separately. In these fully parameterized 

models, means, and variances were estimated freely for both sexes. Then, we tested for 

sex differences in means and variances by constraining these to be equal for males and 

females and tested whether these more constrained models led to a significant worse 

fit to the data. Next, we tested for heterogeneity of correlations of males versus females 

and of fraternal twins versus singletons. The resulting most parsimonious saturated model 

indicated to what extent we could limit the specification of the variance components 

models. 

As the individual differences in the ambulatory RSA measures were expected to be 

sensitive to three main confounding variables: differences in age, sex, and respiration rate 

(de Geus et al., 2007; De Meersman & Stein, 2007; Eckberg, 2003; Quilliot et al., 2001; 

Umetani et al., 1998; Vallejo et al., 2005), the above models specifically regressed the 

effects of sex and age on RSA. Respiration rate was additionally included as a covariate 

for pvRSA and RMSSD. 

Furthermore, we tested for effects of the version of the ambulatory recording device 

by comparing the means and variances of the three waves. In keeping with the highly 

similar strategies used to obtain the RSA measures, no device version effect was found 

so that all three waves were pooled during all genetic modeling. To examine whether the 

genetic architecture of the RSA measures changed from nighttime to daytime and, within 
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the daytime, from sitting only to more physical active activities, full trivariate genetic 

ACE models in Cholesky decomposition were fitted to the mean values for the three 

RSA measures separately for the nighttime sleep, daytime sitting and daytime physically 

active periods. Because the MZ twin correlations were always at least twice as high as the 

DZ and non-twin sibling correlations, it is more likely that familial resemblance derives 

from genetic factors rather than from shared environmental influences. The ACE model 

was therefore tested against the nested AE model only. The resulting most parsimonious 

model was used to further test the source of the observed covariance in the different 

HRV measures. Figure 3.3 depicts a schematic representation of the full trivariate genetic 

model that was fitted to the data. 

Figure 3.3. Example of a path model decomposing trait variance into additive genetic (A), and 

shared (C) and unique environmental (E) factors in one twin pair. Unique A, C and E factors load on 

all three HRV measures. Additionally, A, C and E factors can be shared between the phenotypes. 

This is depicted by the ‘a’, ‘c’ and ‘e’ paths running from the former A, C and E factors of a HRV 

phenotype to the next (a21, a31, a32, c21, c31, c32, and e21, e31, and e32). With these paths, the 

genetic and environmental covariance can be studied. Finally, MZ twins correlate 1.0 regarding the 

A factor scores because they are assumed to share all of their genetic material, whereas DZ or  

sibling pairs correlate 0.5. 
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The significance of A, C, and E factors was tested by comparing the fit of the more 

parsimonious nested models to the fit of the full model using the likelihood-ratio (χ²) 

test in which the difference in minus twice the logarithm of the likelihood (-2LL) was 

calculated. When the χ² test was significant (p < .01), the more parsimonious model was 

considered to fit significantly worse to the data than the fuller model it was tested against. 

In addition, Akaike’s Information Criterion (AIC = χ² - 2df) (Akaike, 1987) was calculated for 

each model, which offers a quick approach to judging the fit of nested models. Those with 

lower values fit better than models with higher values. For more background information 

on the heritability estimation procedures, see (de Geus, 2010). 

To test whether the heritability estimates were significantly affected by participants 

whose data showed ceiling effects, the trivariate genetic analyses were repeated excluding 

those participants. As an alternative to correct for a potential underestimation of the 

heritability of nighttime vagal control two additional genetic analyses were performed 

on pvRSAmax and pvRSAmax_virtual and it was tested whether the heritability estimates 

for these alternative measures were higher compared to the estimates obtained for 

uncorrected nighttime pvRSA.

Results

In 52 participants no valid nighttime recording of the RSA measures was obtained for at 

least five 10-min bins. Analyses of the scatter plots of mean RSA and IBI across the 24-h 

period in the remaining 1,236 participants, showed a significant quadratic relationship 

in 132 participants (10.7%). From Table 3.1 it can be seen that the nighttime pvRSA 

and RMSSD may be underestimated in these participants. Mixed ANOVA analysis with 

correction for family relatedness showed a significant Group x Condition interaction for 

pvRSA, F(2,3061) = 36.20, R2 = 0.64, p < .01; and RMSSD, F(2,3063) = 17.30, R2 = 0.30, p 

< .01; but not for SDNN, F(2,3056) = 3.08, R2 = 0.04, p = .046. Whereas participants with 

a ceiling effect due to a quadratic IBI-RSA curve have a significantly longer IBI throughout 

the entire recording (hinting at higher cardiac vagal control) compared to the participants 

without a ceiling effect, their pvRSA and RMSSD are only higher during the two daytime 

conditions but not at night. Nighttime SDNN appears less affected by the ceiling effect, 

although the group differences in HRV values during the night were also less pronounced 

compared to the daytime conditions. Previously, a similar pattern was observed by our 



62 Chapter 3

group (van Lien et al., 2011). 

Using the maximal observed pvRSA at night still suggests that the participants with 

a ceiling effect have comparable cardiac vagal control (Fgroup = 0.29, R2 = 0.10, p = .588) 

in spite of their longer nighttime IBI. Only when the linear relationship between RSA and 

IBI was extrapolated to the maximal IBI (pvRSAmax_virtual) was a higher value found in 

the ceiling group (Fgroup = 10.47, R2 = 0.84, p < .01). Daytime_slope for the participants 

with a ceiling effect was steeper compared to the daytime_slope of the participants 

without a ceiling effect (Fgroup = 12.19, R2 = 0.73, p < .01).

Table 3.1. Means and (standard deviation) for IBI, pvRSA, RMSSD, SDNN, daytime_slope, pvRS-

Amax and pvRSAmax_virtual by ceiling status (yes/no) and ambulatory condition.

No ceiling effects Ceiling effects Group difference 

Variable (1100 < N < 1104) (N=132)

IBI (ms)

Sleep 975.34 (125.42) 1053.08 (165.02) 77.74*

Sitting 804.93 (102.13) 844.62 (115.90) 39.69*

Active 712.60 (87.53) 741.08 (100.49) 28.48*

pvRSA (ms)

Sleep 56.10 (24.43) 54.05 (26.32) -2.05

Sitting 44.49 (17.22) 58.18 (21.98) 13.69*

Active 35.24 (12.63) 44.96 (14.72) 9.72*

RMSSD (ms)

Sleep 53.08 (25.58) 60.31 (31.88) 7.23

Sitting 36.03 (16.61) 51.24 (24.83) 15.21*

Active 29.54 (12.85) 40.24 (18.65) 10.70*

SDNN (ms)

Sleep 91.49 (26.90) 104.21 (31.37) 12.72*

Sitting 68.92 (19.80) 86.82 (25.01) 17.90*

Active 81.73 (21.34) 98.26 (24.89) 16.53*

daytime_slope 108.50 (64.17) 110.84 (65.86) 2.34* 

pvRSAmax (ms) 86.03 (34.83) 89.21 (33.42) 3.18

pvRSAmax_virtual (ms) 73.31 (32.45) 89.62 (39.92) 16.31*

All variables were corrected for family relatedness, age and sex. pvRSA, RMSSD, 
pvRSAmax, and pvRSAmax_virtual values were additionally corrected for respiration rate.
**= significant main effect of ceiling (within ambulatory condition) (p < .01)
Note. Abbreviations: IBI = inter beat interval; pvRSA = peak valley respiratory sinus arrhythmia; 
RMSSD = root mean square of differences between valid successive IBIs; SDNN = standard deviation 
of all valid IBIs. 
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Table 3.2. Twin and sibling correlations as estimated from the full saturated model.

MZ 
twins

DZ/sibs 
male

DZ/sibs 
female

Opp. 
sex sibs

MZM MZF DZM twin/
sib-sib

DZF twin/
sib-sib

DOS twin/sib-
OS sib

SDNN / sleep¹ 0.70 0.56 0.17 0.09 0.17 0.21 0.45 0.19

SDNN / sitting¹ 0.64 0.55 -0.07 0.24 0.49 0.30 0.27 0.38

SDNN / active¹ 0.65 0.56 0.01 0.31 0.46 0.36 0.35 0.32

RMSSD / sleep ² 0.74 0.60 0.15 0.31 0.17 0.27 0.43 0.29

RMSSD / sitting² 0.58 0.61 0.01 0.34 0.40 0.32 0.26 0.31

RMSSD / active² 0.57 0.50 0.10 0.40 0.27 0.31 0.28 0.30

pvRSA / sleep ² 0.69 0.56 0.22 0.26 0.31 0.34 0.34 0.29

pvRSA / sitting² 0.60 0.65 0.07 0.35 0.44 0.33 0.28 0.23

pvRSA / active² 0.68 0.63 0.07 0.46 0.37 0.40 0.35 0.19

pvRSAmax² 0.64 0.64 0.25 0.24 0.30 0.35 0.25 0.28

pvRSAmax_
virtual²

0.63 0.72 0.19 0.32 0.44 0.29 0.33 0.34

IBImax¹ 0.53 0.55 0.17 0.27 0.38 0.27 0.31 0.27

daytime_slope¹ 0.46 0.48 -0.06 0.21 0.26 0.25 0.20 0.24

¹ = corrected for age, sex
² = corrected for age, sex, respiration rate
 Note. Abbreviations: SDNN = standard deviation of all valid inter beat intervals (IBIs); RMSSD = 
root mean square of differences between valid successive IBIs; pvRSA = peak valley respiratory sinus 
arrhythmia; pvRSAmax = the median value of the six 10-minute bins with the highest pvRSA value 
during the night; IBImax = the nighttime 10-minute bin with the longest IBI value;daytime_slope = 
the slope of the IBI-RSA curve in the waking part of the data; pvRSAmax_virtual = a non-observed 
experimental variable that extrapolates the pvRSA from the intercept and slope of the daytime IBI-
RSA association during sitting activities to the value that would have been obtained at the longest IBI 
value (IBImax); MZM = monozygotic male, MZF = monozygotic female; DZM = dizygotic male, DZF 
= dizygotic female, DOS = dizygotic opposite sex, sib = non-twin sibling.

Twin-Sibling Resemblance and Heritability

Table 3.2 shows the twin and sibling correlations for all measures. From the pattern of 

the correlations it is clear that there is a substantial genetic contribution to all measures. 

The overarching pattern seen is that DZ and sibling correlations are about half of the MZ 

correlations, with the exception of the male DZ correlations which are low and suggestive 

of nonadditivity. Formal testing, however, showed that the DZ twin and non-twin sibling 
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correlations were homogeneous (all p’s > .01) and could be equalized in further model 

fitting. Correlations of MZ males and MZ females also did not differ significantly, nor did 

the same-sex DZ and opposite-sex DZ twin and non-twin sibling correlations (all p’s > .01) 

so no quantitative or qualitative sex differences were modeled. 

Table 3.3.a shows the best trivariate models for pvRSA, RMSSD and SDNN 

separately for the sleep, sitting, and physically active conditions. An AE model provided 

the best fit. Heritability of pvRSA was lower at night than during the day, but as can 

be seen from the confidence intervals, the heritability estimates were not significantly 

different during sleep, sitting and active periods. For RMSSD and SDNN, heritability was 

also very comparable across all periods. 

Genetic and Unique Environmental Correlations

Table 3.4.a shows significant phenotypic correlations between the various HRV measures 

in all three periods. Generally, the phenotypic, the genetic, and the unique environmental 

correlations between pvRSA and RMSSD and RMSSD and SDNN were higher compared 

to the phenotypic, genetic, and unique environmental correlations between pvRSA and 

SDNN for the entire recording time. A single genetic and unique environmental factor 

influenced all three RSA measures, but RMSSD and SDNN were also influenced by 

independent genetic and unique environmental factors that did not affect pvRSA. The 

observed correlation between the three possible dyads of the RSA measures was for 51% 

to 56% attributable to shared genetic factors, and for 44% to 49% attributable to shared 

unique environmental factors. 

Correcting for Ceiling Effects on Nighttime RSA

To test the impact of the ceiling effects on the RSA measures on the heritability of cardiac 

vagal control, we repeated the above trivariate analysis after excluding participants 

with the ceiling effects. Results are depicted in Table 3.3.b. No significant changes in 

heritability estimates were noticeable after excluding participants with ceiling effects. 

Likewise, excluding the participants with ceiling effects did not significantly change 

the phenotypic, the genetic, and the unique environmental associations between the 

RSA measures, nor was a meaningful change observed in the genetic and unique 

environmental contribution to their covariance (see Table 3.4.b).
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Alternative Measures of Nighttime Cardiac Vagal Control

As an alternative measure of nighttime cardiac vagal control, that might be less sensitive 

to the impact of ceiling effects, we used the median value of the six 10-min bins with the 

highest RSA value in all participants (Table 3.5.a). This led to heritability estimates that 

were higher (5%), but not significantly different from those for the pvRSA during the entire 

sleep period (Table 3.3.a).

A second alternative replaced the nighttime pvRSA values by the estimated 

pvRSAmax (pvRSAmax_virtual) value based on the daytime linear association of RSA and 

IBI and extrapolating to the bin with the longest IBI at night (Table 3.5.b). The heritability 

estimate now increased 7% compared to the uncorrected nighttime pvRSA measure, 

but this increase was again not significant as confidence intervals still overlapped. For 

completeness, Table 3.5.c and 3.5.d also present the heritability of the daytime_slope 

and (nighttime) IBImax.

Discussion

Using a twin family design this paper shows that genetic factors explain around half of the 

individual differences in ambulatory cardiac vagal control as measured by pvRSA, RMSSD 

or SDNN. Our expectation that the heritability estimates for the nighttime RSA measures 

would be significantly affected by the IBI-RSA shape, such that heritability of cardiac vagal 

control is underestimated at low heart rates at nighttime, was not supported by the data. 

In spite of significant changes in mean RSA values across the 24-h period, there was no 

evidence for differences in heritability of cardiac vagal control at night compared to daytime 

conditions and, during daytime conditions, heritability was very comparable between 

sitting-only conditions and conditions in which participants were physically active. The 

genetic factors influencing ambulatory pvRSA, RMSSD, and SDNN largely overlapped, 

providing support for the idea that pvRSA, RMSSD and SDNN capture the same biological 

phenomenon. Nonetheless, the overlap in genetic factors influencing pvRSA and RMSSD 

was higher than the overlap in the genetic factors shared between pvRSA and SDNN. 

Earlier twin studies on the heritability of HRV were mainly based on laboratory 

recordings and the heritability estimates that were found varied substantially between 

conditions and across the different HRV measures that were used. Laboratory studies 

reported heritability estimates of pvRSA in resting conditions between 25% to 39% 
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(Boomsma et al., 1990; de Geus et al., 2007; Snieder et al., 1997; Tuvblad et al., 2010). 

Estimates for resting RMSSD values in the laboratory ranged from 36% to 71% (Uusitalo 

et al., 2007; Wang et al., 2005; Wang et al., 2009). Only one laboratory study researched 

resting SDNN and estimated heritability to be 66% (Wang et al., 2005). These resting 

laboratory levels can be best approximated by the sitting-only condition in our sample. 

Heritability of sitting-only pvRSA was estimated at 53%, RMSSD at 54% and SDNN at 48%. 

During (mental) stress, laboratory studies reported increases in heritability of pvRSA 

and RMSSD of 8% to 23% when compared to heritability estimates of resting levels (de 

Geus et al., 2007; Wang et al., 2009), suggesting that more genetic variance is expressed 

under conditions in which participants were aroused. This Gene x Stress interaction that 

was observed in controlled laboratory situations was not recaptured by a nighttime – 

daytime effect. Instead the genetic variance was rather stable across the 24-h period. 

This finding was supported by previous analyses within a subset of the present sample, in 

which we did not observe significant differences in heritability estimates across different 

times of day (Kupper et al., 2004; Kupper et al., 2005). This raises the important but 

possibly misleading question of which of these two paradigms ‘is right’. The ambulatory 

situation is by definition a less standardized setting compared to the laboratory setting 

in which physical activity and postures can be carefully controlled. On the other hand, 

ambulatory 24-h measurements in real life may give a better reflection of the actual day-

to-day situation of participants and thereby capture daily life better. Cardiac recordings 

in an ambulatory setting presumably also contribute more reliably to risk prediction 

compared to a recording in the laboratory, which is generally shorter and more sensitive 

to momentary or lab-specific influences (e.g. the white coat effect) (Zanstra & Johnston, 

2011). Although not tested here, it would be interesting to elaborate on this topic and 

explore different operationalizations of real life reactivity in future research.

Previous research has already shown that RSA can be reliably measured under 

naturalistic conditions with the use of ambulatory monitoring (de Geus et al., 1995; 

Wilhelm, Roth, & Sackner, 2003). Such recordings yield large individual differences in RSA 

that appear to reflect stable trait characteristics. For the average 24-h levels of RSA, high 

test-retest correlations (.63 < r < .90) have been found after 3 to 65 days in both healthy 

individuals and cardiac patients (Bigger, Jr. et al., 1992; Hohnloser, Klingenheben, Zabel, 

Schroder, & Just, 1992; Kleiger et al., 1991; Sinnreich, Kark, Friedlander, Sapoznikov, 

& Luria, 1998; Stein, Rich, Rottman, & Kleiger, 1995) and moderate to high long-term 

temporal stability (.58 < r < .76) has been shown over periods of 7 months to 3.4 years 
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(Goedhart et al., 2007; Pitzalis et al., 1996). Our results corroborate the stability of these 

individual differences and suggest that they have a genetic basis. 

In keeping with the substantial genetic contribution found across different samples 

and the proven reliability of the assessment of RSA over time, several studies have tried 

to identify the actual genetic variants underlying RSA heritability. These mainly concerned 

candidate gene studies, in which a few genes were selected based on their known 

involvement in processes leading to differences in HRV levels. Candidate gene studies 

have found the angiotensin converting enzyme (ACE) (Busjahn et al., 1998), alpha-kinase 

anchoring protein 10 (AKAP 10) (Neumann et al., 2009; Tingley et al., 2007), methylene-

tetrahydrofolate reductase (MTHFR) (Baccarelli et al., 2008), the circadian clock gene 

PERIOD3 (PER3) (Viola et al., 2008), and the brain-derived neurotrophic factor (BDNF) 

(Yang et al., 2010) to be associated with RMSSD and/or SDNN levels. Candidate gene 

studies do, however, need to be interpreted with caution before they have been confirmed 

in independent replication (Sullivan, 2007) and, ideally, functional studies exist that confirm 

a plausible pathway through which the genetic variant can influence RSA. In that sense, of 

all candidates found, the evidence of AKAP10 to be involved in HRV levels is strongest as 

its involvement was confirmed in animal research as well (Tingley et al., 2007). Candidate 

gene studies are by definition confined to current knowledge, and are selected from 

the biological mechanisms already expected to be involved in heart rate regulation. In 

genome wide association studies (GWAS), no a priori assumptions concerning biological 

mechanisms are made and the entire genome is considered to be ‘candidate’ (Tabor, 

Risch, & Myers, 2002; Manolio et al., 2009). To our knowledge, the Framingham Heart 

Study is the only group that has performed a GWAS on HRV thus far, but none of the 

associations reached genome-wide significance (Newton-Cheh et al., 2007). The sample 

studied was however small (N = 548). In a secondary analysis, this group did find significant 

candidate gene associations between the alpha-adrenergic receptor type 1A (ADDRA1A) 

and the alpha-adrenergic receptor type 1B (ADRA1B) genes and SDNN at p < .05. 

However, to be able to find genome wide significant hits, analyses on tens of thousands 

of participants are needed for which whole genome single nucleotide polymorphism and 

HRV data is available. Because no single research group can mount such numbers, the 

Genetic Variability in Heart Rate Variability (VgHRV) consortium was set up with the aim 

to share association results between different research groups and perform across-study 

meta-analyses on HRV (Nolte et al., 2011). This solves the problem of small sample sizes 

but may introduce yet another pitfall, namely the lack of unity regarding the HRV measures 
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that are used across different studies. With this study, we show that the genetic overlap 

between pvRSA and RMSSD, and RMSSD and SDNN, is high (genetic correlations are 

estimated at .94 and .89 in resting ambulatory sitting conditions) while the genetic overlap 

between pvRSA and SDNN, albeit lower, was still .74. From this it follows, that HRV studies 

that assessed pvRSA and RMSSD, or RMSSD and SDNN, can be safely pooled as the 

genetic architecture is expected to be highly similar.

A major limitation of this study is that exercise status was not obtained for all 

participants at the time of testing. Therefore, we cannot rule out that exercise status may 

explain part of the heritability that is found for HRV since previous work has shown that 

exercise behavior and RSA are genetically correlated (de Geus, Boomsma, & Snieder, 2003). 

A second limitation is that we used a crude approach in pooling all 24-hour HRV data in 

only three ambulatory conditions (sleep, sitting, or physically active) thereby potentially 

introducing heterogeneity within conditions, considering the wide range of activities that 

meet these criteria. This may be particularly pertinent for physical activity, where the range 

of variety is largest. On the other hand, ambulatory activities need to be generalized to 

some extent to make data of different participants comparable. Finally, as nighttime HRV 

recordings in twins and siblings, to our knowledge, have only been performed by our 

group we cannot compare our results to those of independent twin studies.

The major strength of this study is that this is the largest 24-h ambulatory cardiac 

monitoring sample to date in which the heritability of three widely accepted HRV 

measures is studied, including pvRSA, which is taken to be the most ‘pure’ HRV measure. 

Additionally, for the first time, within-participant IBI-RSA associations were inventoried to 

assess ceiling status and the impact of this potential confounding factor on the heritability 

estimates has now been thoroughly tested.

We conclude that about half of the variation that is seen in the levels of the three HRV 

measures that are currently used most in the fields of cardiology and psychophysiology, 

is genetically determined in the healthy adult population. The heritability estimates were 

robust against confounding by IBI-RSA ceiling effects that were observed in a subgroup 

of participants that took part in the study. There is no pressing need to exclude these 

participants, who may be overrepresented among healthy exercisers, in genetic studies of 

HRV. The genetic overlap between the three RSA measures studied is large, especially for 

pvRSA and RMSSD and RMSSD and SDNN, thereby implicating that these measures can 

be pooled in future GWASs to obtain larger sample sizes and increase power to find the 

actual genetic variants being responsible for individual differences in cardiac vagal control. 
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Abstract

Measurement of ambulatory autonomic reactivity can help understand the long 

term health consequences of exposure to psychosocial stress in real-life settings. 

In this study, unstructured 24-h ambulatory recordings of cardiac parasympathetic 

and sympathetic control were obtained in 1288 twins and siblings, spanning 

both work time and leisure time. These data were used to define two ambulatory 

baseline (sleep, leisure) and four stress conditions (wake, work, work_sitting, work_

peak) from which six ambulatory stress reactivity measures were derived. The use 

of twin families allowed estimation of heritability and testing for the amplification 

of existing or emergence of new genetic variance during stress compared to 

baseline conditions. Temporal stability of ambulatory reactivity was assessed in 

62 participants and was moderate to high over a three-year period (0.36 < r < 

0.91). Depending on the definition of ambulatory reactivity employed, significant 

heritability was found, ranging from 29 to 40% for heart rate, 34 to 47% for cardiac 

parasympathetic control (indexed as respiratory sinus arrhythmia), and 10 to 19% 

for cardiac sympathetic control (indexed as the pre-ejection period). Heritability of 

ambulatory reactivity was largely due to newly emerging genetic variance during 

stress compared to periods of rest. Interestingly, reactivity to short standardized 

stressors was poorly correlated to the ambulatory reactivity measures implying 

poor lab-real-life correspondence. We conclude that ambulatory autonomic reac-

tivity extracted from an unstructured real-life setting shows reliable, stable and 

heritable individual differences. Real-life situations uncover new and different ge-

netic variation compared to that seen in resting baseline conditions, including sleep.
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Introduction

Exaggerated cardiovascular responses to stress have been associated with an increased 

risk for cardiovascular disease (CVD) (Chida & Steptoe, 2010; Treiber et al., 2003), 

although the effects will be modulated by genetic sensitivity and the frequency of stress 

exposure in daily life (Light, 2001; Steptoe & Kivimaki, 2012). To assess the propensity 

towards exaggerated reactivity, many studies have used standard mental stressors under 

controlled laboratory conditions. The individual differences in stress reactivity detected 

by such procedures are substantial, have proven to be reliable and may be associated 

with long term adverse cardiovascular outcome (Kamarck et al., 1992; Kamarck, Jennings, 

Stewart, & Eddy, 1993; Matthews et al., 2004). Nonetheless, there is valid concern 

about the extent to which laboratory tasks actually translate to stress situations in real-

life (Johnston et al., 2008; Kamarck et al., 2000; Kamarck, Schwartz, Janicki, Shiffman, 

& Raynor, 2003; Schwerdtfeger, Schienle, Leutgeb, & Rathner, 2014). The laboratory 

setting, although important for inventorying the stress response in all its facets, cannot 

adequately capture prolonged activation and subsequent recovery processes (McEwen, 

1998; Steptoe, Cropley, & Joekes, 1999; Schwartz et al., 2003). 

Cardiovascular stress research has therefore shifted from using mental stress 

tasks (e.g. mental arithmetic, reaction time tasks) to also using tasks with a more social 

evaluative character (e.g. public speaking), see Chida & Hamer (2008) for an overview 

of the studies conducted in this area). Since the past two decades, cardiovascular stress 

research has also increasingly moved from the laboratory to the real-life situation of the 

participants. The rationale behind the ambulatory approach is that the daily life situation 

can give a more accurate and ecological valid reflection of the psychophysiological state 

of the participant and might therefore serve as a better indicator or predictor of disease 

risk (Zanstra & Johnston, 2011). This comes at a price. Compared to the laboratory 

setting, the ambulatory situation is per definition a much less controlled environment 

in which confounding factors like physical activity, posture, and time of day come into 

play (Steptoe, Cropley, & Joekes, 2000). Moreover, there is no standard baseline and 

there are no standard stressors to which all participants are exposed. Two strategies have 

been used to deal with this. First, ambulatory recordings have been scheduled during a 

concrete and relatively comparable stressful event like a school exam (Lucini et al., 2002; 

van Doornen, 1986; van Doornen et al., 1994) or an oral presentation (Houtman & Bakker, 

1991a; Houtman & Bakker, 1991b; Johnston et al., 2008). The second strategy is to use 
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prolonged ambulatory recordings that span periods at work and in leisure time. Reactivity 

is then defined by comparing work levels to leisure time levels, under the assumption that 

the working day will be enriched for mentally and emotionally engaging events compared 

to leisure time (Riese, van Doornen, Houtman, & de Geus, 2004; Steptoe et al., 1999; 

Steptoe et al., 2000; Steptoe & Cropley, 2000; Vrijkotte, van Doornen, & de Geus, 2000; 

Vrijkotte et al., 2004). 

A further challenge in ambulatory recording is that it does not allow the same in-

depth assessment of physiology as is possible within a laboratory setting. Ambulatory 

recording has been typically confined to measurements of blood pressure and heart rate, 

whereas decrease in vagal tone and increased sympathetic nervous system (SNS) activity 

are the key drivers of stress-induced increases in blood pressure and heart rate (HR). 

Fortunately, two non-invasive key measures of cardiac sympathetic and vagal control can 

also be recorded with high fidelity in ambulatory settings: the pre-ejection period (PEP) 

and respiratory sinus arrhythmia (RSA) (de Geus, van Lien, Neijts, & Willemsen, 2015). 

When ambulatory HR, PEP and RSA are assessed in a 24-hour recording across a working 

day, followed by leisure time and sleep recording, there are various ways to define cardiac 

autonomic reactivity, for instance by defining either sleep or leisure time sitting as the 

baseline, or using periods of peak reactivity while sitting at work or the entire work period. 

Until now very little systematic study of the reliability and stability of individual differences 

in such ambulatory autonomic reactivity has been performed. 

In the present study, we recorded 24-h ambulatory HR, RSA and PEP in over 1300 

participants. During waking hours, participants filled out detailed activity diaries that 

were used to divide the entire signal of every participant into fixed periods of distinctive 

activities and postures. The periods were used to define two different resting (baseline) 

conditions and four conditions reflecting more mentally and/or emotionally engaging 

episodes (referred to as ‘stress’ from this point forward). Mean sleep levels were used as 

the ultimate resting baseline condition for each participant. As it is not always possible to 

measure during sleep, we also used an alternative baseline condition by selecting a period 

in leisure time during sitting activities which were relaxing in nature (internet, watching TV, 

reading). As a first stress level we used the entire waking period. Since participants were 

visited on a weekday and more than half of the participants were measured on a working 

day at the working location, we also extracted the mean working day level including all 

postures and the mean working day level for sitting activities only as alternative stress 

levels. We also extracted the most (psychological) arousing activities at work for each 
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participant by searching for periods with low physical activity but accompanied by high 

heart rates. 

Two to five year retest data were available for 62 participants which allowed 

estimation of the temporal stability of these ambulatory reactivity measures. In 576 

participants we also embedded a standard stress testing protocol assessing autonomic 

reactivity to two mental stress tasks. This allowed for a comparison of ambulatory reactivity 

to classical short-term stress reactivity. Measurements were done in monozygotic (MZ) and 

dizygotic (DZ) twins and their family members to be able to estimate the reliability and 

heritability of the various ambulatory reactivity measures. Significant heritability indicates 

that a measure is reliable and taps into stable biological differences. It was further tested 

whether there is amplification of existing or emergence of new genetic variance during 

the ambulatory stress conditions compared to ambulatory baselines as has previously 

been observed for laboratory stressors (de Geus et al., 2007; Riese et al., 2006; Wang et 

al., 2009). The overarching aim was to identify ambulatory autonomic reactivity measures 

from unstructured 24-h recordings for use in stress research that have good temporal 

stability, significant heritability, and the ability to detect stress-specific genetic variance.

Methods
Participants

Participants were all registered in the Netherlands Twin Register (NTR). The NTR has been 

collecting survey and biological data for over 25 years. In the biennial surveys, data on 

health, lifestyle, and personality is assessed (Willemsen et al., 2013). A subset of these 

participants were included in a large cardiac ambulatory monitoring project in which 24-

hour recordings were collected in two separate studies (Kupper et al., 2005; Kupper et 

al., 2006; Neijts et al., 2014). Study 1 was conducted between August 1998 and June 

2003 and included two waves of data collection with partial retest data. This sample was 

further expanded with a new data collection round, Study 2, that took place between 

November 2010 and June 2012. In the latter study, data was collected in a single wave. 

For both studies, adult twins and siblings without known CVD or other relevant health 

complaints were selected and informed about the study by mail. This was followed by 

a short telephone interview in which the health status of the participants was verified. A 

priori reasons for exclusion for all studies/waves were pregnancy, heart transplantation, 

presence of a pacemaker and known ischemic heart disease, congestive heart failure, 
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or diabetic neuropathy. We excluded data of 8 participants showing many arrhythmias or 

preventricular contractions. Of the remaining sample (N=1373), data of participants that 

were on cardiovascular medication, cardiac therapy, or antidepressant medication were 

excluded (N=71). To simplify genetic modeling, we excluded the third member of triplets 

(N=1) and used only one pair from families with multiple twins. We further restricted the 

number of siblings to a maximum of two singleton brothers and two singleton sisters per 

family, selecting the siblings who were closest in age to the twins and removing data for nine 

siblings. Three more participants were excluded because the rest of their family members 

participated in a different wave. 

Table 4.1. Sample characteristics for Study 1, the retest study, which was part of Study 1, and Study 

2. All twins and siblings that participated in Study 2 also participated in the laboratory protocol as 

this was embedded within the same 24-h ambulatory measurement. 

Ambulatory 
Study 1

Ambulatory 
Study 2

Wave 1  
(1998 – 2000)

Wave 2  
(2001 – 2003)

Wave 3  
(2010 – 2012)

New New Retest New

N individuals 367 380 62 541

MZ (N belonging to complete pair) 103 (86) 117 (104) 12 (0) 266 (230)

% MZ females 66.0 62.4 50.0 64.3

DZ (N belonging to complete pair) 144 (110) 120 (147) 29 (4) 180 (226)

% DZ females 75.9 76.3 65.5 72.9

Siblings (% female) 120 (57.5) 116 (61.2) 21 (57.7) 49 (59.2)

Age (SD) 28.5 (9.6) 32.9 (10.7) 33.6 (9.6) 37.2 (5.4)

 

In the end, recordings of 1288 participants were available with 486 monozygotic (MZ) twins 

(210 complete pairs), 517 dizygotic (DZ) twins (205 complete pairs), and 285 non-twin 

siblings. The data of participants belonging to an incomplete twin pair were included 

because they could still be paired to their non-twin sibling and/or contribute to the 

estimates of the means and variances. Incomplete pairs occurred because only one of the 

two participated or because data of the other twin was excluded for reasons mentioned 

earlier. Mean age was 33.5 years (SD = 9.2 years), and 61.6% of the sample was female. 

Zygosity of the twins was determined by DNA typing for 97.9% of the same-sex twin 

pairs. For 2.1% of the same-sex pairs, zygosity was based on survey questions on physical 

similarity and the frequency of confusion of the twins by parents, other family members, and 
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strangers. Agreement between zygosity based on these items and zygosity based on DNA 

is 96.1% (Willemsen et al., 2013). For 62 participants in wave 1 of Study 1, measurements 

were repeated in a wave 2 of that study after an average period of 3.3 years (range 

2.1 to 4.7 years). For more detailed characteristics of the Study 1, Study 2, and the retest 

sample separately, see Table 4.1. The study protocol was approved by the Medical Ethics 

Committee of the VU University Medical Center Amsterdam and all participants gave written 

consent before entering the study. 

Procedure

Participants were visited at home, before starting their normal daily activities. During a 

short interview, information on health status and current medication use was obtained. 

They were fitted with the VU University Ambulatory Monitoring System (VU-AMS) that 

records the electrocardiogram (ECG) and impedance cardiogram (ICG) continuously. For 

participants taking part in wave 1 and wave 2 of Study 1 the VU University Ambulatory 

Monitoring System (VU-AMS) version 4.6 was used. For Study 2, the 5fs version of the 

VU-AMS was used. A standard laboratory protocol was embedded within the ambulatory 

recording protocol of this study. During the home visit two typical laboratory tasks, each 

lasting two minutes, were executed by the participants in a fixed order. For this we used 

the computerized Stroop Color-Word conflict task and a Serial Subtraction task, because 

both cognitive tasks have proven capable of eliciting a psychophysiological stress 

response (Boutcher & Boutcher, 2006; Renaud & Blondin, 1997; Sung, Izzo, Jr., Dandona, 

& Wilson, 1999; Tulen, Moleman, van Steenis, & Boomsma, 1989). For the Stroop task, 

stimuli consisted of one of four color names that were printed in incongruent colors. In 

total, 99 presentations of 12 combinations of incongruent stimuli were presented in a 

random order for 2 minutes. As we only included a 2 min Stroop conflict task and none 

of the non-conflicting control tasks, the test was preceded by a 45 sec practice session. 

Participants verbally responded to the stimuli. In the Serial Subtraction task, participants 

were asked to sequentially subtract backward by 7 aloud as quickly as possible for 2 min. 

Each participant began with the number 1256. When an error was made, the participant 

was corrected and instructed to continue from that point on. The cognitive tasks were 

preceded by four minutes of quiet sitting in a secluded part of the house/work area. 

Subsequently, participants were instructed to wear the VU-AMS device the 

entire day and night up until the next day, after having worn the device for 24 hours. 

Instructions were supplied that explained how to respond to potential alarm beeps (e.g., 
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on loose electrode contacts), and telephone assistance was available during waking 

hours. Participants were requested to keep a paper-and-pencil diary and to write down a 

chronological account of their activity, posture, location, and social situation over the past 

time period (free recall). For wave 1 and 2 in Study 1 participants were prompted by an 

alarm beep to do so every 30 minutes, for Study 2 the diary was filled every 60 minutes. 

In addition, participants were instructed to write down at which time they had breakfast, 

lunch, and dinner and they were asked to refrain from vigorous exercise during the 

ambulatory recording day. The next day, the VU-AMS device was detached and collected 

by the researcher or returned by mail.

RSA and PEP measurement

RSA is considered a reliable index of parasympathetic control over the heart, whereas PEP is 

considered a reliable index of sympathetic control over the heart (de Geus et al., 2015). The 

assessment and quantification of respiration and RSA from VU-AMS recordings has been 

described previously (Neijts et al., 2014). Briefly, the dZ signal at the respiration frequency 

(0.1 to 0.4 Hz), combined with the inter-beat interval (IBI) series was used to compute 

‘peak–valley’ RSA (pvRSA). In this method, RSA is scored by detecting the shortest IBI during 

inspiration and the longest IBI during expiration on a breath-to-breath basis according to 

procedures detailed elsewhere (de Geus et al., 1995; Houtveen et al., 2005). If no shortest 

or longest IBI could be detected in inspiration and expiration respectively, pvRSA was set 

to zero.

For the assessment of the PEP, a measure of cardiac contractility, both the ECG and 

the ICG are used. The ICG signal was ensemble averaged across the diary-coded activity 

periods (described in the section on Ambulatory data reduction), time-locking the signal to 

the R-wave peaks (Riese et al., 2003). The PEP is defined as the time interval between the 

Q-wave onset of the ECG and the B-point of the dZ/dt signal. The Q-wave reflects the 

onset of left ventricular activity and the B-point reflects the opening of the aortic valves. 

In both VU-AMS versions, the R and B points are scored automatically by the software. In 

the newer 5fs version of the VU-AMS, the entire ECG signal is stored, so the Q-onset time 

was available as well. All automated scoring was visually checked by the experimenter. 

For the calculation of PEP in the two waves of Study 1, a fixed Q-R interval of 48 msec 

was added to the duration of the R-B interval (Willemsen, de Geus, Klaver, van Doornen, 

& Carroll, 1996). For Study 2, the true Q-onset point was used when present; otherwise 

the grand average of the Q-R interval was summed to the R-B interval of the individual 
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participant. If R-onset was additionally missing, we subtracted the grand average Q-onset 

time from the individual participants’ B-point (van Lien, Schutte, Meijer, & de Geus, 2013).

Ambulatory data reduction

Using the activity diary entries in combination with a visual inspection of the output of an 

inbuilt accelerometer (measuring movement), the entire 24-h recording was divided into 

fixed periods. These periods were coded for posture (supine, sitting, standing, walking, 

bicycling), activity (e.g. desk work, dinner, meetings, watching TV), physical load (no load, 

light, intermediate and heavy) and location of the participant (e.g. at home, at work, 

public space). Minimum duration of periods was 5 min and maximum duration was 1 

hour. If periods with similar activity and posture lasted more than 1 hour (e.g. during 

sleep), they were divided into multiple periods of maximally 1 hour. For each of the coded 

periods the mean IBI, RSA and PEP was calculated. The periods belonging to the standard 

baseline and stress conditions were additionally coded for the participants that took part 

in Study 2 with one period representing the resting baseline (‘standardized_baseline’) 

condition and one period representing the stress condition, averaged over the two tasks 

(‘standardized_stress’). 

From the ambulatory autonomic nervous system (ANS) recording, two ambulatory 

baseline and four ambulatory stress conditions were defined. For the first ambulatory 

baseline condition, the mean IBI, pvRSA and PEP value across all sleeping periods was 

calculated (‘sleep’). A period was classified as a sleeping period based on the reported 

bedtime in the diary and physical activity was verified by accelerometry. For the second 

ambulatory baseline, per participant the mean of periods spent sitting while being 

engaged in recreational activities in the evening, from 6 pm till bedtime, was determined 

to represent the alternative baseline condition (‘leisure’). Periods summed to at least half 

an hour. For the first ambulatory stress condition, the mean waking level of IBI, pvRSA, 

and PEP was used, including both sitting and light physical (non-sitting) activities (‘wake’). 

As participants were explicitly instructed not to engage in vigorous exercise during the 

recording day, these periods did not include high physical activity. Periods of light physical 

activity were classified as such based on the activity information obtained from the diary 

and the accompanying accelerometer signal. The additional ambulatory stress conditions 

were defined only for participants who reported the testing day to be a working day and 

who actually reported in the diary to have been at the work location during the testing 

day. For these participants all periods in which the participant was engaged in sitting 
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activities or light physical activity at work during a working day between 9 am and 6 pm 

were defined as work. Because there were multiple periods that fit this condition, mean 

IBI, pvRSA and PEP levels were determined across the entire working period (‘work’) and 

across a selection of periods at work when the participants were sitting (‘work_sitting’). 

Finally, an ambulatory stress condition was created from a time frame of at least half an 

hour with the highest HR while the participant was sitting at work between 9 am and 

6 pm. Because this timeframe only consisted of few coded periods and we wanted to 

prevent that relatively high weight would be given to extreme values, the median instead 

of the mean IBI, pvRSA, and PEP values of the periods with the highest HR was selected 

to represent ‘work_peak’. 

Table 4.2. Ambulatory conditions for ambulatory reactivity assessment. The reactivity measures that 

were calculated are listed separately. 

Ambulatory condition Description

Baseline

sleep Mean level during sleep 

leisure The mean of periods while the participant is sitting and engaged in 
recreational activities like internet, reading, watching television, but not 
eating or drinking. Periods sum to at least half an hour. Only periods in 
the evening, from 6 pm till bedtime, are considered eligible.

Stress

wake The mean waking level – including sitting and light physical activity only

work The mean of all periods in which the participant was engaged in sitting 
or light physical activity between 9 am and 6 pm during a working day 
at the work location

work_sitting Similar to ‘work’, except that the mean of all periods in which the 
participant was engaged in sitting activities only between 9 am and 6 
pm during a working day at the work location was calculated 

work_peak A time frame of periods with the highest heart rate while the participant 
is sitting between 9 am and 6 pm during a working day at the work 
location. Periods sum to at least half an hour. The median of the 
selected periods is taken to represent work_peak

Reactivity

Δ wake - sleep Absolute difference score between wake and sleep level

Δ work - sleep Absolute difference score between work and sleep level

Δ work_sitting - sleep Absolute difference score between work_sitting and sleep level

Δ work_sitting - leisure Absolute difference score between work_sitting and leisure level

Δ work_peak - sleep Absolute difference score between work_peak and sleep level

Δ work_peak - leisure Absolute difference score between work_peak and leisure level

Six different ambulatory reactivity measures were calculated by computing absolute diffe-
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rence scores between wake minus sleep (Δ wake – sleep), work minus sleep (Δ work – sleep), 

work_sitting minus sleep (Δ work_sitting – sleep), work_sitting minus leisure (Δ work_sitting 

– leisure), work_peak minus sleep (Δ work_peak – sleep), and work_peak minus leisure (Δ 

work_peak – leisure). The standard stress reactivity was computed as the mean of the two 

mental stress tasks minus the baseline rest condition. For an overview of the ambulatory 

conditions and ambulatory reactivity measures, see Table 4.2.

Statistical analyses

Sample selection, data preparation, and all non-genetic statistical analyses were 

performed using IBM SPSS 20.0. The distributions of ambulatory IBI and PEP levels and 

all ambulatory reactivity measures were normal. For ambulatory pvRSA levels, a natural 

logtransformation was applied to obtain a normal distribution. Significant differences 

between ambulatory conditions were tested by a MIXED model ANOVA with age and sex 

(and with respiration rate for pvRSA only) as covariates and family as a random factor and 

ambulatory condition as a repeated fixed factor (sleep, leisure, wake, work, work_sitting, 

and work_peak). A similar ANOVA was used to test the difference between mental stress 

and baseline conditions during the standard part of the recording. Temporal stability of 

the ambulatory measures across the two waves of Study 1 was calculated as an intraclass 

correlation. Associations between ambulatory reactivity scores amongst themselves and 

with the standard stress reactivity were assessed by Pearson correlations. For all statistical 

testing, effects were considered significant when p < .01.

Genetic analysis

In a twin-study, variance is typically decomposed into latent genetic and environmental 

components. Genetic variance can be further decomposed into shared additive (A) 

and non-additive (D) components. Environmental variance can be decomposed in a 

component that is common in family members (C) or that is unique (E) to the individual. In 

a study design that only includes twins and siblings, estimates of C and D are confounded, 

and cannot be estimated simultaneously. In that case, the pattern of the twin correlations 

is used to guide the experimenters’ choice to model either an ACE or an ADE model. An 

ACE model is chosen when the MZ correlations are less than twice as high as the DZ and 

sibling correlations. Dominance or non-additive genetic factors may be present when the 

MZ correlations are more than twice as high as the DZ and sibling correlations, and in that 

case an ADE model will be chosen (de Geus, 2010). MZ correlations can also be useful to 
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explore the reliability of the trait. Estimation of the ratio of Var(E) to the total variance (e²) 

provides a first impression of the unreliability of the trait. The E factor contains true unique 

environmental effects on the trait plus measurement error. As MZ twins are correlated 

perfectly for genetic and for common environmental factors, 1 – e2 is equal to the MZ twin 

correlation (rMZ). Therefore, rMZ is a lower bound for the test-retest reliability coefficient, 

because at the level of an individual unique environment (E) may also lead to stability.

Genetic analyses were performed using structural equation modeling (SEM) in the 

software package Mx (Neale et al., 2006). In SEM, models are fitted to the data and a 

goodness of fit statistic is calculated for each model. Subsequently, the fit of the more 

parsimonious nested models is compared to the fit of the full model by means of the 

likelihood ratio test in which the difference in minus twice the logarithm of the likelihood 

(-2LL) is calculated, this difference has a χ² distribution. When the χ² test is significant (p < 

.01), the more parsimonious model is considered to fit significantly worse to the data than 

the fuller model it is tested against. Before the variance was decomposed into genetic 

and environmental components, saturated models were fitted to the data. In these fully 

parameterized models, we tested for heterogeneity in male and female variances and 

family correlations. More specifically, we tested if sex differences were present and if 

there was evidence for a twin-specific resemblance. The allowed limitations were carried 

forward in the specification of the genetic models. Overall, we did not find evidence for 

twin specific resemblance nor for systematic quantitative or qualitative sex differences. 

We therefore continued estimating all parameters by combining data from males and 

females. Sex and age (and respiration rate for pvRSA) effects on the mean were regressed 

out simultaneously with variance decomposition.

Bivariate genetic models were specified to examine the genetic architecture and 

the change in the genetic influences from baseline ambulatory conditions to ambulatory 

stress conditions (Supplemental Figure 4.1). More specifically, the heritability of the 

baseline condition, or the effect of A1, is estimated by the relative contribution of genetic 

variance to the total variance in the baseline condition and is assessed by the ratio of a11² 

/ (a11² + c11² + e11²). Because the genetic variance during stress conditions can consist of 

the genetic variance that is shared with baseline activity and with new genetic variance 

that emerges during stress, heritability of the ambulatory stress condition is calculated as 

follows: a21² + a22² / (a21² + a22² + c21² + c22² + e21² + 22²). The effects of the genetic factors 

that are expressed during baseline can be amplified (a21 > a11) or deamplified (a21 < a11) 

during stress. The significance of stress-specific genetic effects can be assessed by testing 
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if the path coefficient a22 is significantly different from zero. The part of the heritability that 

is due to these new genetic factors (A2) can be calculated as: a22² / (a21² + a22² + c21² + c22² 

+ e21² + 22²). The heritability of ambulatory reactivity was also calculated by procedures 

described in more detail elsewhere (de Geus et al., 2007). Briefly, it was calculated as a 

change score within the bivariate model by adding a latent factor with fixed loadings 

of +1 and -1 on baseline and stress, respectively. The total variance of the ambulatory 

reactivity score is equal to the sum of the variance during baseline and stress, minus the 

covariance between baseline and stress conditions. So the genetic part of the variance 

of ambulatory reactivity is a11² + a21² + a22² - 2 a11 x a21 which is equal to (a21 - a11)² + a22². 

Heritability of the ambulatory reactivity score is calculated by ((a21 - a11)² + a22²) / ((a21 - a11)² 

+ a22² + (c21 - c11)² + c22² + (e21 - e11)² + e22²). 

Results

Table 4.3 gives the mean levels and standard deviations of the three variables of interest 

for the six conditions and the means and standard deviations of the different reactivities 

that were calculated based on these conditions. The table shows that all participants have 

data during waking time. However, only 56.7% of the participants who reported that the 

testing day was a working day actually reported to be at the work location during the 

testing day. 13.9% of participants reported that the testing day was a working day, but 

they did not spend time in an external working environment (housewives, people working 

at home).

A significant main effect of ambulatory condition was found for all ANS variables; 

IBI, (F (5, 4422) =3127.954, p < .001), pvRSA (F (5, 4458) = 335.281, p < .001), and 

PEP (F(5, 4337) = 235.841, p < .001). Post hoc testing of the reactivity values showed 

this to mainly reflect the four daytime versus sleep contrasts for all three ANS variables 

(see Table 4.3). For IBI and pvRSA, the two contrasts including leisure time as baseline 

measure were also significant (p’s < .001).
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Table 4.3. Means and standard deviations (SD) of IBI, pvRSA and PEP in the six ambulatory conditi-

ons. Reactivity is listed separately.

IBI (ms) pvRSA (ms) PEP (ms)

N Mean (SD) N Mean (SD) N Mean (SD)

Levels

sleep 1242 983.62 (132.37) 1242 55.80 (24.63) 1225 106.28 (15.72)

leisure 1075 837.67 (115.93) 1075 48.30 (22.31) 1044 99.20 (16.32)

wake 1288 759.58 (95.46) 1288 40.86 (15.10) 1285 96.74 (15.67)

work 730 749.92 (113.52) 730 41.27 (16.65) 725 97.12 (16.79)

work_sitting 686 784.63 (112.70) 686 44.89 (18.25) 677 99.49 (17.78)

work_peak 633 739.26 (105.45) 633 39.83 (16.49) 624 97.93 (21.01)

Reactivities

Wake-sleep 1242 -223.51 (85.46) 1242 -15.07 (19.00) 1225 -9.42 (12.89)

Work-sleep 701 -240.58 (106.43) 701 -14.89 (22.16) 685 -8.77 (14.81)

Worksit-sleep 657 -205.89 (100.75) 657 -11.48 (21.30) 639 -6.23 (15.17)

Workpeak-sleep 609 -254.71 (104.33) 609 -16.99 (22.83) 591 -8.06 (15.83)

Worksit-leisure 564 -58.70 (84.00) 564 -3.66 (14.77) 544 1.70 (10.03)

Workpeak-leisure 523 -106.08 (87.13) 523 -8.91 (16.75) 506 0.02 (11.11)

There were significant intercorrelations between all six reactivity measures for IBI, pvRSA 

and PEP (see Supplemental Table 4.1), but the choice of baseline was critical; the four 

reactivity measures using sleep as a baseline were highly correlated amongst each other 

(r’s > 0.87) and so were the two reactivity measures using leisure time sitting as a baseline 

(r’s > 0.89). Correlation was less strong between to the reactivity measures based on 

sleep versus those based on leisure time sitting (0.30 < r < 0.61 for IBI, 0.28 < r < 0.58 for 

pvRSA, and 0.29 < r < 0.60 for PEP). 

Table 4.4 presents the levels attained during the standard stress testing protocol 

that took place at home preceding the ambulatory monitoring in Study 2. In this setting, 

task levels also significantly declined compared to rest for IBI (F (1, 520) = 602.974, p < 

.001), pvRSA (F (1, 519) = 33.785, p < .001), and PEP (F (1, 482) = 98.296, p < .001). The 

standard reactivity measure was very poorly correlated with each of the six ambulatory 

reactivity measures (see Supplemental Table 4.2), particularly for PEP. 

Table 4.5 depicts the temporal stability for the ambulatory levels and reactivity 

measures. Higher temporal stability is more consistently found for the ambulatory 

levels (0.71 < r < 0.90) compared to the reactivity scores which nonetheless show very 

good stability over time for all three ANS parameters (0.36 < r < 0.91). The fact that 

the ambulatory levels capture stable individual traits is further reinforced by the MZ 
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twin correlations that can be used as a proxy of the minimal test-retest reliability for the 

ambulatory levels (Supplemental Figure 4.2).

Table 4.4. Means and standard deviations (SD) of IBI, pvRSA, and PEP levels and reactivity during 

the standard stress protocol. 

IBI (ms) pvRSA (ms) PEP (ms)

N Mean (SD) N Mean (SD) N Mean (SD)

Rest 522 834.62 (120.27) 522 48.36 (22.22) 493 107.12 (20.75)

Tasks 521 774.32 (111.43) 521 44.75 (17.73) 493 103.06 (21.01)

Δ task – rest 521 -59.82 (55.65) 521 -3.51 (13.87) 483 -4.22 (9.30)

Table 4.5. Temporal stability of the ambulatory levels and reactivity measures over an average time 

period of 3.3 years. 

IBI pvRSA PEP 

N ICC N ICC N ICC

sleep 53 .80 53 .86 51 .84

leisure 48 .68 48 .82 47 .87

wake 62 .79 62 .82 62 .89

work 19 .77 19 .90 19 .87

work_sitting 19 .71 19 .89 18 .86

work_peak 16 .74 16 .85 15 .85

Δ wake - sleep 53 .71 53 .83 51 .49

Δ work - sleep 17 .91 17 .84 16 .48

Δ work_sitting - sleep 17 .89 17 .79 15 .52

Δ work_sitting - leisure 15 .36 15 .58 13 .76

Δ work_peak - sleep 17 .40 17 .68 15 .73

Δ work_peak - leisure 13 .44 13 .85 12 .65

MZ twin correlations were higher than DZ twin correlations suggesting a role for genetic 

factors in explaining individual differences in IBI, pvRSA, and PEP levels during rest and 

stress periods in real-life. This was confirmed by genetic structural equation modeling. 

For all conditions, IBI and pvRSA in both the ambulatory and the standard setting and 

for PEP in the standard setting only, ACE models were fitted to the data. For PEP in the 

ambulatory conditions, ADE models were fitted to the data as the MZ twin correlations in 

these instances were more than twice as high as the DZ twin correlations. Formal testing 

showed that C and D factors could be dropped from all models and AE models provided 
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the most parsimonious fit for all three ANS measures in all conditions in both settings. 

Heritability estimates for the IBI, pvRSA, and PEP levels in all baseline and stress conditions 

and the ambulatory and standard reactivity measures are listed in Table 4.6. In general, 

heritability for the baseline levels was lower than heritability of the stress levels but, as 

can also be judged from the confidence intervals, this difference was only significant for 

work_sitting compared to leisure and sleep where it went from 51 to 69% and from 53 to 

69%, respectively, for IBI. For PEP, heritability of work_sitting (44%) was also significantly 

higher than leisure (25%) and there was a clear trend for work_peak for which heritability 

was estimated at 42%.

For all ambulatory reactivity contrasts, there was a common genetic factor that 

influenced both baseline and stress levels but, in addition, new genetic factors were 

found to emerge during stress compared to the baseline conditions, yielding significant 

heritability of the corresponding ambulatory reactivity measures. For IBI, significant 

heritability of reactivity was found for five reactivity measures, except for leisure compared 

to work_peak. For the pvRSA, heritability of four reactivity measures were significant, the 

exceptions being work_sitting compared to leisure and work_peak compared to leisure. 

For PEP, heritability of ambulatory reactivity was significant for the wake compared to 

sleep and both the work_sitting and work_peak compared to leisure contrasts. During 

stress, genes acting at the resting level were deamplified for all ambulatory IBI and pvRSA 

reactivity measures, with the exception of Δ work_sitting – leisure for IBI and pvRSA, and 

Δ work_peak – leisure for pvRSA only. Deamplification of genetic variance means that 

the effect of the genes active during rest accounted for a smaller part of the variance 

during stress. For the ambulatory PEP reactivity measures, no significant deamplification 

of genetic factors was found when going from rest to stress and the genetic factors 

influencing leisure time were even significantly amplified by the work_sitting and the 

work_peak conditions. 

For standard stress reactivity, too, a common genetic factor was found to influence 

both rest and task levels and new genetic factors emerged during task stress for all ANS 

measures. Although these effects were significant, they were less pronounced in the 

standard stress environment compared to real-life. 
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Discussion

This study describes a large twin study on changes in ambulatory levels of IBI, PEP, and 

pvRSA when going from sleep and resting in leisure time to more socially and mentally 

engaging activities during the working day. We found that ambulatory autonomic 

reactivity is a stable, heritable individual trait, showing moderate to high temporal stability 

over a three-year follow-up period. Depending on the definition of ambulatory reactivity 

employed, heritability ranged from 29 to 40% for IBI, 34 to 47% for pvRSA, and 10 to 19% 

for PEP, although not all reactivity measures showed heritability. Heritability of ambulatory 

autonomic reactivity was largely due to new genetic variance specifically emerging during 

stress, while the genetic factors influencing resting baseline levels became less prominent 

under stress. 

These results replicate and extend previous findings in laboratory stress testing. In 

an earlier laboratory study of our group stress-specific heritability for HR was seen in an 

adolescent and in a middle-aged sample (de Geus et al., 2007). No stress-specific genetic 

effects for RSA were found in both age groups, but another study in adolescents did 

report stress-specific genetic effects on heart rate variability (HRV) (Wang et al., 2009). For 

PEP, stress-specific genetic effects were found in adolescent but not in middle-aged twins 

(de Geus et al., 2007). Although we did find stress-specific genetic effects on HR, RSA 

and PEP in the current study during standard task stress, the influence of stress-specific 

genetic effects in real-life was generally larger. The partly divergent findings may be due 

to the nature of the stress tasks that were used. De Geus et al. (de Geus et al., 2007) used 

short mental stress tasks to induce stress while Wang et al. (2009) used tasks that more 

closely approached stress in real-life by including virtual reality car driving, a video game 

challenge, and a social competence interview. Combining this with the evidence from the 

current ambulatory study, we hypothesize that the use of more ecologically valid stressors 

tends to increase the contribution of novel genetic factors to individual differences in 

stress-reactivity.

Previous prospective studies on the health effects of reactivity have been limited to 

short-term reactivity to standard laboratory stress tasks (Chida & Steptoe, 2010; Treiber et 

al., 2003). Correlations between short-term stress reactivity calculated from our standard 

rest and stress tasks with ambulatory reactivity were weak which confirms previous 

research finding poor generalizability of artificial to more realistic reactivity measures 

(Johnston et al., 2008; Kamarck et al., 2000; Kamarck et al., 2003; Schwerdtfeger et al., 
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2014). This again suggests that the stress induced in the typical laboratory setting may 

not fully capture the individual differences measured during stress in real-life.

An important question is whether our results allow us to select a clear favorite 

ambulatory autonomic reactivity measure from unstructured 24-h recordings for use in 

stress research, using the temporal stability, heritability, and the ability to detect stress-

specific genetic variance as prioritization criteria. For IBI, these criteria do not point to 

an optimal reactivity measure nor do they disqualify any of the six reactivity measures. 

Temporal stability was good, and of similar magnitude or even better as in previous 

ambulatory studies (Goedhart et al., 2006; Goedhart et al., 2007; Vrijkotte, Riese, & 

de Geus, 2001). It was particularly good when compared to the temporal stability of 

laboratory reactivity for HR (Allen, Sherwood, Obrist, Crowell, & Grange, 1987; Burleson 

et al., 2003; Cohen et al., 2000; Hamer, Gibson, Vuononvirta, Williams, & Steptoe, 2006; 

Hassellund, Flaa, Sandvik, Kjeldsen, & Rostrup, 2010; Llabre et al., 1993; Manuck & 

Garland, 1980; Sherwood et al., 1997; Veit, Brody, & Rau, 1997), PEP (Allen et al., 1987; 

Burleson et al., 2003; Llabre et al., 1993; Sherwood et al., 1997), or HRV (Burleson et al., 

2003; Bertsch, Hagemann, Naumann, Schachinger, & Schulz, 2012; Dragomir, Gentile, 

Nolan, & D’Antono, 2014). Five IBI reactivity measures were heritable and, due to genetic 

emergence, more than half of the variation in stress levels of heart rate was due to 

genetic factors. For PEP and RSA, temporal stability was moderate to good and with 

few exceptions all reactivity measures were also significantly heritable. For PEP during 

work_sitting and work_peak no new genetic variance emerged compared to leisure time, 

instead existing variance got amplified. Using MZ correlations as an indicator of reliability, 

IBI, RSA and PEP levels also performed well for all six conditions, with no clear ‘best’ 

baseline or stress condition. We therefore conclude that all six measures as defined here 

have comparable properties from a psychometric viewpoint. 

To select an optimal ambulatory autonomic reactivity measure additional criteria, 

more related to content, need to be considered. Three of these are the mean absolute 

size of reactivity, the extent of the individual differences (variance), and the avoidance 

of contrasts incorporating changes in posture and physical activity. Statistical power to 

detect correlation of reactivity with health outcomes scales with its variance and effect 

size. Standard deviations for the reactivity values were of near comparable magnitude 

as those for the IBI, pvRSA, and PEP levels, implying there is considerable variation in 

individual responses to daily life situations. This held true for all reactivity measures 

incorporating either sleep or leisure time as a baseline, although most variation was seen 
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in the reactivity measures that included sleep as a baseline. When higher absolute values 

of reactivity (reflecting larger autonomic engagement) are considered, reactivity measures 

based on sleep also seem most favorable as they yield the strongest reactivity. However, 

sleep versus wake contrasts also contain changes in posture and physical activity which 

are known to influence RSA and PEP through effects other than true changes in cardiac 

autonomic control (Houtveen et al., 2005; Grossman et al., 2004). Validity of PEP as a 

readout for cardiac sympathetic control is sensitive to distortion by postural shifts as it is 

affected by both preload and afterload (Houtveen et al., 2005). The contrasts that avoid 

large influences of posture change and that are characterized by low physical activity may 

therefore be optimal, i.e. Δ work_sitting – leisure and Δ work_peak – leisure. However, 

these were also the contrasts with lowest absolute reactivity, making them less attractive. 

The magnitude of reactivity computed for these two work conditions with sleep as a 

baseline (Δ work_sitting – sleep and Δ work_peak – sleep) was much higher. Work_sitting 

and work_peak were likely characterized by active mental and/or social engagement with 

the environment, but in the presence of minimal physical activity. As the postural shift 

from supine to sitting is less severe than the shift from supine to standing (which could 

occur frequently during wake and non-sitting work periods) Δ work_sitting – sleep and 

Δ work_peak – sleep may be the preferred measures for studies seeking to link (genetic 

variants for) individual differences in ambulatory reactivity to health outcomes. 

A limitation of this study is the use of objective landmarks in unstructured 24-h 

recordings to delineate periods as stressful without subjective confirmation of stress by 

the participant. We reasonably assumed that time spent at work would be more enriched 

than leisure or sleep by mentally and socially engaging activities and that the presence 

of a high heart rate within a period of accelerometer-confirmed minimal physical activity 

was likewise attributable to the effects of such activities. However, the selection of periods 

of high HR at work is meaningful only when all participants encounter comparable work 

stressors at the recording day and at least one stressor with sufficient salience to trigger 

substantial HR reactivity. Therefore, our physiology-driven definition of peak stress may 

have led us to inadvertently label people who did not encounter a strong stressor at work as 

low HR reactors. To resolve this circularity, we should have assessed individual differences 

in the amount of subjective stress exposure at work, which we did not. On the other 

hand, subjective experience is known to be only very poorly correlated to physiological 

reactivity (a topic recently covered in a special issue of Biological Psychology, see for 

example Friedman, Stephens, & Thayer, 2014). The critical question is whether autonomic 
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reactivity as defined here is a good predictor of health outcomes. This of course remains 

to be tested – here we have shown that there is stable, heritable variation in ambulatory 

reactivity that can be meaningfully used in future predictive studies.

A further limitation is that the ambulatory baseline conditions that were defined for 

this study, leisure time and sleep, occurred post-stress in the real-life assessment. This 

means that recovery processes instead of a ‘true baseline’ level may have been measured. 

If recovery processes were indeed involved during leisure time or sleep, this may have 

contributed to the poor correlation between our standard and ambulatory reactivity 

measures, as a pre-test baseline was used to compute the standard stress reactivity. 

In conclusion, ambulatory autonomic reactivity extracted from an unstructured real-

life setting shows reliable, stable and heritable individual differences. Real-life situations 

uncover new and different genetic variation compared to that seen in resting baseline 

conditions, including sleep. The contrasts between sitting work levels, including the 

peak stress period, and sleep baseline seem the most promising ambulatory reactivity 

measures for research in the field of psychosomatic medicine. 
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Supplement to Chapter 4

Heritability and temporal stability of ambulatory autonomic stress reactivity  

in unstructured 24-h recordings 

Supplemental Table 4.1. Intercorrelations (N) among the ambulatory reactivity measures.

∆ wake - 
sleep

∆ work - 
sleep

∆ work 
sitting - 
sleep

∆ work 
sitting - 
leisure

∆ work_
peak - 
sleep

IBI
Δ wake - sleep
Δ work - sleep .91 (701) **
Δ work_sitting - sleep .90 (657) ** .95 (657) **
Δ work_sitting - leisure .31 (552) ** .54 (552) ** .58 (552) **
Δ work_peak - sleep .87 (609) ** .88 (609) ** .94 (609) ** .51 (513) **
Δ work_peak - leisure .30 (513) ** .47 (513) ** .52 (513) ** .92 (523) ** .61 (513) **
RSA
Δ wake - sleep
Δ work - sleep .96 (701) **
Δ work_sitting - sleep .94 (657) ** .96 (657) **
Δ work_sitting - leisure .28 (552) ** .44 (552) ** .47 (552) **
Δ work_peak - sleep .92 (609) ** .92 (609) ** .94 (609) ** .47 (513) **
Δ work_peak - leisure .33 (513) ** .43 (513) ** .44 (513) ** .89 (523) ** .58 (513) **
PEP
Δ wake - sleep
Δ work - sleep .96 (685) **
Δ work_sitting - sleep .93 (639) ** .96 (639) **
Δ work_sitting - leisure .31 (529) ** .47 (529) ** .55 (529) **
Δ work_peak - sleep .90 (591) ** .92 (591) ** .96 (591) ** .52 (494) **
Δ work_peak - leisure .29 (494) ** .41 (494) ** .48 (494) ** .90 (506) ** .60 (494) **

Note. ** = significant correlation (p < .01).

Supplemental Table 4.2. ‘Lab-real life’ correlation (N) between the reactivity to structured stressors 

and ambulatory reactivity measures.

∆ wake - 
sleep

∆ work - 
sleep

∆ work_
sitting - 
sleep

∆ work_
sitting - 
leisure

∆ work_
peak - 
sleep

∆ work_
peak - 
leisure

Δ task – rest IBI .16 (511) ** .02 (297) .06 (273) -.04 (216) .16 (248) * .08 (196)

Δ task – rest pvRSA .14 (511) ** .09 (297) .05 (273) .12 (216) .12 (248) .20 (196)**

Δ task – rest PEP -.06 (471) -.10 (270) -.12 (245) -.13 (185) -.07 (222) -.06 (168)

Note. ** = significant correlation (p < .01), * = significant correlation (p < .05).
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Supplemental Figure 4.1. Example of a bivariate genetic ACE model that was fitted to  

the ambulatory baseline and stress conditions.

E1 

baseline 

c11 

C1 A1 

a11 e11 

E2 

stress 

c22 

C2 A2 

a22 e22 

a21 c21 e21 

ambulatory 
reactivity 

+1 -1 

Note. A1 and A2, C1 and C2, and E1 and E2 are the latent genetic, shared environmental, and 
unique environmental factors, that influence the observed baseline and stress measures. The a11, 
c11, and e11 paths are unique to the baseline measure, whereas paths a22, c22, and e22 are unique 
to the stress measure. With the a21, c21, and e21 paths the genetic, shared environmental, and 
unique environmental factors of the covariance between baseline and stress levels, is described. The 
model also specifies a ‘delta score’ ambulatory reactivity which represents the difference between 
baseline and stress scores.

Supplemental Figure 4.2. MZ and DZ correlations of the IBI, pvRSA, and PEP levels as obtained 

from the saturated Mx models.
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Abstract

The resting ECG is routinely used to assess cardiac electrical activity, which is a 

highly dynamic process. We wanted to determine whether analysis of frequency 

specific data from Holter ECGs allows for a more complete genetic dissection 

of cardiac electrophysiology. Holter ECGs were recorded from 221 twin pairs 

and analyzed using a novel multi-parameter beat classifier to extract heart rate 

specific data. Heart rate dependent estimates of heritability for QRS duration, QT 

interval, Tpeak–Tend and T-wave amplitude (TWA) were calculated using structural 

equation modelling. Our data showed that QRS duration is largely determined by 

environmental factors whereas repolarization is primarily genetically determined. 

Heritability estimates of both QT interval and TWA were significantly higher when 

measured from Holter compared to resting ECGs and the heritability estimate 

of each was heart rate dependent. Analysis of the genetic correlation between 

repolarization parameters demonstrated that while most of the genes that 

contribute to covariance of individual ECG parameters at different heart rates 

overlap, at each specific heart rate there was relatively little overlap between the 

genes that determine the different repolarization parameters. Here we present the 

first study of heritability of repolarization parameters measured from Holter ECGs. 

Our data demonstrate that higher heritability can be estimated from the Holter 

than the resting ECG and reveals rate dependence in the genetic – environmental 

determinants of the ECG that has not previously been tractable. Future uses of 

this analysis include deeper dissection of the ECG of participants with inherited 

cardiac electrical disease.
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Introduction

The electrocardiogram (ECG) represents the summed electrical activity of all the action 

potentials of individual myocytes in the heart (Einthoven, 1912; Nerbonne & Kass, 2005). 

The generation of these action potentials reflects the finely tuned and coordinated 

opening and closing of ion channels that conduct either depolarizing inward currents 

(sodium and calcium) or repolarizing outward currents (potassium) (Nerbonne & Kass, 

2005). Regional variation in ion channel density results in distinct action potential 

waveforms in different parts of the heart (Gaborit et al., 2007). When combined, they form 

the P-QRS-T complexes of the electrocardiogram. Specifically, the P wave corresponds to 

atrial depolarization, the QRS complex reflects ventricular depolarization and the T wave 

corresponds to ventricular repolarization. As such, the ECG has been an extraordinarily 

useful non-invasive diagnostic tool for assessing abnormalities of cardiac electrical activity 

for over a century (Fye, 1994).

Typically, a resting ECG is recorded over ~10 seconds and gives a ‘snapshot’ of the 

electrical activity of the heart. The cardiac electrical cycle however, particularly in relation 

to repolarization, is an incredibly dynamic process modulated by multiple inputs including 

sympathetic and parasympathetic nervous systems (Coumel, Fayn, Maison-Blanche, & 

Rubel, 1994), sleep-wake cycles (Jeyaraj et al., 2012), heart rate, and gender (James, 

Choisy, & Hancox, 2007; Stramba-Badiale, Locati, Martinelli, Courville, & Schwartz, 1997). 

A wealth of information relating to an individual’s cardiac electrical phenotype is therefore 

missed when recording just a snapshot of the ECG. As an alternative, recording cardiac 

electrical activity over a 24-hour period using continuous ambulatory ECG (Holter) is a 

much richer source of information that has the potential to provide a more complete and 

accurate phenotypic picture (Coumel et al., 1994). Holter ECGs are already a routinely used 

diagnostic tool in monitoring heart rate variability (Task Force of the European Society of 

Cardiology and the North American Society of Pacing and Electrophysiology, 1996) and 

detecting the presence of arrhythmia episodes. They have also been used in a research 

setting to assess repolarization parameters. However, these previous studies used low 

temporal resolution recordings (Extramiana et al., 2010; Merri et al., 1992; Neyroud et 

al., 1998; Sobue et al., 2011; Sugao et al., 2006; Vaglio et al., 2008) and furthermore, the 

usefulness of ambulatory recording in diseases of repolarization has been questioned 

(Mauriello, Johnson, & Ackerman, 2011). Two of the reasons for this are the difficulties 

associated with manipulating and analyzing the large data sets produced over 24 hours 
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and secondly the problem of accounting for the range of physiological scenarios sampled. 

One approach to overcome these issues is to use a classification algorithm to “bin” beats 

that are representative of specific physiological states. Averaged representative beats can 

then be analyzed quickly and easily. Analyzing ECG parameters in this manner offers two 

main advantages over the resting ECG. First, one can obtain data that are representative 

of multiple physiological conditions such as specific heart rates. Second, by averaging 

multiple beats obtained from specific physiological states, one can obtain a better signal 

to noise ratio, thus improving the accuracy when measuring the intervals and amplitudes 

of ECG waveforms.

In this study we have used a novel dual-parameter beat classification algorithm 

to investigate whether analysis of ambulatory Holter ECG recordings can provide more 

accurate and detailed information about the genetic basis of cardiac electrical phenotypes 

relative to that obtained from analysis of the resting ECG. Specifically, we tested: (1) 

whether heritability of ambulatory recordings, after frequency binning, is larger than 

heritability of resting ECG, (2) the extent to which genetic influences on the ambulatory 

depolarization and repolarization parameters are heart rate-dependent, and (3) whether 

different genes are involved in the manifestation of repolarization in the three different 

parameters used. Taken together, we test the hypothesis that analysis of frequency binned 

beats from ambulatory ECG recordings allow for a more complete genetic dissection of 

individual differences in cardiac electrophysiology than a short resting ECG recording.

Methods
Participants

Holter recordings were carried out on 442 participants – 123 monozygotic (MZ) complete 

pairs and 98 dizygotic (DZ) complete twin pairs. Participating twins were registered 

with the Netherlands Twins Registry and all took part in the third wave of a large 24-h 

ambulatory cardiac monitoring study (Neijts et al., 2014). Zygosity was confirmed by DNA 

analysis for 97.3% of same-sex twin pairs. For the remaining same-sex pairs, zygosity was 

based on survey questions regarding physical similarity and the frequency of confusion 

of the twins by parents, other family members, and strangers (Willemsen et al., 2013). 

A priori reasons for exclusion from this cohort were heart transplantation, presence of a 

pacemaker, known ischemic heart disease, congestive heart failure, diabetic neuropathy, 

and pregnancy. In addition, 79 of the participants were taking medication with the 
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potential to the ECG (Supplemental Table 5.1) and were excluded from the main analysis. 

For comparison, twin correlations including participants on cardioactive medications are 

shown in Supplemental Table 5.2. The study protocol was approved by the medical Ethics 

Committee of the VU University Medical Center Amsterdam and the Human Research 

Ethics Committee of the New South Wales Ministry of Health (Australia). All participants 

gave written consent before entering the study. 

Holter ECG recording procedure

On the recording day, participants were visited either at home or at work and information 

on health status and current medication use was obtained. Participants were fitted with 

the 5fs version of the Vrije Universiteit Ambulatory Monitoring System (VU-AMS device, 

VU University Amsterdam, www.vu ams.nl) to acquire both electrocardiogram (ECG) 

and impedance cardiogram (ICG) data continuously over a 24-h period (de Geus et al., 

1995; van Dijk et al., 2013; Willemsen et al., 1996). Participants were asked to refrain 

from vigorous exercise during the measurement day. For acquisition of ECG data three 

electrodes were placed in modified CS5 lead positions - right subclavicular region 4 cm to 

the right of the sternum (negative electrode), under the left breast, 4 cm under the nipple 

(positive electrode) and the lower right thorax (ground electrode) – to obtain a derived 

Lead II. A typical averaged ECG obtained using the modified CS5 lead positions is shown 

in Figure 5.1. The raw ECG signal was imported into the VU-DAMS software (version 3.2, 

VU University Amsterdam, www.vu-ams.nl) and exported to an ASCII file sampled at 1 kHz 

for further processing.

Five landmarks were identified on each averaged ECG waveform: (i) Q: first 

deflection from the isoelectric line after the P-wave, (ii) R: peak of the QRS complex, (iii) S: 

intersection of S wave upstroke and T-P isoelectric line, (iv) Tpeak: peak of the T-wave, (v) 

Toffset: the point 95 % of the distance from T-peak to the minimum of the T wave. Since 

the modified CS5 lead positioning can result in biphasic T-waves (where the end of the 

T wave overshoots the isoelectric line; Figure 5.1), this estimate of the minimum point is 

typically taken as the end of the T wave (van Lien et al., 2015).

From these landmarks we measured the QRS duration (time from Q to S), a measure 

of ventricular depolarization, and QT interval (time from Q to Toffset), Tp-Te (time from 

Tpeak to Toffset) and TWA (amplitude from Tpeak to Toffset), all measures of ventricular 

repolarization (Figure 5.1).
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Figure 5.1. ECG acquisition. Three electrodes (positive, negative and ground) were placed in mo-

dified CS5 lead positions to obtain a derived Lead II. The example averaged waveform shows ECG 

landmarks and the measured intervals (QRS, QT, Tp-Te) and amplitudes (TWA).

TWA 

 

Extraction of averaged ECGs from Holter recording

Recordings were initially processed using a modified version of R-wave detection and 

waveform boundary recognition software available from the open source PhysioNet 

resource (Moody, Mark, & Goldberger, 2000; Goldberger et al., 2000). Every beat of the 

24 hour recording was classified first by the R-R interval into 0.1 Hz frequency ‘bins’ and 

then by R wave amplitude, before each bin was averaged (Figure 5.2). For subsequent 

analysis of heritability, three frequencies were considered - 1 Hz (Low heart rate, 60 bpm), 

1.3 Hz (Medium heart rate, 78 bpm) and 1.6 Hz (High heart rate, 96 bpm).

To permit comparison with previous estimates of heritability for ECG parameters 

derived from a standard resting ECG, an averaged QRS-T complex was generated for 

each participant from 10 successive beats with the lowest frequency and lowest standard 

deviation of R-R interval chosen from the period between 09.50 am and 10.10 am (the 

period that on average, for the entire participant dataset, had the lowest SD of RR interval) 

(Supplemental Figure 5.1). This approach ensured that we had the ‘best’ resting ECG in 
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terms of both stability and resting heart rate (average heart rate was 67 ± 0.6 bpm or 

1.12 ± 0.01 Hz (SEM; n=385)). In addition to the 4 standard ECG measurements, we also 

calculated corrected QT intervals for the resting ECGs, using Bazett’s formula (Bazett, 

1920).

Rate corrected QT has consistently been shown to have lower heritability 

than uncorrected QT (Haarmark, Kyvik, Vedel-Larsen, Budtz-Jorgensen, & Kanters, 

2011; Carter et al., 2000), a trend that was confirmed in our first pass twin correlation 

calculations (see Supplemental Table 5.3). Therefore all further analysis was carried out 

using uncorrected QT for the resting ECG, as the most stringent comparison to our Holter 

derived heritability estimates. Both the binned Holter data and the resting ECG data 

went through a two-step process of quality control. First, data was deemed unusable if 

there was an insufficient number of beats at the specified frequency or if it was too noisy. 

This left 323, 365 and 346 participants for low, medium and high heart rate respectively. 

Usable data was extracted to derive ‘resting ECGs’ for 427 participants. In stage two, 

two blinded independent investigators checked the computer-detected points for the 

Q-wave, the J-point, T-peak and T-offset for every tracing. If the computer-generated data 

were deemed inaccurate, all measurements for that participant at that particular heart 

rate were discarded. After quality control, we had data for 322 participants at low heart 

rate, 357 participants at medium heart rate and 313 participants at high heart rate (this 

corresponds to 90-99% of traces deemed usable). For the resting ECGs, data from 385 

participants were suitable for heritability analysis.

Genetic analysis based on twin data

Genetic models, addressing the etiology of individual differences, were fitted to the data 

using structural equation modelling (SEM) in the software package Mx (Neale et al., 2006). 

When data from twins are available, variance in an observed trait, called phenotypic 

variance, is typically decomposed into variance due to latent additive genetic factors (A), 

non-additive genetic factors (D), common environment (C) shared by family members, 

and non-shared or unique environment (E). In the classical twin design, which includes 

monozygotic (MZ) and dizygotic (DZ) twins, estimates of C and D are confounded as 

the total phenotypic variance, the MZ covariance, and the DZ covariance only provide 

sufficient information to estimate three out of four parameters (Boomsma, Busjahn, & 

Peltonen, 2002). Based on the pattern of twin correlations, we chose to model either an 

ACE or an ADE model. For all twins (MZ and DZ), common environmental factors are set 
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to correlate 1.0. Additive genetic factors are set to correlate 0.5 in DZ twins, and 1.0 in MZ 

twins, and non-additive genetic factors are set to correlate 0.25 in DZ twins, and 1.0 in MZ 

twins. Nonshared, or unique environmental factors are by definition uncorrelated in family 

members. These theoretical values among latent factors form the basis of the model to 

estimate the influence of A, C or D and E on the phenotype.

After establishing the most parsimonious variance components model (ACE or 

ADE, AE, CE, or E) for each ECG phenotype at each frequency two separate analyses 

were conducted. First, to test if heritability of the resting ECG differs from the Holter 

ECG and to examine whether the heritability of the different variables extracted from 

the Holter ECG was rate dependent, quadrivariate genetic models were fitted to the 

data for the three rate specific Holter groups (1.0Hz, 1.3Hz and 1.6Hz) and the resting 

ECG data (Supplemental Figure 5.2). Fit statistics of constrained models that equated 

the heritability for various combinations of the parameters where compared to those of 

the full model that estimated a separate heritability for each of the four ECG parameters. 

Second, to examine whether the three repolarization parameters were influenced by 

common or different genetic factors, trivariate genetic models were fitted to the rate 

specific Holter data. (Supplemental Figure 5.3) From these models we computed the 

genetic correlations between the three parameters and the contribution of the common 

genetic factor to the phenotypic correlation. The comparison of the fit of restricted 

models to the full model was performed by means of likelihood-ratio (χ²) tests in which 

the difference in -2LL between the two models is calculated. When the likelihood-ratio 

test is significant, the restricted model is considered to fit significantly worse to the data 

than the fuller model it is tested against.

All models regressed the effects of age and sex on the phenotype. A priori, we 

assumed no quantitative or qualitative sex differences in the variance decomposition to 

be present so only one MZ and one DZ correlation was estimated for each variable.
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Results

Dual parameter beat classification of Holter ECGs

To obtain ECG signals representative of specific physiological states, we used a beat 

binning approach (Figure 5.2A). For every beat in the Holter record, three parameters 

were measured: 1) The interval from the previous R wave to that of the selected beat 

(RRn), 2) The interval from the R wave of the selected beat to the subsequent R wave 

(RRn+1), and 3) The amplitude of the R wave of the selected beat (Ramp).

Based on these criteria, every beat was classified according to RRn and Ramp and 

a ‘heatmap’ created showing the frequency distribution of beats as a function of these 

parameters (Figure 5.2B). From this heatmap, subsets of beats representative of particular 

heart rates can be extracted. For example, the shaded region in Figure 5.2B corresponds 

to a heart rate of 1 Hz or 60 bpm. To reduce the number of abnormal and/or ectopic 

beats included in the analysis, only those beats that had an Ramp within 1 standard 

deviation (SD) of the mean Ramp at that frequency were included in the average for 

that frequency bin (Figure 5.2C). Furthermore, beats with an abnormally short or long 

coupling interval to the subsequent beat (RRn+1), were also excluded from the analysis 

for similar reasons (Figure 5.2D). A family of beats extracted at 1 Hz according to the 

criteria described above are shown in Figure 5.2E. This family of beats, all of similar 

morphology and timing, are then ensemble averaged, based on alignment of the peak 

of the R wave, to give a beat representative of a particular physiological state that has 

high signal to noise ratio, and is amenable to further analysis (Figure 5.2F). In order to 

test the efficacy of our binning approach in extracting beats from the Holter recording 

that are representative of different heart rates, we examined the rate dependent trends in 

ECG parameters measured from low, medium and high heart rate beats (Figure 5.3 and 

Supplemental Table 5.4). All measures of repolarization showed rate dependence. Both 

QT interval and Tp-Te shortened with faster heart rates, while TWA reduced. In contrast, 

the QRS duration, a measure of depolarization of the myocardium, was relatively rate 

independent.
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Figure 5.2. Dual parameter beat binning from Holter ECG. A) 10 beats from a typical raw Holter 

trace. For the beat highlighted in red, three measured parameters are shown: the interval from the 

peak of the R wave to the previous R peak (RRn), the interval from the R peak to the next R peak 

(RRn+1) and the R- amplitude (Ramp). B) A typical ‘Heatmap’ of the distributions of ECG beat  

characteristics over the 24hr period classified according to RRn and Ramp. The region incorporating 

beats with a frequency of 1 +/-  0.025 Hz is highlighted in grey. C) Frequency distribution of R peak 

amplitude (Ramp) within the region defined by 1+/-  0.025Hz in (B). The region incorporating 1 SD of 

Ramp variation is highlighted in grey. D) Frequency distribution of RRn+1 within the region defined 

by 1SD variation in (C). The region incorporating 2SD in RRn+1 is highlighted in grey. E) Represen-

tative family of 100 beats at 1Hz after the filtering procedure described in B, C and D. F) Averaged 

beat derived from the data in (E).
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Figure 5.3. Heart rate dependence of ECG parameters. Box plots of the raw frequency- binned 

ECG measurements showing the rate dependence of QRS duration (A), QT interval (B), Tp–Te (C) 

and TWA (D). For each box plot, the centre line marks the mean value, the outer box edges the 25th 

and 75th percentile and the ‘whiskers’ denote the 5th and 95th percentile.
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Heritability of ECG parameters

Scatterplots of the MZ versus DZ pairwise correlations for QT intervals obtained from the 

low heart rate ECGs and from the resting ECGs are shown in Figure 5.4A & B respectively. 

From these plots it is clear that there is a greater correlation in the monozygotic (MZ) twins 

compared to the dizygotic (DZ) twins, consistent with there being a significant genetic 

contribution to QT interval. The twin correlations for each of the 4 ECG parameters at low, 

medium and high heart rates as well as from the resting ECG, for participants not taking 

cardioactive medications are summarized in Table 5.1. MZ pair correlations were higher 

than the DZ correlation for every parameter at all heart rate categories and in the resting 

ECG indicating that there is a genetic component for all parameters. As a general trend, 

the MZ twin correlations were highest for low and medium rate Holter data and lower for 

high rate Holter and for the resting ECG. Very similar results were also obtained when 

participants taking cardioactive medication were included (see Supplemental Table 5.2). 
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To eliminate the potential confounding influence of these medications all subsequent 

analyses were undertaken solely using participants not taking cardioactive medications.

Table 5.1. Monozygotic and dizygotic twin correlations from the saturated model. 99% CIs are 

shown in parentheses.

ECG parameter Rate MZ correlation DZ correlation

TpTe Low 0.62 (0.36-0.77) 0.12 (-0.27-0.46)

Medium 0.69 (0.49-0.81) 0.07 (-0.40-0.49)

High 0.55 (0.23-0.73) -0.39 (-0.71-0.34)

Resting 0.55 (0.29-0.71) 0.00 (-0.35-0.36)

TWA Low 0.65 (0.34-0.80) 0.34 (-0.05-0.61)

Medium 0.66 (0.43-0.79) 0.46 (0.10-0.69)

High 0.53 (0.22-0.72) 0.42 (0.02-0.67)

Resting 0.54 (0.26-0.71) 0.06 (-0.25-0.36)

QT Low 0.71 (0.49-0.82) 0.07 (-0.33-0.45)

Medium 0.62 (0.38-0.76) 0.15 (-0.20-0.50)

High 0.50 (0.18-0.69) 0.25 (-0.17-0.57)

Resting 0.51 (0.23-0.69) 0.14 (-0.16-0.41)

QRS Low 0.52 (0.19-0.72) -0.10 (-0.46-0.30)

Medium 0.52 (0.23-0.71) -0.10 (-0.43-0.27)

High 0.42 (0.12-0.62) 0.07 (-0.47-0.55)

Resting 0.34 (0.06-0.56) -0.14 (-0.44-0.21)

Having established that there is a genetic component to each of the ECG parameters, we 

performed formal twin modelling to estimate heritability. Our initial modelling included 

additive genetic factors (A), non-additive genetic factors (D), and non-shared or unique 

environment (E). Univariate genetic analyses showed that non-additive genetic effects 

could be dropped from the ADE models without significant loss of fit. For all parameters, 

therefore, a model including only additive genetic and unique environmental factors, or 

an AE model, was retained for further analyses.

A quadrivariate AE model for the ECG parameters for low, medium and high rate 

Holters and the resting ECG was fitted to the data (see Supplemental Figure 5.2). The 

heritability estimates obtained from this model are summarized in Table 5.2. On the whole, 

repolarization parameters (QT, Tp-Te and TWA) showed a larger heritability estimate 
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(ranging from 56% to 72% at low heart rates) than QRS, the depolarization parameter 

(41% at low heart rate). Significantly higher heritability estimates could be obtained when 

measured from the Holter compared to the resting ECG for QT interval (p <.01) and TWA 

(p < .05). Likewise, significant rate dependence of the heritability estimate from Holter 

recordings was observed for QT interval (p < .01) and TWA (p < .05). A formal statistical 

analysis of these relationships is presented in Supplemental table 5.5.

Figure 5.4. QT interval correlations in twin pairs. Scatter plots and linear regression of QT interval 

for monozygotic (MZ) and dizygotic (DZ) twin pairs measured from low rate Holter ECG (A) of resting 

ECG (B). For each twin pair, Y- axes depict QT interval of the first born twin and X- axes the QT  

interval of the second born twin.
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A
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Table 5.2. Heritability of ECG parameters for Low, Medium and High heart rate Holter and resting 

ECG. Asteriks denote statistical difference compared to low Holter where ** = p < .01 and * = p < 

.05. Full statistical analysis is presented in Supplemental Table 5.5.

Parameter Best Model ECG type Heritability (99% CI)

TpTe AE Low 56% (32-73%)

Medium 63% (36-79%)

High 52% (21-73%)

Resting 56% (30-72%)

TWA AE Low 72% (53-83%)

Medium 68% (49-80%)

High 58% (36-73%)*

Resting 55% (31-71%)*

QT AE Low 69% (48-82%)

Medium 58% (33-75%)

High 34% (14-53%)**

Resting 40% (18-58%)**

QRS AE Low 41% (10-64%)

Medium 41% (13-63%)

High 42% (14-62%)

Resting 32% (7-55%)

 

 

Rate dependence of genetic factors influencing Holter ECG parameters

To further investigate the rate dependence observed above, we tested the extent of the 

correlation among ECG parameters measured at different heart rates and to what extent 

genetic or environmental factors explained this phenotypic correlation (see Table 5.3). 

Phenotypic correlations across heart rates ranged from 0.47-0.94 and were highest for 

TWA and QRS. The genetic contributions to these phenotypic correlations were higher 

for the repolarization parameters than for QRS. The 3rd column of Table 5.3 lists the 

genetic correlation for the two ECG parameters being considered in each case. With 

the exception of the comparisons between Tp-Te at low and high heart rates and QT at 

low and high heart rates, all the other genetic correlations are very high, up to 1.0 for 

QRS between medium and high heart rates. This indicates that largely the same genetic 

factors influence the different ECG parameters irrespective of the heart rate at which they 

are being measured.
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Table 5.3. Phenotypic and genetic correlation between different heart rates for individual ECG  

parameters. 99% CIs are shown in parentheses.

Parameter / Frequency 
comparison

Phenotypic 
Correlation

Genetic Correlation 
between rates

Contribution of genetic 
factors to phenotypic 
co-variance

Tp-Te

Low-Medium 0.76 (0.67-0.83) 0.88 (0.73-0.97) 68% (39-86%)

Low-high 0.56 (0.41-0.67) 0.56 (0.20-0.80) 54% (14-82%)

Medium - High 0.76 (0.68-0.83) 0.89 (0.72-0.97) 66% (32-87%)

TWA

Low-Medium 0.93 (0.90-0.95) 0.98 (0.94-1.00) 74% (55-85%)

Low-high 0.82 (0.75-0.87) 0.91 (0.79-1.00) 72% (51-85%)

Medium - High 0.93 (0.90-0.95) 0.97 (0.93-1.00) 66% (45-79%)

QT

Low-Medium 0.70 (0.61-0.78) 0.77 (0.57-0.92) 69% (42-86%)

Low-high 0.47 (0.32-0.59) 0.52 (0.15-0.78) 54% (14-81%)

Medium - High 0.72 (0.64-0.79) 0.84 (0.62-0.95) 52% (24-72%)

QRS

Low-Medium 0.94 (0.92-0.96) 0.97 (0.84-1.00) 42% (12-65%)

Low-high 0.86 (0.81-0.90) 0.95 (0.79-1.00) 46% (13-69%)

Medium - High 0.90 (0.87-0.93) 1.00 (0.95-1.00) 46% (15-68%)

 

Genetic correlations between the repolarization parameters

We next investigated whether the three repolarization parameters (QT, TWA and Tp-

Te) were influenced by similar or different genetic factors. This is an important question 

as it pertains to whether measuring multiple parameters provides significantly more 

information about the genetic signature of repolarization or whether a single parameter 

is sufficient. The phenotypic correlations between parameters at any given rate (Table 5.4, 

second column) are clearly much lower than the correlations for individual parameters 

at different heart rates (Table 5.3, second column). At low and medium heart rates, 

phenotypic and genetic correlations between the repolarization parameters were 

significant but of modest size. However, what phenotypic covariance was observed was 

almost entirely caused by genetic factors (Table 5.4, last column). For high heart rates, no 

significant phenotypic and genetic correlations between the repolarization parameters 

was found. These data therefore show that while there is low phenotypic correlation 

between the three repolarization parameters, this correlation is almost entirely due to a 

common genetic factor shared by all three repolarization parameters.
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Table 5.4. Phenotypic and genetic correlation between repolarization ECG parameters at each 

heart rate. 99% CIs are shown in parentheses.

Frequency/parameter 
comparison

Phenotypic 
correlation

Genetic correlation 
between parameters

Contribution of genetic 
factors to phenotypic 
covariance

Low

QT-TpTe 0.38 (0.22 - 0.51) 0.38 (0.05 - 0.63) 65% (9 – 97%)

QT-TWA -0.28 (-0.43 - -0.12) -0.42 (-0.70 - -0.12) 100% (39 – 100%)

TpTe-TWA -0.39 (-0.52 - -0.24) -0.58 (-0.93 - -0.26) 92% (47 – 100%)

Medium

QT-TpTe 0.32 (0.16 - 0.45) ns ns

QT-TWA -0.25 (-0.40 - -0.09) -0.46 (-0.82 - -0.15) 100% (58 – 100%)

TpTe-TWA -0.18 (-0.33 - -0.02) -0.36 (-0.75 - -0.06) 100% (58 – 100%)

High

QT-TpTe 0.31 (0.15 - 0.46) ns ns

QT-TWA ns ns -

TpTe-TWA ns ns -

Discussion

In this study we present the first measurement of the heritability of repolarization 

parameters from Holter ECGs. To achieve this we have developed a novel beat binning 

algorithm allowing extraction of averaged beats that are representative of specific heart 

rates and physiological states. Twin modelling based on this approach resulted in similar 

heritabilities for Tp-Te and QRS, compared to the resting ECG, but higher estimates 

for TWA and QT interval. Furthermore, our novel analysis allowed us to interrogate 

the overlap between the genetic factors influencing individual ECG parameters at 

different heart rates as well as between the genetic factors that determine the different 

repolarization parameters at each heart rate separately. Our data therefore demonstrates 

the potential for analysis of Holter ECGs to give a more complete insight into the genetic 

underpinnings of the cardiac electrical system than the standard resting ECG.

Beat Binning approach

We set out to test the hypothesis that analysis of Holter ECGs can provide more in 

depth information regarding the cardiac electrical genotype that the standard resting 

ECG. This hypothesis is based on the assumption that the Holter ECG samples a broad 

range of physiological states over the 24-hour acquisition period compared to the limited 
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physiological range of the typical resting ECG based on 10 beats or recordings up to 

a maximum of 300s, and is therefore potentially a much richer source of information if 

analyzed effectively. However, extraction of meaningful measurements from the Holter 

is complicated both by the volume of information that needs to be processed, and the 

often noisy data, both in terms of physiological variability and signal noise, that result 

from the varied activity and physiological states of the participant throughout the time-

course of the acquisition.

With this in mind we have developed a dual parameter beat binning approach 

to extract averaged beats that are representative of different physiological states. This 

approach eliminates the two main problems outlined above. First, by binning beats 

with similar properties from throughout the Holter recording based on RR interval and 

R amplitude, we can extract families of beats that are representative of specific heart 

rates. Furthermore, by eliminating outliers from the analysis we can ensure that we are 

only considering ‘normal’ beats, with ectopic and/or abnormal beats excluded from the 

analysis. Second, by averaging these families of normal beats with common characteristics, 

we eliminate the large computational overhead of measuring ECG parameters from every 

individual beats, and obtain low noise, clean waveforms that are amenable to analysis. 

Not only does this approach allow for more like-for-like analysis between participants, i.e. 

we can directly compare a 1Hz/60 bpm waveform from each participant, it also allows us 

to analyze rate dependent trends in phenotype and the genetic contributions to these 

trends. This is not possible considering the resting ECG alone.

By way of validation, analysis of rate dependent trends in the characteristics of 

the idealized waveforms were consistent with previously published data. Specifically, 

QT inter val and Tp-Te shortened, and TWA decreased with faster rates (Couderc et al., 

2007; Lehmann & Yang, 2001). Conversely, the QRS interval was rate-independent in 

our data, also consistent with previous observations (Simoons & Hugenholtz, 1975). This 

consistency of rate dependent trends in ECG parameters in comparison to the previously 

published lite rature supports our dual-parameter beat binning approach, and presents us 

with the oppor tunity to analyze the heritability and genetic underpinnings of these rate 

dependent trends.

Heritability of ECG parameters

To assess heritability of ECG characteristics, and to dissect the genetic-environmental 

interplay in defining features of the ECG, we used a classical twin study. Under the best 
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fitting models, the parameters were explained by a combination of additive genetic 

factors and unique environmental influences (which include measurement error). Broad 

sense heritability (h2) of parameters related to depolarization (QRS duration) was 

lower than for repolarization-related parameters (QT interval, Tp-Te and TWA), with a 

maximum heritability of 42 % for QRS duration, compared to between 63 % and 72% 

for repolarization parameters. Previous studies have not been able to demonstrate a 

significant contribution of additive genetic factors to QRS duration, possibly related to 

sample size (Havlik, Garrison, Fabsitz, & Feinleib, 1980; Mathers, Osborne, & Degeorge, 

1961; Mutikainen et al., 2009; Russell, Law, Sholinsky, & Fabsitz, 1998). Our study 

is therefore the first to present a formal measure of the role of additive genetics in 

determination of this parameter.

The corollary of modest heritability of QRS is a greater contribution of environmental 

factors. It is well established that ventricular depolarization depends on an intact 

conduction system and can be affected by many extrinsic factors. In this study, we 

corrected for gender, age and medications, and excluded participants with overt cardiac 

pathology (see Methods). However, many other acquired factors known to affect QRS 

duration (Surawicz et al., 2009) such as body habitus, valvular dysfunction, overall LV 

function, cardiac afterload and other organ pathology such as pulmonary disease, all have 

the potential to increase the environmental contribution to the phenotype.

For parameters related to repolarization, heritability measured from our rate specific 

Holter data was at least comparable, or higher, than our measures based on resting ECGs. 

In particular, significantly higher heritability of QT (69 % for low rate Holter compared 

to 40% for the resting ECG, p < .01) and TWA (72 % from low rate Holter compared to 

55 % for the resting ECG, p < .05) were measured from the rate specific Holter analysis 

compared to the resting ECG. It should be noted that in spite of our good sample size 

power to detect heritability differences was modest. For example, computation showed 

that differences of 19% or higher were required for our analysis to show significance of p 

< .01. However, confidence in the added value of Holter data is increased because the 

same trend (of increased heritability when measured from the Holter ECG) was evident 

when our estimates were compared to previously published data based on resting ECGs. 

For example, the most comprehensive twin study of repolarization parameters in resting 

ECGs to date reported heritability of 67 % for QT interval, 46% for Tp-Te and between 

34 % and 47% for TWA, after correction for confounding factors such as age and sex 

(Haarmark et al., 2011), in comparison to our measures of 69%, 63 % and 72 % respectively. 
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More broadly, other studies have reported the contribution of additive genetic influences 

to QT interval of zero (Mutikainen et al., 2009), 25 % (Carter et al., 2000), 36 % (Russell et 

al., 1998) and 60 % (Dalageorgou et al., 2008).

Likewise for TWA, previous publications report values for the contribution of 

additive genetic factors between zero and 72% (Haarmark et al., 2011), though these 

values are heavily dependent on the lead selected from the resting ECG. Of most direct 

comparison to our data, Mutikainen reported a h2 of 61% when measured from lead II in 

a cohort of older women (Mutikainen et al., 2009). These data show that by considering 

data extracted from Holter ECGs, higher heritability can be measured for most ECG 

parameters and that rate specific ECG waveforms extracted from Holter recordings give 

a more precise measure of the effect of the underlying genotype, that is confounded by 

rate effects in measurements from the resting ECG.

Rate dependence of genetic factors influencing the ECG

A major advantage in analyzing the genetic determinates of ECG parameters from 

Holter records is that by deriving beats that are representative of specific physiological 

states, we are able to measure the rate dependence of genetic factors influencing ECG 

parameters – something that is not tractable using the resting ECG. As a result of this, no 

previous studies have looked at the rate dependence of the genetic influences on the T 

wave. This is an important consideration in understanding the rate dependent changes 

that occur in T wave morphology in both physiological (Bazett, 1920; Fisch, 1997) and 

pathophysiological states (Corrado et al., 2010; Hanna & Glancy, 2011; Moss et al., 1995; 

Sadrieh et al., 2013; Sadrieh et al., 2014). Our data showed that for QT interval and 

TWA, heritability was dependent on the heart rate (heritability measured at low versus 

high heart rates were significantly different for these parameters). Possible explanations 

for these observations included non-genetically determined adrenergic responses, such 

as to exposure to chronic stressors or the conditioning effect of exercise, which varies 

between individuals (Corrado et al., 2010). In contrast, no significant effect of heart rate 

could be determined for QRS and Tp–Te.

Additional analysis showed that whilst the genetic contribution to phenotypic 

covariance between rates varied for different parameters (but was higher for all 

repolarization parameters compared to QRS duration), the overall genetic factors 

that influenced each of the ECG parameters between heart rates largely overlapped. 

In most cases around 90% of the genes that contribute to phenotypic covariance of 
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ECG parameters were shared between rates. This supports the concept that the same 

components of the rhythmonome define individual parameters regardless of the heart 

rate. These data therefore demonstrate that in general, the genetic factors contributing 

to defining the ECG are similar at all heart rates, but that they explain the largest part of 

the total variance at low heart rates, while at higher heart rates, environmental factors play 

an increasing role in defining ECG characteristics.

Genetic overlap between repolarization parameters

In addition to examining the contribution of genetic factors to covariance of specific 

ECG parameters at different heart rates, we also examined the genetic overlap between 

different repolarization parameters at a given heart rate. Cross-parameter comparison 

clearly show a much lower genetic correlation (between 0.38 for QT and Tp-Te and 0.58 

for Tp-Te and TWA) compared to what we observed for within-parameter comparison at 

different heart rates. Genetic correlation further decreased at medium and high heart rates. 

This data therefore suggests that while the phenotypic covariance between parameters 

is mostly genetically determined, there is relatively little overlap between the genes that 

influence these parameters. This is consistent with our previous studies examining the 

molecular basis of T wave morphology that showed that individual ECG parameters had 

very different sensitivities to variability in cardiac ion channel genes (Sadrieh et al., 2013; 

Sadrieh et al., 2014). This is an important observation as it establishes that in order to fully 

reflect an individual’s genotype, multiple parameters describing the ECG waveform must 

be measured. Measuring one individual parameter, the QT interval for example, only 

represents a fraction of the participants whole cardiac ion channel gene complement.

Limitations

The biphasic T wave produced by the electrode configuration in this study limited 

the analysis of T wave parameters. Specifically, the QT interval measured using the 

intersection of a tangent to the downslope of the T wave with the isoelectric line, the 

most widely used method in clinical practice, could not be accurately determined. As 

previously published (Goldberger et al., 2000) and described here (see Methods), Toffset 

was used as the end of the T wave in this study. A further limitation is that we did not 

model the heritability of the rate corrected QT interval for the resting ECG data. However, 

this was a deliberate choice, since rate corrected QT has consistently been shown to have 

lower heritability than uncorrected QT (Haarmark et al., 2011) as was confirmed by our 
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first pass twin correlation calculations for QT and QTc. Heart rate itself is known to be a 

heritable phenotype so a ratio separating the overlapping genes between QT and heart 

rate heritability is problematic (Dalageorgou et al., 2008). Finally, specific limitations apply 

to all twin research (Boomsma et al., 2002). For the purposes of heritability calculations, 

monozygotic twins are assumed to be genetically identical and neither epigenetic effects 

nor somatic mutations are accounted for.

Conclusion

In conclusion, our novel beat binning approach to analysis of the Holter ECG has allowed 

the first rate specific estimate of the heritability of ECG parameters from the Holter 

ECG. Our data demonstrates that higher measures of heritability can be estimated from 

the Holter than the resting ECG, suggesting that this approach allows a more precise 

measure of the effect of the underlying genotype that is confounded by rate effects in 

the resting ECG. Furthermore, we show rate dependence in the genetic-environmental 

determinants of the ECG that has not previously been tractable. Future potential uses of 

this type of analysis include deeper dissection of the ECG of participants with inherited 

cardiac electrical disease.
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Supplement to Chapter 5

A novel approach to Holter data analysis improves phenotyping and increases  

the precision of genetic analysis of ECG biomarkers

Supplemental Table 5.1. Participants taking medications with potential to alter ECG intervals.  

Anatomical Therapeutic Classification (ATC) Codes are shown.

Medication 
(Anatomical therapeutic chemical classification code) Number of participants

Anti Hypertensives (ATC C02) 1

Diuretics (ATC C03) 8

Beta Blockers (ATC C07) 7

Ca Channel Blockers (ATC C08) 3

Renin-Angiotensin system agents (Renin-Angiotensin C09) 10

Lipid modifiers (Renin-Angiotensin C10) 7

Anti Psoriatics (ATC D05) 2

Hormone replacement therapy (ATC G03) 3

Urologicals (ATC G04) 2

Thyroid therapy (ATC H03) 6

Endocrine therapy (ATC L02) 1

Immunosuppressants (ATC L04) 3

Immunostimulants (ATC L03) 1

Anti Epileptics (ATC N03) 5

Anti Parkinson drugs (ATC N04) 1

Psycholeptics (ATC N05) 15

Psychoanaleptics (ATC N06) 18

Obstructive airway disease agents (ATC R03) 17
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Supplemental Table 5.2. Monozygotic and duzygotic twin correlations from the saturated model 

including participants taking cardioactive medication. 99% CIs are shown in parentheses.

ECG parameter Rate MZ correlation DZ correlation

TpTe Low 0.58 (0.35-0.72) 0.01 (-0.32-0.33)

Medium 0.67 (0.51-0.78) 0.11 (-0.27-0.44)

High 0.63 (0.44-0.75) -0.18 (-0.57-0.36)

Resting 0.56 (0.36-0.70) 0.08 (-0.25-0.37)

TWA Low 0.58 (0.34-0.74) 0.38 (0.08-0.59)

Medium 0.56 (0.33-0.71) 0.43 (0.15-0.62)

High 0.54 (0.29-0.71) 0.39 (0.11-0.61)

Resting 0.45 (0.19-0.63) 0.19 (-0.06-0.41)

QT Low 0.69 (0.52-0.80) 0.07 (-0.30-0.41)

Medium 0.57 (0.37-0.71) 0.24 (-0.07-0.50)

High 0.47 (0.20-0.65) 0.25 (-0.09-0.52)

Resting 0.52 (0.29-0.68) 0.09 (-0.17-0.34)

QRS Low 0.46 (0.20-0.64) 0.10 (-0.24-0.41)

Medium 0.49 (0.25-0.66) 0.08 (-0.25-0.39)

High 0.39 (0.14-0.59) 0.25 (-0.24-0.58)

Resting 0.30 (0.07-0.50) 0.00 (-0.29-0.29)

Supplemental Table 5.3. Monozygotic and dizygotic twin correlations for Bazett corrected QT  

and uncorrected QT. Numbers of twin pairs are shown in parentheses.

MZ DZ

QT 0.52 (95) 0.11 (76)

QTc 0.34 (95) 0.10 (76)

Supplemental Table 5.4. Rate dependent analysis of ECG parameters. Mean data +/-SD are shown.

Heart rate TpTe (ms) TWA (mV) QT (ms) QRS (ms)

Low (60 bpm) 88.9 +/- 8.1 1.6 +/- 0.6 392.9 +/- 20.4 80.4 +/- 10.6

Medium (78 bpm) 85.2 +/- 8.2 1.4 +/- 0.5 357.9 +/- 17.3 79.2 +/- 10.0

High (96 bpm) 84.2 +/- 8.6 1.1 +/- 0.5 335.9 +/- 18.4 79.3 +/- 10.3

Resting 79.0 +/- 10.5 1.5 +/- 0.7 354.1 +/- 25.2 78.8 +/- 9.3
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Supplemental Figure 5.1. Extraction of resting ECG. A) R peak frequency in the period between 

8 am and 12 pm for a typical participant. Beats with a frequency above 2 Hz (120 bpm, red dashed 

line) were considered non-physiological and excluded from further analysis. Within the entire patent 

dataset, the region between 9.50 am and 10.10 am showed the lowest SD of RR interval on average. 

This region was therefore selected for extraction of a typical resting ECG from each participant. B-C) 

The 10 s with the lowest frequency and SD (Red aterisk) between 9.50 am and 10.10 am was selected  

as the typical resting ECG for each participant. D) 10 s of Holter ECG activity selected according to 

the criteria identified in B-C. E) An average beat from the 10 s of data presented in D (optimized 

resting ECG, Blue), compared to an averaged beat taken random from 10 s of data at 11 am.
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Supplemental Figure 5.2. Quadrivariate model.

Supplemental Figure 5.3. Trivariate model.
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Abstract

In this study we examined the genetic architecture of variation in the pro-inflam-

matory state, using an extended twin-family design. Within the Netherlands Twin 

Register (NTR) Biobank, fasting Tumor Necrosis Factor-α (TNF-α), Interleukin-6 

(IL-6), C-Reactive Protein (CRP) and fibrinogen levels were available for 3,534 

twins, 1,568 of their non-twin siblings and 2,227 parents from 3,095 families. 

Heritability analyses took into account the effects of current and recent illness, 

anti-inflammatory medication, female sex hormone status, age, sex, BMI, smoking 

status, month of data collection, and batch processing. Moderate broad-sense 

heritability was found for all inflammatory parameters (39%, 21%, 45% and 46% for 

TNF-α, IL-6, CRP and fibrinogen, respectively). For all parameters, the remaining  

variance was explained by unique environmental influences and not by environment 

shared by family members. There was no resemblance between spouses for any of 

inflammatory parameters, except for fibrinogen. Also, there was no evidence for 

twin-specific effects. A considerable part of the genetic variation was explained by 

non-additive genetic effects for TNF-α, CRP and fibrinogen. For IL-6, all genetic 

variance was additive. This study may have implications for future genome-wide 

association (GWA) studies by setting a clear numerical target for genome-wide 

screens that aim to find the genetic variants regulating the levels of these pro-

inflammatory markers.
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Introduction

Chronic low-grade inflammation plays an important role in numerous diseases including 

major depression and heart disease, and it has been implicated as one of the major 

causes for the comorbidity of these diseases (Capuron et al., 2008; Vaccarino et al., 2008; 

Vaccarino et al., 2007). The inflammatory response is activated by pro-inflammatory 

cytokines, of which TNF-α and IL-1 are the first to appear (Tracey, 2002). The inflammatory 

cascade is further promoted by the production of IL-6 that in turn stimulates the acute-

phase response which is reflected in the synthesis of fibrinogen and CRP (Gabay, 2006; 

Gabay & Kushner, 1999; Packard & Libby, 2008). Elevations in TNF-α, IL-6, CRP and 

fibrinogen have been associated with an increased risk for both cardiac disease (Cesari 

et al., 2003; Danesh et al., 2008; Danesh et al., 2004; Humphries, Cooper, Talmud, & 

Miller, 2007; Libby & Theroux, 2005; Packard & Libby, 2008; Woods, Brull, Humphries, & 

Montgomery, 2000) as well as major depression (O’Brien, Scott, & Dinan, 2004; Penninx 

et al., 2003). 

In spite of the obvious importance of these pro-inflammatory markers in depression 

and cardiovascular disease, which are both in the top 4 of burden of disease prediction 

for 2020 (Mathers & Loncar, 2006), very little is known about the etiology of the individual 

differences in TNF-α, IL-6, CRP and fibrinogen levels. A first important question is to what 

extent the variance in these biological parameters is innate, caused by environmental 

factors that are shared by family members, or caused by environmental factors unique to 

each individual member of a family. This question can be addressed by the classical twin 

design comparing the resemblance between monozygotic (MZ) and dizygotic (DZ) twins 

(Boomsma et al., 2002; van Dongen, Slagboom, Draisma, Martin, & Boomsma, 2012). A 

few twin studies in healthy samples have estimated the heritability of cytokines and acute 

phase reactants with estimates varying between 21% and 60% for fibrinogen (de Lange, 

Snieder, Ariens, Spector, & Grant, 2001; de Lange et al., 2006; de Maat et al., 2004; 

Jermendy et al., 2011; Reed, Tracy, & Fabsitz, 1994; Su et al., 2008), between 20% and 

76% for CRP (de Maat et al., 2004; Jermendy et al., 2011; MacGregor, Gallimore, Spector, 

& Pepys, 2004; Rahman et al., 2009; Su et al., 2008; Su et al., 2009a; Su et al., 2009b; 

Wessel et al., 2007; Wang et al., 2011; Worns, Victor, Galle, & Hohler, 2006), between 

17% and 26% for TNF-α (de Maat et al., 2004; Sas et al., 2012), and between 15% and 

61% for IL-6 (de Maat et al., 2004; Grunnet, Poulsen, Klarlund, Mandrup-Poulsen, & Vaag, 

2006; Sas et al., 2012; Su et al., 2008; Su et al., 2009a; Su et al., 2009b; Worns et al., 
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2006). With a few exceptions heritability estimates of the aforementioned studies have 

been based on relatively small twin samples. Such studies are fairly accurate in estimating 

broad-sense heritability but they lack precision and power to estimate the contribution 

of non-additive genetic effects or shared family environment like the dietary habits or 

neighborhood factors shared by parents and offspring. As the average sample size of 

previous studies was around 400 individuals, these studies were not sufficiently powered 

to detect an effect of shared environmental factors explaining less than 40% of the 

variance or to discriminate between additive and non-additive genetic factors (Posthuma 

& Boomsma, 2000). Also, the relatively small sample sizes may explain the large range of 

heritability estimates based on previous studies. 

Here we extend the classical twin design, including only MZ and DZ twin pairs, by 

including non-twin siblings, and their parents in the largest set of twin- and family data 

on TNF-α, IL-6, CRP, and fibrinogen described to date. Inclusion of non-twin siblings 

increases statistical power and offers the possibility to assess twin-specific effects. 

The inclusion of parents allows taking into account assortative (non-random) mating 

effects, which can influence heritability estimates. Data from parents also allow for the 

examination of shared household effects in spouses who share a household, but are not 

biologically related (e.g. Distel et al., 2010; Rebollo & Boomsma, 2006). The availability 

of a large sample size allowed for the exclusion of subjects with current and recent illness 

and for the examination of a number of health-related variables and methodological 

factors that could affect the reliability of the assessment of plasma levels of inflammatory 

variables, while retaining adequate power to detect shared environmental factors and to 

discriminate between additive and non-additive genetic factors. 

Methods
Subjects

The data were obtained from the NTR Biobank study that was conducted among twins and 

their family members registered with the Netherlands Twin Register in the period of 2004-

2008 (Willemsen et al., 2010). Subjects were visited between 7 am and 10 am at home 

or, when preferred, at work, to collect blood and urine samples. Subjects were instructed 

to fast from the evening before, to abstain from physical exertion and, if possible, not to 

take medication at the day of the home visit, and to refrain from smoking one hour before 

the home visit. Fertile women were visited on the 2nd-4th day of their menstrual cycle or, if 
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they took oral contraceptives, in their pill-free week. During the visit, a brief interview was 

conducted on health status, including an inventory of medication use, illness (last time 

occurrence, duration and type of illness), and adherence to the protocol.

The study consisted of 9,405 subjects with data on at least one of the four pro-

inflammatory parameters of interest. Values exceeding 15 pg/ml for IL-6 and TNF-α, 15 

mg/L for CRP and/or 6 g/L for fibrinogen were set to missing, leading to the exclusion of 

11 subjects. Subjects who were on anti-inflammatory medication, medication impacting 

on the Hypothalamic Pituitary Adrenal (HPA)-axis, or both, were excluded from further 

analyses (N = 408). We also excluded subjects suffering from a cold, the flu, inflammation, 

or allergy at the time of blood sampling (N = 1,013). The remaining subjects (N = 7,973) 

served as the reference group to quantify the effects of the various covariates and to 

compute residual scores for every immune parameter.

 For the twin-family analyses we additionally excluded non-biological parents and 

siblings (N=35), spouses of twins (N = 409), subjects under 18 years of age (N = 87), the 

third member of triplets, and additional twins from families with more than one twin pair 

(N = 4). When zygosity was missing for a twin pair and both twins participated in the study, 

we randomly selected one of the two to be excluded (N = 10). To simplify the genetic 

model fitting procedure, we included a maximum of two singleton brothers and two 

singleton sisters per family and randomly selected two siblings from families with more 

than two same-sex siblings (N = 99 excluded). The final sample was comprised of 3,095 

families with 7,329 family members of which 3,534 subjects were twins, more specifically 

590 MZ male (MZM), 320 DZ male (DZM), 1,281 MZ female (MZF), 624 DZ female (DZF) 

and 719 dizygotic opposite-sex (DOS) twins. The following numbers of complete twin 

pairs were included: 201 MZM, 96 DZM, 466 MZF, 211 DZF and 217 DOS. Furthermore, 

464 non-twin male siblings, 1,104 non-twin female siblings, 1,003 fathers of twins and 

1,224 mothers of twins were included. Zygosity of twins was determined by DNA typing 

for 85.1% of the same-sex twin pairs. For the other same-sex pairs, zygosity was based 

on survey questions on physical similarity and the frequency of confusion of the twins by 

parents, other family members, and strangers. Agreement between zygosity based on 

these items and zygosity based on DNA was 96.1% (Willemsen et al., 2013).

Assessment of TNF-α, IL-6, CRP and fibrinogen

During the home visit, eight blood tubes were collected in the following order; 2 × 9 ml 

EDTA, 2 × 9 ml heparin, 1 × 4.5 ml CTAD, 1 × 2 ml EDTA, 1 x 4.5 ml serum. To prevent 
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clotting, all tubes were inverted gently 8–10 times immediately after collection (for detail, 

see Willemsen et al., 2010).

Tumor Necrosis Factor-α (TNF-α) and Interleukin-6 (IL-6) were measured in EDTA 

plasma, obtained from one of the 9 ml tubes. During transport this tube was stored in 

melting ice and upon arrival at the laboratory, it was centrifuged for 20 minutes at 2000x 

g at 4°C. EDTA plasma, buffy coat, and red blood cells were harvested and aliquoted (0.5 

ml), snap-frozen in dry ice, and stored at –30°C. Plasma levels of TNF-α and IL-6 were 

determined using an UltraSensitive ELISA (R&D systems, Minneapolis, USA, Quantikine 

HS HSTA00C). The inter-assay coefficient of variation (CV) for TNF-α was < 12.8%, for IL-6 

the inter-assay CV was < 11.6%. 

C-reactive protein (CRP) was obtained from one of the 9 ml heparin tubes. The tube 

was stored in melting ice during transport. At the laboratory the tube was centrifuged for 

15 minutes at 1000x g at 4°C, after which heparin plasma was obtained and divided into 

8 subsamples of 0.5 ml, snap-frozen and stored at –30°C. The processing took place in a 

sterile flow cabinet. CRP level in heparin plasma was determined using the Immulite 1000 

CRP assay (Diagnostic Product Corporation, USA). The inter-assay CV was < 5.1%.

Fibrinogen. Fibrinogen level was obtained from the 4.5 ml CTAD tube, which was 

stored in melting ice during transport. Upon arrival at the laboratory, it was centrifuged 

for 20 minutes at 2000x g at 4°C, after which citrated plasma was harvested from the 

buffy coat and red blood cells, aliquoted (0.5 ml), snap-frozen in dry ice, and stored at 

–30° C. Fibrinogen levels in CTAD plasma were determined on a STA Compact Analyzer 

(Diagnostica Stago, France), using STA Fibrinogen (Diagnostica Stago, France). The inter-

assay CV was < 6.1%.

 Fibrinogen values were normally distributed whereas data on the other variables 

were skewed. Therefore, we took the natural logarithm of these values.

Assessment of covariates

For the heritability analyses, we took into account the effects of age, sex, health-related 

covariates known to be associated with inflammatory parameters (body mass index (BMI), 

smoking status), and several methodological covariates that could lead to inflation of 

family correlations (month of blood sampling and batch effect). During the home visit, 

height and weight were assessed and BMI was calculated. Subjects were also asked 

about their past and current smoking behavior and were categorized into one of five 

groups (never smoked, ex-occasional smoker, ex-regular smoker, current occasional 
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smoker, current regular smoker). The month of blood sampling was used to correct for 

the effects of time of year on the four pro-inflammatory markers. For the cytokines, we 

also took into account differences in values due to the plate on which the samples were 

processed, by using the plate mean value for the cytokines as a covariate. The levels 

of the acute phase reactants were determined on a per sample basis, so plate effects 

for these variables are not applicable. Previous research suggested that when using the 

ELISA assay of R&D systems, individuals with blood group O may show higher TNF-α 

and IL-6 levels than other ABO blood groups, which may in part be due to assay-specific 

cross-reactivity with ABO antigens (Melzer et al., 2008; Naitza et al., 2012). To investigate 

this potential confounding effect we used a SNP (rs644234) that showed the strongest 

association with TNF-α and IL-6 in our data, of all SNPs in the ABO gene region plus/

minus a 10 Kb border. The rs644234 SNP explained 7% and 4 % of TNF-α and IL-6 values, 

respectively. Data on this SNP were available for 5,950 healthy subjects with TNF-α data 

and for 5,947 subjects with IL-6 data. Because the twin-family models yielded similar 

results with and without taking the effect of the ABO SNP into account, we only report 

the analyses on the full sample.

Statistical analyses

Data preparation, sample selection and tests for the effects of covariates were conducted 

using IBM Statistical Package of Social Sciences 20.0. The covariates were included 

in a multiple regression analysis (forced entry) and the residual scores were saved for 

the heritability analyses. As there was a significant age-by-sex interaction for CRP, 

fibrinogen and IL-6, regression coefficients for age were estimated separately for men 

and women for these variables. Genetic models were fitted to the data using structural 

equation modeling (SEM) in the software package Mx (Neale et al., 2006). First, a fully 

parameterized, or saturated, model was fitted and a goodness-of-fit statistic based on 

minus twice the logarithm of the likelihood (-2LL) was calculated. Next, the fully saturated 

model was simplified to a more restricted model to test whether constraints were allowed 

to be put on the data. The comparison of fit of a restricted model to the full model is 

performed by means of likelihood-ratio (χ²) tests in which the difference in -2LL between 

the two models is calculated. When the likelihood-ratio test is significant (p < .01), the 

nested model is considered to fit significantly worse to the data than the fuller model it 

is tested against. 
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Figure 6.1. Path diagram of an extended twin family showing four subjects belonging to one family: 
father (Pfa), mother (Pmo), twin 1 (Pt1) and twin 2 (Pt2), where P is phenotype. In the genetic model 
(without constraints) a maximum of 10 parameters is estimated. Path loadings a, d, c and e represent 
the influence of additive and non-additive genetic effects and shared and unique environmental 
factors on the phenotype. Spousal resemblance is modeled as a function of phenotypic assortment, 
denoted by the delta path (Δ). When the delta path coefficient is larger than zero, this indicates non-
random mating. The residual variance of additive genetic effects in parents (Ra) will then become 
larger than 1 to account for increased transmission of additive genetic effects from parents to children 
under conditions of non-random mating. Finally, two means and two age regression coefficients (for 
males and females separately) are estimated. Fixed parameters include the .5 genetic relatedness of 
the parents and their children (path running from the A of both parents to the A of their children with 
a path loading of .5). The residual variance of A in the offspring is constrained at .5. Finally, MZ twins 
correlate 1 regarding A and D factor scores (because they are assumed to share all of their genetic 
material), whereas DZ or sibling pairs correlate .5 and .25, respectively.
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First, we tested if constraints on the means and variances for men and women were 

allowed and if different types of family correlations were equal. In the full model, 19 

parameters were estimated: separate means, standard deviations, and regression co-

efficients for age on the phenotype for men and women, and 13 family correlations 

(for MZM, MZF, DZM, DZF, DOS twin pairs, male siblings, female siblings, opposite-sex  

siblings and for mother-daughter, mother-son, father-daughter, father-son and one spouse  
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correlation). Quantitative sex differences, indicating that the heritability of a trait is 

different in men and women, were assessed by testing whether correlations in male-male 

and female-female pairs of first-degree relatives (DZ twins and non-twin siblings) were 

equal. Next, we tested if the same genes regulate cytokine and acute phase reactant 

levels in men and women (Vink et al., 2012). When correlations for a trait are the same in 

same-sex and opposite-sex pairs of family members, there is no evidence for qualitative 

sex differences in the genetic architecture. When the correlations in DZ twin pairs are of 

similar magnitude as the correlations in sib-sib pairs, there is no evidence for twin-specific 

resemblance. Generation effects were tested by equating parent-offspring correlations to 

the correlations between all other first-degree relatives (DZ twins and non-twin siblings). 

If this constraint is allowed, there is no evidence that gene expression changes with age. 

Spousal resemblance was assessed by testing if the correlation between the parents of 

the twins was significantly different from zero. The most parsimonious model with the 

maximal number of allowable restrictions was carried forward to the genetic structural 

equation analyses. In these analyses, the family covariance structure is used to estimate 

the relative contribution of latent additive (A) and non-additive or dominant (D) genetic 

factors and common (C) and unique (E) environmental factors to the phenotypic variance. 

Based on the variance estimates from the full genetic model, sequentially constrained 

submodels were compared to the fit of the full model to arrive at the most parsimonious 

genetic model describing the total phenotypic variance best (see Figure 6.1 for a sche-

matic representation of the extended twin-family model).

Results

Descriptive statistics for the four immune parameters of interest in the twins, siblings and 

parents are given in table 6.1. Table 6.2 presents the amount of variance explained by the 

various technical and biological covariates that were taken into account. 

The effect of age on all parameters was significant and positive (p’s < .01). Sex 

differences were present only for CRP and fibrinogen with women having significantly 

larger mean values than men (p’s < .01). For TNF-α and CRP values, standard deviations 

were significantly larger in females than in males. Table 6.3 shows the family correlations 

for each of the immune parameters estimated for the values only adjusted for age and sex 

and for the values additionally adjusted for the other covariates.
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Table 6.1. Mean values (and standard deviations) and mean age (range) for Tumor Necrosis 

Factor-α (TNF-α), Interleukin-6 (IL-6), C-Reactive Protein (CRP) and fibrinogen.

Marker N total Mean (sd) Mean age (range)

TNF-α (pg/ml)

 Fathers 987 1.21 (1.25) 61 (33-89)

 Mothers 1,215 1.20 (1.10) 60 (26-89)

 Male twins/siblings 1,594 1.02 (0.85) 37 (18-82)

 Female twins/siblings 3 218 1.07 (1.14) 38 (18-90)

Total 7,014 1.10 (1.10) 45 (18-90)

IL-6 (pg/ml)

 Fathers 984 2.10 (1.77) 61 (33-88)

 Mothers 1,213 1.91 (1.50) 60 (26-89)

 Male twins/siblings 1,590 1.37 (1.38) 37 (18-82)

 Female twins/siblings 3,220 1.41 (1.27) 38 (18-90)

Total 7,007 1.59 (1.44) 45 (18-90)

CRP (mg/L)

 Fathers 975 2.47 (2.58) 61 (33-89)

 Mothers 1,171 2.73 (2.75) 60 (26-89)

 Male twins/siblings 1,672 1.77 (2.23) 35 (18-82)

 Female twins/siblings 3,244 2.59 (2.91) 38 (18-90)

Total 7,062 2.40 (2.71) 44 (18-90)

Fibrinogen (g/L)

 Fathers 983 2.94 (0.70) 61 (33-89)

 Mothers 1,188 3.02 (0.68) 60 (26-89)

 Male twins/siblings 1,550 2.51 (0.59) 37 (18-82)

 Female twins/siblings 3,136 2.69 (0.65) 38 (18-90)

Total 6,857 2.74 (0.68) 45 (18-90)

Table 6.2. Proportion of variance that is explained by the covariate with the number of subjects 

within brackets .

Covariates TNF-α IL-6 CRP Fibrinogen 

Age .021** (7,566) .118** (7,559) .024** (7,684) .097** (7,397) 

Sex .000 (7,566) .000 (7,559) .014** (7,684) .008** (7,397) 

BMI .013** (7,521) .098** (7,515) .139** (7,645) .100** (7,357)

Smoking .001* (7,553) .030** (7,546) .007** (7,678) .009** (7,392)

Plate effect .106** (7,558) .079** (7,551) - -

Month of blood 
sampling

.006** (7,566) .007** (7,559) .002** (7,684) .009** (7,397) 

* = p < .05, ** = p < .01
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For all parameters male and female MZ correlations did not differ significantly and same-

sex and opposite- sex DZ twin and non-twin sibling correlations were also similar in all 

cases (p’s > .01), so no quantitative and qualitative sex differences were present, nor 

did we find evidence for twin-specific environmental effects. Parent-offspring correlations 

were not significantly different from DZ twin and non-twin sibling correlations (p > .01), 

except for the fibrinogen values adjusted for age and sex only (p = .003). This effect was 

not present in the fully adjusted fibrinogen values. These results suggest that genetic 

regulation of cytokine and acute phase reactant levels does not change significantly 

across age. Overall, adjustment for BMI, smoking, month and plate effects in addition to 

age and sex tended to reduce all familial correlations, including the spouse correlations. 

Only the spouse correlation for the fully adjusted fibrinogen values was significantly 

different from zero (r = .16, p < .01), which indicates that the effects of assortative mating 

or sharing a household without being biologically related are negligible, except for the 

small resemblance found for fibrinogen.

For the heritability analyses on the fully adjusted values, contributions of A, D, C 

and E factors to the total phenotypic variance were constrained over sex while taking 

into account sex differences in phenotypic variance in TNF-α, CRP and IL-6. Assortative 

mating was only modeled for fibrinogen. Table 6.4 shows the genetic models that were 

fitted to the data, supplemented with the proportions of the phenotypic variance that can 

be explained by the different genetic and environmental factors for both the full ADCE 

model and the model that provided the most parsimonious fit. 

The broad-sense heritability was 39%, 21%, 45% and 46% for TNF-α, Il-6, CRP and 

fibrinogen, respectively. The models that provided the best fit to the data on TNF-α, 

CRP and fibrinogen included additive and non-additive genetic factors, and unique 

environmental factors. Non-additive genetic effects explained 22% of the variance of 

TNF-α, 18% of the variance of CRP, and 16% of the variance of fibrinogen. For CRP and 

fibrinogen, a small amount of variation was attributed to sibling-shared environmental 

factors in the full ADCE model, but an ADE model without shared environmental factors 

did not fit significantly worse. For IL-6, a model with additive genetic factors and unique 

environmental factors explained the data best, with no role for non-additive genetic 

factors, nor for shared environmental factors. 
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Discussion

This is the most comprehensive twin-family study of the genetic architecture of the pro-

inflammatory state that has been performed thus far. Results replicate the importance of 

genetic factors in pro-inflammation observed before (de Lange et al., 2001; de Lange et 

al., 2006; de Maat et al., 2004; Grunnet et al., 2006; Jermendy et al., 2011; MacGregor 

et al., 2004; Rahman et al., 2009; Reed et al., 1994; Sas et al., 2012; Su et al., 2008; Su 

et al., 2009a; Su et al., 2009b; Wessel et al., 2007; Worns et al., 2006; Wang et al., 2011) 

and extend the findings of previous studies by showing that genetic non-additivity is an 

important factor in explaining individual differences in TNF-α, CRP and fibrinogen levels 

and by ruling out a large role for environmental factors shared by family members. 

There have only been three previous heritability studies employing a sample size 

of over 1,000 twins for CRP (Wang et al., 2011; Rahman et al., 2009), IL-6 and TNF-α 

(Sas et al., 2012). For fibrinogen, the study with the largest sample size included 962 

subjects (de Lange et al., 2001). None of these studies systematically corrected for recent 

illness, medication use, menstrual cycle, oral contraceptives use, batch effects, month of 

sampling, BMI, and smoking status as done in the present study. In spite of the more strict 

correction for confounders, our heritability estimate for CRP was of comparable magnitude 

to these previous studies. For CRP, we confirmed the importance of non-additive genetic 

factors that was found in the largest of the two previous twin studies (Rahman et al., 2009), 

whereas the smaller of the two (Wang et al., 2011) only detected additive effects, likely 

reflecting insufficient power. For fibrinogen, our broad-sense heritability estimate was 

comparable to the estimate reported by de Lange and colleagues (de Lange et al., 2001), 

but our study additionally indicated that a significant proportion of the heritability was 

due to non-additive genetic effects. 

For TNF-α and IL-6 our results do not completely support the results of the only large 

(N > 1,000) previous twin study (Sas et al., 2012). For both cytokines, Sas and colleagues 

(Sas et al., 2012) found substantial family resemblance, but they could not discriminate 

between genetics and shared environment as the source of that resemblance. The twin 

correlations reported in a smaller study on IL-6 (Worns et al., 2006) were suggestive of 

genetic factors and a potential role of shared environment with the MZ correlation being 

less than twice as high as the DZ correlation. Our study clearly shows that shared genetic 

make-up rather than shared family environment is the major source of familial resemblance 

in these parameters. Furthermore, we show a significant effect of non-additive factors 
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on TNF-α. Four smaller twin studies of TNF-α and IL-6 values in healthy unchallenged 

subjects are consistent with our findings, as the MZ correlations found in those studies 

were about twice as high as the DZ correlations, in elderly subjects (de Maat et al., 2004), 

young adults (Grunnet et al., 2006), and middle-aged twins (Su et al., 2008; Su et al., 

2009b). In their sample of young adult subjects, Grunnet and colleagues (Grunnet et al., 

2006) even found the MZ correlations for TNF-α to be more than twice as high than the 

DZ correlations. 

Taken together, our results and those from previous studies suggest that about a 

third of the variation in these core pro-inflammatory cytokines and acute phase reactants 

in healthy subjects with values in the non-extreme range is explained by genetic variation. 

This means that some individuals are more susceptible than others to have higher levels 

of pro-inflammatory markers and this increased susceptibility is, at least partly, due to 

genetic differences between individuals. Large scale collaborative attempts to find the 

actual genes that underlie this genetic variation are under way. In 2011, a meta-analysis 

of GWA studies of CRP in over 80,000 subjects identified several genes implicated in 

immune system functioning and inflammation (CRP, IL6R, NLRP3, IL1F10, IRF1, PPP1R3B, 

SALL1, PABPC4, ASCL1, RORA and BCL7B) and the metabolic syndrome (APOC1, 

HNF1A, LEPR, GCKR, HNF4A and PTPN2) to be associated with circulating CRP levels 

(Dehghan et al., 2011). In a meta-analysis of six GWA studies on fibrinogen in over 22,000 

subjects, significant genome-wide hits were found in the FGB, IRF1, PCCB and NLRP3 

genes (Dehghan et al., 2009). For IL-6 and TNF-α no meta-analysis has been published 

to our knowledge. A single large GWA study on IL-6 (N = 6,145) found significant hits in 

the IL6R and ABO genes (Naitza et al., 2012). With our study we have accomplished a 

clear numerical target for these ongoing genome-wide screens that aim to find the actual 

genetic variants regulating the levels of these pro-inflammatory markers. Heritability 

studies conducted in large representative samples continue to be valuable, because the 

heritability of traits can vary between populations and can change across generations. 

We should also keep in mind that 54 to 79% of the variation found was due to unique 

environmental factors that are not shared between family members. This estimate may 

derive from unique environmental factors or measurement error, but it may also result from 

gene-by-environment interactions that may inflate estimates of unique environmental 

effects. Unravelling the genetics of these pro-inflammatory parameters may greatly 

contribute to our understanding of the aetiology of cardiac disease and major depression 

since chronic low-grade inflammation has repeatedly been shown to be associated with 
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both (Cesari et al., 2003; Danesh et al., 2004; Danesh et al., 2008; Humphries et al., 2007; 

Libby & Theroux, 2005; O’Brien et al., 2004; Packard & Libby, 2008; Penninx et al., 2003; 

Woods et al., 2000).

Because of the large sample size and the extended twin-family design this study 

had sufficient power to decompose the variance in the levels of an important set of 

pro-inflammatory markers into additive and non-additive genetic factors, and shared 

and unique environmental factors. The inclusion of parents and siblings allowed us to 

detect and correct for assortative mating, quantitative and qualitative sex differences, 

and effects of age that could potentially affect the heritability estimates. The sample size 

also allowed us to employ strict exclusion criteria concerning the recent health status and 

medication use of the subjects without losing power so that we were ensured analyses 

were run on healthy individuals only. Furthermore, our study design controlled for female 

sex hormone status.

This study also had limitations. First, we selected only a subset of the many immune 

parameters that co-determine the pro-inflammatory state, including IL-1 and interferon-γ, 

and we did not take into account the action of the soluble receptors for the cytokines, 

levels of which may be substantial heritable. Secondly, we used the ELISA assay by R&D 

systems that may yield higher TNF-α and IL-6 values in individuals of blood group O levels 

than other ABO blood groups which may in part by due to assay specific cross-reactivity 

with ABO antigens (Melzer et al., 2008; Naitza et al., 2012). We indeed found a significant 

association of SNPs in the ABO region to TNF-α and IL-6. Although it explained only a 

small amount of variance in TNF-α (7%) and IL-6 (4%) compared to the larger effects of 

plate and BMI, they may cause overestimation of non-additivity or underestimation of 

shared environment since the shared blood group O will make MZ twins appear more 

alike than DZ twins or non-twin siblings. Thirdly, we tested whether different genes 

are expressed at different ages by testing whether parent-offspring correlations and 

correlations in first-degree relatives (DZ twins and non-twin siblings) were of comparable 

magnitude. Because there was a partial overlap in age between the parent and the 

offspring generation, we cannot completely rule out the possibility that the expression of 

pro-inflammatory genes changes across age. 

In conclusion, the familial resemblance in these core pro-inflammatory cytokines 

and acute phase reactants is explained by genetic variation and not by the shared family 

environment. For three out of four markers, both additive and non-additive genetic 

factors contribute to the heritability.
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Abstract

Previous cross-sectional research in laboratory settings has shown significant 

associations between cardiac autonomic functioning and metabolic and 

inflammatory risk. The nature of this association remains unclear. Prospective 

associations of cardiac sympathovagal control and inflammatory and metabolic 

risk were tested in both directions in two independent studies. Study 1 linked 

autonomic functioning to inflammatory and metabolic risk measured 4.9 years 

later, Study 2 tested the reverse link with 5.4 years in between. Participants were 

measured in their natural environment. Study 1 and 2 included 433 and 540 

healthy adults registered with the Netherlands Twin Register, respectively. 24-

hour autonomic activity was measured and included heart rate (HR), respiratory 

sinus arrhythmia (RSA, parasympathetic activity), and pre-ejection period (PEP, 

sympathetic activity). Stress reactivity was computed by contrasting the levels 

during work with levels during  leisure time. Inflammatory and metabolic risk were 

calculated by summing the Z-scores of several key markers of the pro-inflammatory 

and the metabolic state. Higher leisure time HR (βzIBI = -0.94, p = .02) and larger 

PEP reactivity (βzΔPEP = -0.43, p = .04) were associated with increased inflammatory 

risk at follow-up. Larger PEP reactivity was also associated with higher metabolic 

risk at follow-up (βzΔPEP = -0.80, p = .01). No significant associations in the reverse 

direction were found. High resting HR together with exaggerated sympathetic 

reactivity has adverse effects on inflammatory risk. Exaggerated sympathetic 

reactivity also negatively impacts metabolic risk. No evidence for a reverse 

association was found.
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Introduction

A cluster of metabolic dysregulations, commonly referred to as the metabolic syndrome, is 

implicated in the development of cardiovascular disease and diabetes (Wilson, D’Agostino, 

Parise, Sullivan, & Meigs, 2005). Chronic low-grade inflammation has emerged as an 

additional risk factor (Danesh et al., 2008; Libby & Theroux, 2005; Packard & Libby, 2008) 

that often accompanies metabolic dysregulation (Grundy et al., 2005; Marques-Vidal et 

al., 2002). The metabolic and inflammatory risk factors may have a common biological 

ground: a shift in autonomic nervous system (ANS) activity from parasympathetic towards 

sympathetic dominance. Previous cross-sectional research showed that such a shift was 

indeed associated with high waist circumference, and higher levels of several metabolic 

markers including low density lipoprotein cholesterol (LDL-cholesterol), total cholesterol, 

triglyceride values, increased systolic blood pressure (SBP), and increased fasting glucose 

levels (Intzilakis et al., 2013; Licht et al., 2010; Thayer & Fischer, 2013). Licht, de Geus, & 

Penninx (Licht, de Geus, & Penninx, 2013) tested this association in a longitudinal study in 

which ANS functioning was used to predict a change in the metabolic components over 2 

years. They found that increased cardiac sympathetic control at rest (indexed as the pre-

ejection period, or PEP) predicted an increase in the number of metabolic components. 

In addition, low vagal control at rest (indexed as respiratory sinus arrhythmia, or RSA) 

predicted a future decrease in HDL cholesterol. 

There is solid biological ground to additionally expect that an inflammatory risk 

profile, in particular the TNF-α/IL-1/IL-6 pathway, is also sensitive to the activity of both 

branches of the ANS. When the body is inflamed, the acute parasympathetic (PNS) and 

sympathetic (SNS) nervous system responses act to prevent a further inflammatory cascade 

by inhibiting the release of pro-inflammatory cytokines and the ensuing production of 

acute phase reactants, and by stimulating the production of anti-inflammatory cytokines 

(Elenkov, Wilder, Chrousos, & Vizi, 2000). However, when ANS activity shifts more 

chronically to SNS dominance, either through decreased PNS activity or through increased 

sympathetic activity or a combination, chronic low-grade inflammation may be the result 

(Sternberg, 2006). Cross-sectional HRV studies have indeed shown that reduced cardiac 

vagal control as assessed during short-term (Haarala et al., 2011; Kon et al., 2006; Sloan 

et al., 2007; Singh, Hawkley, McDade, Cacioppo, & Masi, 2009; von Kanel, Nelesen, Mills, 

Ziegler, & Dimsdale, 2008) or prolonged laboratory (Lampert et al., 2008) conditions was 

associated with higher C-reactive protein (CRP) and interleukin(IL)-6. In addition, 24-h 
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ambulatory HRV recordings also point to inverse associations of vagal control with CRP, 

IL-6, and fibrinogen (Araujo et al., 2006; Sajadieh et al., 2004; Stein et al., 2008; Thayer 

& Fischer, 2009; von Kanel, Thayer, & Fischer, 2009). These associations appear to hold 

in prospective studies. Lower nighttime HRV at baseline, for instance, predicted higher 

CRP measured at 3 to 4-year follow-up (Jarczok, Koenig, Mauss, Fischer, & Thayer, 2014; 

Singh et al., 2009). Two studies found the vagal effect to be independent of urinary 

epinephrine (Lampert et al., 2008; Thayer & Fischer, 2009). The link between cardiac 

sympathetic control and chronic low-grade inflammation is not yet clearly established. In 

humans, cardiac contractility was not associated with CRP (Singh et al., 2009), whereas 

animal studies pointed to significant positive associations between cardiac contractility 

and TNF-α levels (Bozkurt et al., 1998; Murray & Freeman, 1996). 

A first concern about the studies linking autonomic functioning to metabolic or 

inflammatory risk factors is that they explicitly assume an unidirectional causal effect of the 

ANS on metabolic and inflammatory risk. The observed association may, however, also 

derive from reverse effects of metabolic and inflammatory risk on autonomic functioning. 

Soares-Miranda and colleagues (Soares-Miranda et al., 2012), for instance, found that 

high levels of SBP, triglyceride, glucose levels and CRP at baseline predicted lower HRV 

at 2-year follow-up, although these associations disappeared at the 3-year follow-up. The 

finding of prospective associations in both directions hints at the possibility of reciprocal 

(bidirectional) causality. Alternatively, parallel patterns of unfavourable ANS functioning and 

metabolic or inflammatory risk may reflect the effects of underlying factors independently 

acting on ANS functioning and metabolic/inflammatory risk across time, like socioeconomic 

position, lifestyle (e.g. physical activity, smoking) or genetic pleiotropy. 

A second concern about the extant literature is that many studies were conducted 

in a laboratory or clinic setting with measures of SNS and PNS activity recorded during 

periods of quiet rest (Haarala et al., 2011; Kon et al., 2006; Licht et al., 2010; Licht et al., 

2013; Sloan et al., 2007; von Kanel et al., 2008). Various studies have indicated that the 

ecological validity and clinical predictive value of risk factor recording may be increased 

when they are done in the participant’s natural environment by ambulatory monitoring 

(Bussmann, Ebner-Priemer, & Fahrenberg, 2009; Ebner-Priemer & Trull, 2009a; Fahrenberg 

et al., 2007). A huge advantage of ambulatory monitoring over laboratory assessments 

is that it captures physiological processes that have a prolonged time scale, including 

circadian rhythms, and better capture the effects of changes in mental and emotional 

challenge as seen during work-non-work, and wake-sleep transitions. 
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Here we examined the prospective association between autonomic functioning in daily 

life and metabolic and inflammatory risk in both directions. We used measures of cardiac 

vagal and sympathetic control assessed by ambulatory monitoring, which allowed the 

computation of prolonged resting levels (e.g. sleep, leisure time) as well as stress reactivity 

to real-life psychological challenge as typically encountered in a work setting. Two 

independent prospective studies were conducted linking (1) ambulatory parasympathetic 

and sympathetic cardiac control to inflammatory and metabolic risk measured 4.9 

years later, and (2) inflammatory and metabolic risk to ambulatory parasympathetic 

and sympathetic cardiac control measured 5.4 years later. We expected to find that 

sympathetic overdrive coupled to vagal withdrawal at rest, and its enhancement during 

exposure to psychological stress, would be associated with an unfavorable inflammatory 

and metabolic profiles 4.9 years later. In addition, we expected that the effects would 

be reciprocal and that subjects with unfavorable inflammatory and metabolic profiles 

would show sympathetic overdrive coupled to vagal withdrawal at 5.4 year follow-up, 

and exaggerated autonomic reactivity to psychological stress.

Methods 
ANS Study sample 1

A total of 816 participants participated in the first part (Study 1, 1998-2003) of a 

large cardiac ambulatory monitoring study conducted in families registered with the 

Netherlands Twin Register (NTR). A subgroup of 68 participants participated twice in this 

period, so in total 884 ambulatory cardiac recordings were available. A priori reasons 

for exclusion were heart transplantation, presence of a pacemaker and known ischemic 

heart disease, congestive heart failure, diabetic neuropathy, or pregnancy. We selected 

ANS recordings of participants with valid data on both heart rate variability (HRV) and 

PEP measures (N=21 recordings excluded). Cardiac recordings of participants who were 

on antidepressant medication (ATC code N06A), beta blocking agents (ATC code C07), 

or cardiac therapy (ATC code C01) were excluded from further analyses (N=43). Of the 

remaining recordings, 62 still belonged to participants that participated twice. When 

the difference in the duration between the two recordings was greater or equal to 200 

minutes, the shorter recording was excluded (N=10). When both twins participated, the 

recording of the twins in which both participated were kept (N=26 excluded). For the 

remaining duplicate recordings, the recording of the study in which most family members 
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participated were kept (N=26 recordings excluded). The remaining sample comprised 

758 participants. A total of 433 of these participants also participated in a large NTR 

biobank study (Willemsen et al., 2010) that was conducted between 2004 and 2008, on 

average 4.9 (SD = 1.7) years later.

ANS Study sample 2

A total of 592 participants who took part in the NTR biobank study also participated 

in the second part (Study 2, 2010-2012) of the cardiac ambulatory monitoring study. 

We employed the same a priori reasons for exclusion as for Study 1 and selected ANS 

recordings of participants with valid data on both heart rate variability (HRV) and PEP 

measures (N=16 recordings excluded). Cardiac recordings of participants who were on 

antidepressant medication (ATC code N06A), beta blocking agents (ATC code C07), 

or cardiac therapy (ATC code C01) were excluded from further analyses (N=32). The 

remaining sample was comprised of 540 participants having valid IBI, pvRSA, or PEP 

data during sleep, leisure time, and/or during sitting activities at work. The average time 

interval between these studies was 5.4 (SD = 1.1) years.

24-hour ambulatory monitoring studies: set up and measures

For both studies, participants were visited at home, before starting their normal daily 

activities. During a short interview, information on health status and current medication 

use was obtained. The VU-AMS was attached and its operation explained. Participants 

were instructed to wear the device the entire day and night up until awakening the 

next morning. Instructions were supplied that explained how to respond to potential 

alarm beeps (e.g., on loose electrode contacts), and telephone assistance was available 

during waking hours. Participants were requested to keep a diary and to write down a 

chronological account of activity, posture, location, and social situation over the past 

time period. For Study 1 this was done every 30 minutes, for Study 2 every 60 minutes. 

Participants were instructed to refrain from vigorous exercise during the ambulatory 

recording day.

For Study 1, the VU University Ambulatory Monitoring System (VU-AMS) version 4.6 

was used (VU University, Amsterdam, The Netherlands, www.vu-ams.nl). This version of 

the VU-AMS continuously recorded the electrocardiogram (ECG) and changes in thoracic 

impedance (dZ) from a six-electrode configuration (de Geus et al., 1995; de Geus & van 

Doornen, 1996; Willemsen et al., 1996). The device automatically detects each R wave in 
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the ECG signal, at which it reads out and resets a millisecond counter to obtain the heart 

period time series. The thoracic impedance (Z), assessed against a constant current of 50 

KHz, 350 microamperes, was amplified and led to a precision rectifier. The rectified signal 

was filtered at 72 Hz (low pass) to give basal impedance Z. Filtering Z at 0.1 Hz (high pass) 

supplied the dZ signal, which was band pass filtered with 0.1 and 0.4 Hz cutoffs, after 

tapering with (sin(x))2, to yield the respiration signal. 

The IBI time series was obtained from the ECG by an online automated R-wave 

peak detector, where IBI is the interval in milliseconds between two adjacent R waves of 

the ECG. Artifact processing was performed on the IBI data offline. When the IBI deviated 

more than 3 SD from the moving mean of a particular period it was automatically coded as 

an artifact and the IBI was either rejected during visual inspection, new IBIs were created 

by summing too short IBIs or too long IBIs were split in two IBIs of equal length.

For Study 2, the 5fs version of the VU-AMS was used, which improved on the 4.6 

version in that it stores the entire ECG for offline analysis rather than online R-wave peak-

detection (van Dijk et al., 2013). The ECG signal was imported into the VU-DAMS software 

(version 3.2, VU University Amsterdam, www.vu-ams.nl). After automated detection of bad 

ECG signal fragments (artefacts), R-wave peak detection was done using a modified version 

of the algorithm by Christov (Christov, 2004). From the R-wave peaks, the IBI time series was 

again constructed and visually displayed for interactive correction of missed or incorrect 

R-wave peaks. In addition to the ECG, the 5fs version also stores the entire dZ at 1000 Hz 

to obtain the respiration signal. The dZ signal is filtered using a second order band pass 

filter that passes all frequencies in the range of 0.1 to 0.4 Hz. An Exponential Smoothing 

Average technique is then applied on the filtered DZ signal, which acts as an additional 

low pass filter. The output of this filter is a weighted combination of previous smoothed 

value and the newest measured data, or in formula: 

St = α* St −1 + (1 − α) * xt
where St is the smoothed average, α is the tunable smoothing factor (which is in the range 

of 0 to 1), xt is the observation at time t, and St−1 is the previous smoothed value. 

Computation of the RSA measures was done in the same way for both studies. 

Combining the IBI time interval series with the respiration signal extracted from the thorax 

impedance signal (dZ), the ‘peak–valley’ RSA method was used to asses pvRSA (de Geus et 

al., 1995; Grossman & Wientjes, 1986; Grossman et al., 1990). In this method, RSA is scored 

from the combined respiration and IBI time series by detecting the shortest IBI during 

inspiration and the longest IBI during expiration on a breath-to-breath basis according to the 
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procedures detailed elsewhere (de Geus et al., 1995; Houtveen et al., 2005; van Lien et al., 

2011). Breathing cycles that showed irregularities like gasps, breath holding and coughing, 

were considered invalid and were removed from further processing. If no shortest or longest 

IBI could be detected in inspiration and expiration respectively, the breath was either set to 

missing or to zero when computing the average per condition for pvRSA. Similar results were 

found for pvRSA computed either way and we employed only one (breaths set to missing) 

in further statistical analyses. As previous research suggests that results may be biased 

if participants with RSA ceiling effects at low heart rates are included, all analyses were 

performed twice; once including the participants with RSA ceiling effects at low heart 

rates and once excluding these participants (Neijts et al., 2014; van Lien et al., 2011). 

For the assessment of the PEP, a measure of cardiac contractility, both the ECG and the 

ICG were used. The ICG signal was large-scale ensemble averaged across the diary-coded 

activity periods (described below), time-locking the signal to the R-wave peaks (Riese et al., 

2003). The PEP is defined as the time interval between the Q-wave onset of the ECG and 

the B-point of the dZ/dt signal. The Q-wave reflects the onset of left ventricular activity and 

the B-point reflects the opening of the aortic valves. In both VU-AMS versions, the R and B 

points were scored automatically by the software. In the newer 5fs version of the VU-AMS, 

the entire ECG signal was stored, so the Q-onset time was available as well. All automated 

scoring was visually checked by the experimenter. For the calculation of PEP in Study 1, a 

fixed Q-R interval of 48 msec was added to the duration of the R-B interval (Willemsen et 

al., 1996). For Study 2, the true Q-onset point was used when present; otherwise the grand 

average of the Q-R interval was summed to the R-B interval of the individual participant. If 

R-onset was additionally missing, we subtracted the grand average Q-onset time from the 

individual participants’ B-point (van Lien et al., 2013).

Ambulatory data reduction and specification of ambulatory conditions

Using the activity diary entries in combination with a visual inspection of the output of 

the inbuilt accelerometer, the entire 24-h recording was divided into fixed periods. These 

periods were coded for posture (supine, sitting, standing, walking, bicycling), activity (e.g. 

desk work, dinner, meetings, watching TV), physical load (no load, light, intermediate, 

heavy), and location (e.g. at home, at work, public space). Minimum duration of periods 

was 5 min and maximum duration was 1 hour. If periods with similar activity and posture 

lasted more than 1 hour (e.g. during sleep), they were divided into multiple periods of 

maximally 1 hour. 
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From the ambulatory ANS recording, two resting conditions and one ambulatory stress 

condition were specified. For the first resting condition, the mean IBI, pvRSA, and PEP 

value across all sleeping periods was calculated (‘sleep’). For the second resting condition 

the period with the lowest heart rate in the evening from 6 pm till bedtime in which the 

participant was sitting was selected (‘leisure’). As ambulatory stress conditions, we used 

‘work’ (the mean of all periods in which the participant was engaged in sitting activities 

at the work location between 9 am and 6 pm during a reported working day). Reactivity 

was calculated as the difference score between work and leisure (Δ work - leisure). These 

ambulatory reactivity measures from unstructured 24-h recordings have been described 

in more detail in (Neijts et al., submitted). 

Biobank study: set up and measures

For the biobank study, the participants were visited in the morning at home, or when 

preferred at work, to collect blood and urine samples after an overnight fast. They were 

instructed to abstain from physical exertion and, if possible, not to take medication at the 

day of the home visit, and to refrain from smoking one hour before the home visit. Fertile 

women were, when possible, visited on the 2nd- 4th day of their menstrual cycle or, if they 

took oral contraceptives, in their pill-free week. During the home visit, a brief interview 

was conducted on health status, including an inventory of medication use, illness (last 

time occurrence, duration and type of illness), and adherence to the protocol. Also, 

height, weight and waist circumference were assessed. A total of eight blood tubes were 

collected. To prevent clotting, all tubes were inverted gently 8–10 times immediately after 

collection. The blood tubes of the biomarkers that were used for the current study (2 × 

9 ml EDTA, 1 × 9 ml heparin, 1 × 4.5 ml CTAD ) were transported in melting ice during 

transport to the laboratory. Both EDTA tubes and the CTAD tube were centrifuged for 

20 minutes at 2000x g at 4˚C upon arrival at the laboratory. EDTA plasma was harvested 

and aliquoted (0.5 ml), snapfrozen in dry ice, and stored at -30˚C. Citrated plasma from 

the CTAD tube was harvested from the buffy coat and red blood cells, aliquoted (0.5 

ml), snapfrozen in dry ice, and stored at -30˚C. The heparin tube was centrifuged for 15 

minutes at 1000x g at 4˚C, heparin plasma was obtained and divided into 8 subsamples 

of 0.5 ml, snapfrozen and stored at -30˚C (Willemsen et al., 2010). TNF-α and IL-6 were 

measured in EDTA plasma, using an UltraSensitive ELISA (R&D systems, Minneapolis, 

USA, Quantikine HS HSTA00C) (Neijts et al., 2013). CRP was measured in heparin plasma, 

using Immulite 1000 CRP assay (Diagnosic Product Corporation, USA). Fibrinogen levels 
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were measured in citrate plasma, on a STA Compact Analyzer (Diagnostica Stago, France), 

using STA Fibrinogen (Diagnostica Stago, France). Glucose was measured using the 

Vitros 250 Glucose assay (Johnson & Johnson, Rochester, USA). Total cholesterol, HDL-

cholesterol, and triglycerides were measured in heparin plasma, using Vitros 250 direct 

HDL cholesterol and Vitros 250 Triglycerides assays (Johnson & Johnson, Rochester, 

USA). LDL-cholesterol was calculated using the Friedewald Equation (Friedewald, Levy, & 

Fredrickson, 1972).

For the current analyses, values of the pro-inflammatory markers were excluded 

in case of current illness of the participant (allergy, cold, flu, infection), medication use 

(medication impacting the hypothalamic pituitary adrenal [HPA] axis [ATC codes H01, 

H02] and anti-inflammatoy medication [ATC codes L01 to L04, M01]). A value > 15 pg/

mL for TNF-α, IL-6, and CRP, or > 6 g/L for fibrinogen was considered an outlier and was 

hence set to be missing. Metabolic variables were only included when participants had 

been fasting from 00:00h the previous night until the blood sampling took place. Lipid 

variables were excluded from further analyses when participants were on lipid modifying 

medication (ATC code C10). Glucose values were set to be missing when antidiabetic 

drugs were used at the time of the study (ATC code A10). Values deviating more than four 

standard deviations from the mean were considered outliers and were set to be missing 

for all metabolic variables (glucose, LDL-cholesterol, HDL-cholesterol, triglycerides, waist 

circumference, and BMI). 

Assessment of covariates

The effects of age and sex were taken into account for all variables. For the inflammatory 

markers, the month of blood sampling and plate-effects for the cytokines were also taken 

into account because of their known effects on these variables (Neijts et al., 2013). Age, 

sex, plate mean and/or month mean for the inflammatory markers were included in 

multiple regression analyses (forced entry) and the residual scores were saved and used 

for subsequent risk score computation.

Metabolic and inflammatory risk scores

All residual metabolic and inflammatory variables were transformed to Z-scores. An 

inflammatory risk score was calculated as: ZTNF-α + ZIL-6 + ZCRP + ZFibrinogen, with 

higher values representing higher inflammatory risk. A metabolic risk score was calculated 

as: ZWaist + ZBMI + ZGlucose + ZTriglycerides + ZLDL – ZHDL, with higher waist, BMI, 
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fasting glucose levels, triglycerides, and LDL-cholesterol and lower HDL-cholesterol 

representing higher metabolic risk.

Statistical analyses

Data preparation and statistical analyses were conducted using IBM SPSS 21.0. A mixed 

model ANOVA with age and sex as fixed factors, family as a random factor, and time of 

day as a repeated measures factor was used to study the effects of time of day and the 

effects of the covariates. Pearson correlations were calculated to test the associations 

of the ANS variables with the z-transformed residuals of the variables constituting the 

metabolic and inflammatory risk scores, and the risk scores themselves. 

Since the pattern of bivariate correlations may reflect consistency that may be 

partly derived from the intercorrelation between the ANS measures and conditions 

and because there may be chance findings due to multiple testing, we used multiple 

regression analyses to simultaneously test for an effect of all three measures of ANS 

functioning during sleep and leisure time and their work-leisure reactivity on metabolic 

and inflammatory risk scores. These analyses were run after a careful check for potential 

problems due to multicollinearity, which remained within acceptable boundaries. For 

Study 1, general linear models were used to predict inflammatory and metabolic risk 

from the ambulatory IBI, pvRSA, and PEP levels at sleep and leisure and the work-leisure 

reactivities. Two models were run with either the inflammatory or the metabolic risk score 

as dependent variable. In these models, the ANS predictors were entered as fixed factors, 

and family was included as a random factor. ANS predictors included sleep, leisure and 

the Δ work - leisure reactivity measure. For Study 2, general linear models were used to 

predict IBI, pvRSA, and PEP levels at sleep and leisure and the work-leisure reactivity from 

the inflammatory and metabolic risk scores. Nine models were run with the inflammatory 

or the metabolic risk scores as predictors and IBI, pvRSA, and PEP levels in sleep and 

leisure and Δ work – leisure reactivity as the nine dependent variables. In these models, 

the predictors were entered as fixed factors, and family was included as a random factor. 

All general linear models were rerun without the participants with ceiling effects for RSA 

during sleep. 



156 Chapter 7

Results

Table 7.1 shows the means and standard deviations of the variables for Study 1 and 2. 

As expected, PEP, RSA and IBI were lower during sleep than during the two daytime 

recordings for both Study 1 (F (2, 1118) = 1374.596, p < .001, for IBI, F (2,1134) = 77.052, 

p < .001, for RSA, and F (2,1093) = 179.600, p < .001 for PEP) and Study 2 (F (2, 809) = 

789.532, p < .001 for IBI, F (2,817) = 64.271, p < .001 for RSA, and F (2,799) = 42.935, p < 

.001 for PEP). RSA was lower with increasing age at both time points (F (1,373) = 120.296, 

p < .001 for Study 1 and F (1,268) = 44.307, p < .001 for Study 2) but the influence of 

age on heart rate and PEP was not significant. Sex differences were found for all ANS 

variables, with females showing higher heart rate (F (1,752) = 71.399, p < 001 for Study 

1 and F (1,537) = 14.980, p < 001 for Study 2), higher RSA (F (1,757) = 20.234, p < .001 

for Study 1 and F (1,510) = 34.079, p < .001 for Study 2), and generally longer PEP (F 

(1,720) = 1.986, p = .159 for Study 1 and F (1,513) = 8.808, p = .003 for Study 2) values 

than males. 

Tables 7.2 and 7.3 depict for Study 1 and Study 2, respectively, the correlations 

between ANS measures and the z-transformed residuals for the variables constituting the 

metabolic and inflammatory risk scores, and the risk scores themselves. From the pattern 

of correlations for Study 1 depicted in table 7.2, it becomes clear that higher heart rate 

during sleep and leisure time, and during sitting activities at work was associated with 

higher inflammatory risk at follow-up. This effect was most pronounced for IL-6 where 

heart rate during sleep, leisure time, and work were significantly associated with future 

IL-6 (-0.18 < r < -0.20, p < .001). Higher heart rate during sleep and leisure time was also 

associated with higher future CRP levels (-0.16 < r < -0.19, p < .001), and higher heart 

rate during work and sleep was associated with higher future fibrinogen (-0.22 r < -0.24, 

p < .01). TNF-α levels were not significantly associated with ANS functioning 4.9 years 

earlier. Predictors of higher metabolic risk at follow-up were higher heart rate during 

leisure time (r = -0.17, p = .001) and lower RSA during leisure time (r = -0.18, p = .001), 

and PEP at work (r = -0.19, p = .008). The main determinants of these associations were 

lower HDL-cholesterol levels (0.18 < r < 0.25, p < .001), larger waist circumference (-0.10 

< r < -0.17, p < .05) and, to a lesser extent, higher BMI (r = -0.14, p = .037 for PEPwork), 

and higher LDL-cholesterol (r = -0.16, p = .001 for RSAleisure) and triglyceride levels (r = 

-0.14, p = .006 for IBIleisure). 
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Table 7.1. Means and standard deviations of the ANS and biobank variables included in Study 1 

and Study 2. 

Study 1 N Study 2 N

Age at baseline (mean +/- sd) 32.0 (11.1) 433 31.8 (5.5) 540

Sex (% female) 60.3 433 61.3 540

ANS measures

IBI (msec)

Sleep 971.34 (131.61) 421 986.83 (131.42) 533

Leisure 861.97 (116.63) 416 896.77 (129.05) 501

Work 766.07 (115.09) 223 804.30 (106.12) 292

Δ work – leisure -98.14 (86.56) 214 -97.31 (97.76) 272

pvRSA (msec)

Sleep 54.95 (25.88) 421 54.29 (23.21) 533

Leisure 52.06 (25.60) 416 49.81 (23.61) 501

Work 44.45 (19.88) 223 43.92 (17.04) 292

Δwork – leisure -8.78 (17.48) 214 -6.21 (16.82) 272

PEP (msec)

Sleep 105.08 (15.18) 414 107.84 (16.12) 526

Leisure 97.83 (15.88) 413 102.15 (17.64) 475

Work 98.11 (16.50) 222 101.74 (18.94) 284

Δwork – leisure 0.42 (7.04) 213 1.31 (13.83) 251

Pro-inflammatory markers 

Tumor Necrosis Factor (TNF)-α 
(pg/ml)

1.14 (1.37) 352 1.06 (1.06) 469

Interleukin(IL)-6 (pg/ml) 1.37 (1.21) 353 1.26 (1.19) 469

C-Reactive Protein (CRP) 
(mg/L)

2.39 (2.90) 345 2.17 (2.65) 458

Fibrinogen (g/L) 2.58 (0.65) 350 2.46 (0.56) 454

Metabolic markers 

Body Mass Index (BMI) 24.48 (3.92) 427 23.72 (3.57) 537

Waist circumference (cm) 83.82 (11.67) 427 80.77 (10.60) 535

Glucose (mmol/L) 5.30 (0.58) 395 5.20 (0.51) 498

Low density lipoprotein 
cholesterol (LDL-C) (mmol/L)

3.00 (0.83) 398 2.79 (0.86) 496

High density lipoprotein 
cholesterol (HDL-C) (mmol/L)

1.39 (0.34) 398 1.42 (0.36) 499

Triglycerides (mmol/L) 1.19 (0.53) 396 1.19 (0.63) 495
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To take the significant intercorrelation between the predictor variables as well as the 

outcome variables into account, multiple regression with all predictors was used as the 

main test of the effect of the ANS on metabolic and inflammatory risk scores. These 

analyses showed that a higher heart rate during leisure time (βzIBI = -0.95, p = .02) and 

larger PEP reactivity (βzΔPEP = -0.43, p = .04) were independently associated with higher 

inflammatory risk after 4.9 (SD = 1.7) years. Larger PEP reactivity also tended to be 

associated with higher metabolic risk at follow-up (βzΔPEP = -0.80, p = .01). Figures 7.1 and 

7.2 illustrate that the findings did not depend on a set of outliers. 

Figure 7.1. Heart rate during leisure time (left panel) and PEP reactivity to work (right panel) predict 

a higher inflammatory risk score.

Figure 7.2. PEP reactivity to work predicts a higher metabolic risk.
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Correlations for Study 2 are depicted in Table 7.3. In contrast to Table 7.2, few correlations 

achieved significance. The metabolic risk score predicted future RSA levels at work (r = 

-0.16, p = .009). The main determinants of this association were higher BMI (r = -0.17, p 

= .003) and lower HDL-cholesterol levels (r = 0.18, p = .003). Furthermore, higher BMI 

predicted shorter PEP at work (r = -0.18, p = .002) and higher LDL-cholesterol levels 

predicted shorter PEP during sleep (r = -0.12, p = .008), and higher triglycerides predicted 

higher heart rate during sleep and leisure time (-0.17 < r < -0.24, p < .001). 

The inflammatory risk score did not predict future ANS functioning, although higher 

IL-6 levels were associated with higher heart rate during sleep (r = -0.15, p = .001). 

The metabolic risk score did not predict future ANS functioning. Multiple regression 

simultaneously using inflammatory and metabolic risk scores as predictors also revealed 

no significant associations between metabolic or inflammatory risk measured at baseline 

and ambulatory ANS (re)activity measured 5.4 years later. 

Overall, a similar pattern of outcomes was found for Study 1 and 2 when the analyses 

were repeated excluding the data of participants with a ceiling effect on RSA during sleep 

(results not shown). 

Discussion

This was the first study to jointly investigate whether heart rate, cardiac sympathetic, and 

cardiac parasympathetic control in a natural environment can predict inflammatory and 

metabolic risk five years later, as well as the reverse prediction of whether inflammatory 

and metabolic risk at baseline can predict ambulatory autonomic cardiac control at 

five year follow-up. We found that higher heart rates during leisure time in the evening 

together with exaggerated cardiac sympathetic reactivity to work were associated 

with higher inflammatory risk over time. In addition, exaggerated cardiac sympathetic 

reactivity to work was associated with higher metabolic risk over time. The reactivity effect 

was corrected for possible confounding by physical activity by selecting only periods of 

sitting activities during leisure and work. An unfavorable metabolic or inflammatory risk 

profile, however, was not associated with later ANS functioning. This pattern of results is 

thus not compatible with bidirectional causal effects or with an underlying factor model. 

These would have led to significant associations between inflammatory risk and future 

heart rate and PEP reactivity, and between metabolic risk and future PEP reactivity. Such 
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associations were not observed. Instead our results are most compatible with a model that 

has unidirectional causal effects of resting heart rate and cardiac sympathetic reactivity 

on inflammatory risk and additional effects of cardiac sympathetic reactivity on metabolic 

risk. Below we compare these results to previous studies on the association between ANS 

functioning and inflammatory or metabolic risk.

Inflammatory risk

High mean HR across 24-h (Intzilakis et al., 2013; Sajadieh et al., 2004; Stein et al., 

2008), daytime (Kon et al., 2006; Sloan et al., 2007; Whelton et al., 2014) and nighttime 

recordings (Hartaigh et al., 2014; Intzilakis et al., 2013; Sajadieh et al., 2004) have all 

been associated with increased inflammation previously. Whereas the group of Sajadieh 

and colleagues found a significant association of both 24-h and nighttime HR with CRP 

and TNF-α (Intzilakis et al., 2013; Sajadieh et al., 2004), Hartaigh et al. (Hartaigh et al., 

2014) only found nighttime HR, and not 24-h or daytime HR, to be significantly associated 

with CRP. Our correlational analysis suggests that HR throughout all phases of the day is 

associated with higher IL-6, CRP and/or fibrinogen, but not TNF-α. When HR, RSA and 

PEP levels and reactivity were simultaneously used as predictors in multivariate models, 

only higher heart rate during leisure time in the evening remained a significant predictor 

of higher future inflammatory risk. HR reactivity to work did not independently contribute 

to the prediction of future inflammatory risk.

Reduced cardiac vagal control, measured as HRV across different times of day 

and/or varying physical activities, has repeatedly been associated with an unfavourable 

inflammatory profile in cross-sectional studies (Araujo et al., 2006; Haarala et al., 2011; 

Intzilakis et al., 2013; Jarczok et al., 2014; Lampert et al., 2008; Kon et al., 2006; Sajadieh 

et al., 2004; Sloan et al., 2007; Stein et al., 2008; Thayer & Fischer, 2009; von Kanel et 

al., 2009; von Kanel et al., 2008; Whelton et al., 2014). To our knowledge, only one 

longitudinal ambulatory study was performed. This study found that higher nighttime 

cardiac vagal control was associated with lower CRP assessed 4 years later (Jarczok et 

al., 2014). A reverse association has also been shown where higher CRP values predicted 

higher, instead of lower, vagal control in each of the following three years (Singh et al., 

2009). Neither of these findings was supported by our study as RSA was not significantly 

associated with inflammatory risk at follow-up, and inflammatory risk did not predict RSA. 

Methodological differences between studies may account for the divergent findings. We 

measured vagal control by the peak-valley method linking ECG and respiratory signals 
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on a breath-to-breath basis, whereas others used frequency-domain based measures of 

HRV not always restricted to the respiratory range. Also, some studies recorded vagal 

control under laboratory conditions as opposed to the more ecologically valid real-life 

setting used here. The studies that did use ambulatory recording, did not always control 

as stringently as we did for differences in posture or activities throughout the day (Araujo 

et al., 2006; Intzilakis et al., 2013; Lampert et al., 2008; Sajadieh et al., 2004; Stein et al., 

2008; Thayer & Fischer, 2009; von Kanel et al., 2009). 

Research testing the association between cardiac sympathetic control and 

inflammation is scarce. Previous cross-sectional studies have mainly used the LF/HF ratio 

as indicator of sympathetic effects despite the controversy surrounding this measure (de 

Geus et al., 2015). None of these studies found this ratio to be significantly associated 

with the inflammatory profile (Araujo et al., 2006; Haarala et al., 2011; Stein et al., 2008; 

von Kanel et al., 2008). The study of Singh et al. (Singh et al., 2009) included the PEP as a 

measure of cardiac sympathetic control but no significant cross-sectional or longitudinal 

associations with CRP in either direction was found. In our study we also did not observe 

a longitudinal association between ambulatory PEP levels and inflammatory risk in either 

direction, but stronger PEP decreases at work compared to leisure time were associated 

with higher future inflammatory risk. No such association in the reverse direction was 

found. 

Metabolic risk

In our study, correlational analyses showed that lower daytime HR with lower RSA and 

shorter PEP were associated with less favourable levels of the metabolic risk factors five 

years later. These effects were largely driven by reduced HDL-cholesterol levels. This is 

in line with the finding in a large study performed by Jiang et al. (Jiang et al., 2015) that 

reported both a cross-sectional (N = 89,860) and a prospective (N = 43,725) positive 

association between laboratory resting HR and the development of the metabolic 

syndrome 4 years later. It is also partly in line with the cross-sectional study by Licht and 

colleagues that found that lower levels of RSA and PEP were independently associated 

with the presence of the metabolic syndrome (Licht et al., 2010). Surprisingly they found 

an association for all individual components measured, except HDL-cholesterol. When 

they retested the same participants 2 years later, they again found that increased heart 

rate and cardiac sympathetic control were predictive of an increase in the number of 

metabolic components, but now high heart rate and low RSA also predicted a 2-year 
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decrease in HDL-cholesterol, which is again in keeping with our findings (Licht et al., 

2013). In a systematic review of the literature on the association between cardiac vagal 

activity and the metabolic syndrome, Stuckey and colleagues (Stuckey, Tulppo, Kiviniemi, 

& Petrella, 2014), reported consistent reduced vagal activity in women with the metabolic 

syndrome while studies on men were inconsistent. We have however not investigated sex 

differences as this would greatly reduce the sample size and the power of both studies. 

Instead, sex was entered as a covariate in both studies.

In spite of the congruence with previous studies caution is in order in the 

interpretation of our study. Using the full metabolic risk score, only a significant prediction 

of the metabolic risk by ambulatory PEP reactivity was found over a 5 year period. 

Levels of HR, RSA or PEP did not predict the full metabolic risk score. We also found 

no evidence for a reverse association between metabolic risk measured at baseline and 

ANS functioning measured at 5 year follow-up. It is important to note, however, that our 

metabolic risk factor cannot be equated with the metabolic syndrome as used in some of 

the above studies, as we did not measure blood pressure. 

Gentile and colleagues (Gentile, Dragomir, Solomon, Nigam, & D’Antono, 2014) 

were the first to include autonomic responses to psychological laboratory stress in their 

prediction of metabolic burden few years later. They found no effect of HR reactivity to 

laboratory stressors in the prediction of metabolic burden, but they did find a positive 

association between vagal reactivity and metabolic burden at 3 year follow-up, though 

this was evident mostly in men. In women on the other hand, blunted vagal reactivity 

predicted increased metabolic burden 3 years later. 

A limitation of the ambulatory approach of this study was that it left us with relatively 

small sample sizes for the measures that build on the presence of prolonged recordings 

at work and in leisure time. Only about half of the participants spent considerable time 

sitting at their work location on the testing day. This strongly reduced the number of 

participants available for analyses, particularly in the multiple regression models. Total 

numbers of complete MZ and DZ twin pairs in either Study 1 (NMZpairs = 43, NDZ pairs = 46) or 

Study 2 (NMZpairs = 112, NDZ pairs = 89) also did not allow us to calculate genetic correlations 

between the ANS variables and the various components constituting the metabolic 

and inflammatory risk scores to more formally test for possible pleiotropy. Full pairwise 

correlations in Tables 7.2 and 7.3 mitigated against the loss of participants with work 

time recordings, but these correlations were not corrected for clustering in families and 
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otherwise suffer from a multiple testing burden, such that formally only p-values < .0003 

(=0.05/144) would survive Bonferroni correction. These limitations are balanced by some 

strong points, including the ambulatory design, the fact that two independent studies 

were done to test the association between ANS functioning and metabolic/inflammatory 

risk in both directions, and the extensive control for batch and other (technical) covariates 

on the metabolic and inflammatory parameters.

Taken together, the results from ‘raw’ correlations and the multivariate linear 

regression models largely tell the same coherent story. In real life settings, high resting 

heart rates together with a shift in cardiac control from parasympathetic to sympathetic 

dominance has adverse effects on the inflammatory and metabolic risk profiles. In 

contrast, an unfavorable metabolic or inflammatory risk profile does not seem to exert 

reciprocal detrimental effect on ANS functioning. Our finding that the causal effects flow 

mainly from the ANS to inflammatory and metabolic risk, rather than in reverse is in good 

keeping with our current biological understanding. There is solid evidence for SNS and 

PNS innervation of metabolically active tissues (Romijn & Fliers, 2005; Yi, La Fleur, Fliers, 

& Kalsbeek, 2010) and various parts of the immune system (Steinman, 2004). Together 

with the well-known effects of stress on the SNS and PNS, these connections can explain 

how, in a single swoop, behavioral states can affect three of the major players (cardiac 

autonomic control, metabolic and inflammatory risk) in the development of cardiovascular 

disease and diabetes. 





Chapter 8 
Summary and general discussion
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Summary

The aim of this thesis was twofold: 1) to investigate the causes of individual differences 

in cardiac autonomic nervous system (re)activity in a healthy adult population using 

ambulatory recording, and 2) to investigate the consequences of these individual 

differences in (re)activity for the inflammatory and metabolic risk profile. 

In chapter 3, the heritability of the three HRV measures that are currently used most 

in the fields of cardiology and physiology were researched in the largest 24-h ambulatory 

ANS dataset in twins to date. Moderate heritability estimates of about 50% were found 

for all three HRV measures across three different physical activity categories inventoried 

(sleep, sitting activities, and non-sitting light physical activity during the day). In addition, 

about 50% of the phenotypic covariance between any two HRV measures in this research 

could be explained by genetic factors. Interestingly, the genetic overlap between the three 

HRV measures turned out to be very high, especially between pvRSA and RMSSD and 

between RMSSD and SDNN, where genetic correlations were estimated at .94 and .89 in 

ambulatory sitting conditions. These findings provide us with the important message that 

HRV studies that assessed pvRSA, RMSSD or SDNN, can be safely pooled in future meta-

analyses of genome-wide association studies because the genetic architecture is expected 

to be highly similar. A secondary goal of this study was to test whether heritability estimates 

were robust against confounding by RSA ceiling effects that may occur at low heart rates. 

Although 10.7% of the participants showed a quadratic IBI-RSA relationship, controlling 

for this ceiling effect did not lead to significant differences in the heritability estimates. 

This implicates that there is no pressing need to exclude recording periods (e.g. nighttime 

recording) or participants with low heart rates from genetic studies of HRV.

In chapter 4, we focused on the quantification of several rest and stress conditions 

in unstructured ambulatory recordings for future use in cardiovascular stress research. 

We used prolonged (24-h) ambulatory recordings of ANS activity during a representative 

weekday to research real-life stress reactivity. On the basis of the activity diaries filled 

out by the participants and the inbuilt accelerometer in the VU-AMS, two ambulatory 

rest (sleep, leisure) and four ambulatory stress (wake, work, work_sitting, work_peak) 

conditions were extracted for each participant. From these conditions several ambulatory 

reactivity measures were defined. The usability of these real-life reactivity measures 

was tested by investigating their reliability, temporal stability and heritability. We found 

that the ambulatory reactivity measures that were employed in this study were reliable 
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and showed moderate to high temporal stability over a period of three years (0.36 < 

r < 0.91 for IBI, 0.58 < r < 0.85 for pvRSA, and 0.48 < r < 0.76 for PEP). Almost every 

ambulatory autonomic reactivity measure showed significant heritability, ranging from 

10 to 47%. Heritability of reactivity in daily life was largely due to new genetic variance 

emerging during real-life situations compared to that seen in the more relaxing ‘baseline’ 

conditions. It was concluded that real-life reactivity in ambulatory cardiac ANS data can 

be reliably assessed when recordings encompass a workday supplemented by periods of 

leisure time, preferably including sleep. 

In chapter 5, we took a completely different approach to organize the 24-h 

ambulatory ANS data. Whereas in chapter 4 we sought to divide the day into homogeneous 

periods based on physical activity and psychosocial circumstances, as extracted from the 

combination of dairy self-report and the inbuilt accelerometer signals, chapter 5 used a 

physiological criterion to create homogeneity in the ambulatory signals analyzed. In this 

chapter the continuous ECG registrations were divided into several distinct heart rate 

bins, under the assumption that these bins represent different physiological states: low 

HR at 1 Hz (60 bpm), medium HR at 1.3 Hz (78 bpm), and high HR at 1.6 Hz (96 bpm) bins 

were defined using a beat binning algorithm. The heritability of four clinically relevant 

ECG repolarization (TpTe, QT, and TWA) and depolarization (QRS) parameters were 

estimated in the bins and compared to the heritability estimates of the same parameters 

obtained from a typical 10 sec resting ECG at 1.12 Hz (67 bpm) as commonly used in 

clinical practice. Results showed moderate to high heritability for all parameters (TpTe: 

52 to 63%, QT: 34 to 69%, TWA: 55 to 72%, and QRS: 32 to 42%). Heritability estimates 

of the clinical resting ECG were generally lower compared to those of the binned 

ambulatory ECG. The difference reached significance for the resting QT interval and the 

TWA when compared to that obtained from the binned ambulatory ECG at the lowest 

frequency. A secondary goal of this study was to examine possible rate dependency 

of the genetic factors influencing the ECG parameters. For all parameters the genetic 

correlations among the different frequencies were very close to unity suggesting that 

the same genetic factor influences the parameters at all three heart rates. Furthermore, 

no significantly different heritability estimates were found for TpTe and QRS at the three 

heart rates. For QT, heritability significantly decreased with increasing HRs and, albeit less 

pronounced, a similar trend was observed for the TWA. Overall, we showed that the beat 

binning approach may provide better endophenotypes for genetic studies of the ECG 

than the classical clinical resting ECG. 
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Finally, we investigated the genetic overlap among the three repolarization parameters. 

Repolarization is strongly influenced by the SNS, and ECG parameters strongly related 

to repolarization might be useful as indices of cardiac SNS control (van Lien et al., 2015). 

We found that although the phenotypic covariance between the three repolarization 

parameters was mostly genetically determined, the overlap between the genetic factors 

influencing the three repolarization parameters was only modest, which indicates that 

these parameters provide unique genetic information on the repolarization phase. 

In chapter 6 and chapter 7 we focused on the potential consequences of the 

individual differences in autonomic regulation as measured in chapter 4. First, in chapter 

6 the heritability of a set of parameters forming another cardiovascular risk cluster, 

inflammation, was researched. The large biobank dataset that was available allowed for 

extensive genetic analyses including not only twins and siblings, but also the parents of 

the twins and siblings. Adding parents of twins to the design enabled us to test for the 

presence of assortative mating and by including data of other family members than twins, 

the contribution of both additive and non-additive genetic effects could be estimated 

without the need to remove estimation of common environmental effects. The sample 

size in combination with the extended twin family design furthermore ensured substantial 

statistical power for the estimations. We found that TNF-α, IL-6, CRP and fibrinogen 

showed moderate heritability (39%, 21%, 45%, and 46%, respectively). A considerable part 

of the genetic variation in TNF-α, CRP and fibrinogen was non-additive while heritability 

of IL-6 was due to additive genetic effects only. Surprisingly, the environment shared by 

family members was not relevant for any of the inflammatory parameters. Furthermore, 

with the exception of a small effect for fibrinogen, no evidence was found for spousal 

resemblance for any of the other pro-inflammatory markers. From this study, we conclude 

that a clear numerical target has been set for future genome wide screens attempting to 

find the actual genetic variants regulating the levels of these pro-inflammatory markers.

In the past, both a shift in autonomic balance towards sympathetic dominance and 

exaggerated cardiac autonomic reactivity to stress have been associated with increased 

cardiovascular disease risk. Previous research, mostly cross-sectional studies conducted 

in the laboratory, points to parallel autonomic effects on the metabolic and inflammatory 

profiles that are hypothesized to account in part for this risk. In chapter 7, the long-term 

bidirectional association between cardiac ANS activity and reactivity and inflammatory 

and metabolic risk was tested in two independent prospective studies. Metabolic and 

inflammatory risk scores were calculated by adding the Z-scores of several key markers 
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of the pro-inflammatory (TNF-α, IL-6, CRP and fibrinogen) and the metabolic (waist 

circumference, body mass index, glucose, triglyceride, low-density cholesterol, and high-

density cholesterol levels) state. Ambulatory 24-h ANS data collection took place five years 

before, and five years after the biobank study. On the basis of the results from the study 

described in chapter 4, IBI, RSA, and PEP sleep and leisure resting levels and the reactivity 

measure (work_sitting versus leisure time activity) that suffered least from confounding 

by posture and/or physical activity was included. It was found that a higher resting HR 

during leisure time paired with increased cardiac sympathetic reactivity were associated 

with higher inflammatory risk five years later. In addition, higher sympathetic reactivity 

was associated with higher metabolic risk after five years. An unfavorable metabolic or 

inflammatory risk profile, in turn, had no detrimental effect on ANS functioning measured 

at follow-up. From this we conclude that our results are most compatible with a model that 

has unidirectional causal effects of resting heart rate and cardiac sympathetic reactivity 

on inflammatory risk and additional unidirectional effects of cardiac sympathetic reactivity 

on metabolic risk. 

General discussion

This thesis builds on a database created during two previous data collections in twin 

families (ANS Study 1, wave 1 and wave 2) that used the VU-AMS system developed at the 

VU University two decades ago. It added to this database by conducting a second study 

(ANS Study 2, wave 3) with a specific focus on the association between ambulatory cardiac 

ANS (re)activity and cardiovascular risk factors. Due to technical improvements of the 

ambulatory monitoring device over time, cardiac ANS assessments for Study 2 embodied 

continuous recordings of the entire ECG signal (compared to R-peak registrations only for 

Study 1). This allowed for genetic analyses of other clinically relevant ECG components 

as well, such as the QT interval, the T-peak-T-end interval, QRS duration, and the T-wave 

amplitude. In this section, the findings will be evaluated in the light of current knowledge 

and directions for future research will be provided.
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Individual differences in cardiac autonomic nervous system (re)activity

This thesis shows that individual differences in cardiac autonomic nervous system (re)

activity in a real life setting are to a large extent caused by genetic variation, at least in a 

healthy adult population. These findings corroborate previous findings from ambulatory 

studies on twins (Busjahn et al., 1998; Kupper et al., 2004; Kupper et al., 2005; Kupper et 

al., 2006; Su et al., 2010) and extend them in a number of ways. First, cardiac sympathetic 

control has previously been operationalized by measurement of the systolic time intervals, 

with the PEP being the measure of first choice (de Geus et al., 2015). Recent research 

by our group has shown that the TWA during cardiac repolarization can be used as an 

additional indicator of cardiac sympathetic control (van Lien et al., 2015). Here we confirm 

that this measure, like the PEP, shows substantial heritability in ambulatory recordings, 

strengthening our confidence in the role of genetic factors in cardiac sympathetic control. 

Secondly, we parsed the ambulatory recordings into different conditions using two 

new approaches: 1) behaviorally informed conditions that can be expected to reflect 

states of low versus high emotional and mental engagement with the environment, and 

2) physiologically informed conditions where the ECG was ensemble-averaged across 

fragments with similar heart rates across the day and night. In our previous studies, 

including chapter 3 in this thesis, conditions were created mainly by focusing on the 

control for posture and physical activity level.

The added value of the TWA

Although PEP is the current gold standard in clinical physiological research, PEP scoring 

is highly laborious especially when research moves to an epidemiological scale with 

ambulatory data measured across extended time periods in thousands of participants. 

For this reason, the TWA has recently been put forward as a valuable addition to PEP to 

index sympathetic nervous system activity (van Lien et al., 2015). Earlier twin studies of 

the TWA estimated heritability between 34 to 72% (Haarmark et al., 2011; Mutikainen 

et al., 2009). The broad range in these estimates was ascribed to the lead that was used 

to derive the TWA. The TWA in these earlier studies was mostly assessed during quiet 

sitting in the laboratory. In the study described in chapter 5, heritability of the TWA was 

estimated between 58% and 72%, depending on the heart rate at which the TWA was 

measured. A remaining task is to determine the genetic underpinnings of the TWA in the 

same content-based way as was done for the PEP in chapter 4 and test for differences 

in heritability as a function of sleep, leisure and work time. Furthermore, an interesting 
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question is to what extent the genetic factors influencing the PEP and the TWA overlap. 

The phenotypic correlation is significant but moderate and many different biological 

processes may be involved in the manifestation of cardiac contractility and ventricular 

repolarization. However, the PEP-TWA correlation may be due entirely to shared genetic 

factors which would suggest that a bivariate approach with both traits simultaneously 

could help detect genetic effects on cardiac SNS activity in gene finding studies. 

Different ways to parse unstructured ambulatory ANS recordings  

into meaningful conditions

The major advantage of ANS recordings in real-life over laboratory assessments is the 

gain in ecological validity. Where laboratory recordings claim to capture ANS activity 

or responsivity to stress in general, the stress induced in the laboratory setting is 

actually quite artificial. Psychological challenges and mental effort experienced in real-

life will correspond more closely to the chronic and repeated stress that may ultimately 

predispose us to adverse health conditions like cardiovascular disease. The major 

drawback of using real-life recordings is that they are unstructured by nature, stressful 

events are less demarcated and, importantly, stress during a recording on an arbitrary 

day is not guaranteed unless a stressful event is planned. On top of this, ambulatory 

measurements are more prone to confounding influences of posture, physical activity, 

and time of day compared to typical laboratory assessments in which measurements are 

typically short and recordings take place with the participants being under controlled 

(physical) conditions. 

In this thesis, two different strategies to organize unstructured ambulatory ANS 

data have been explored. For one strategy, the focus was on clustering data based on 

the reported activities by the participants and accelerometer data obtained from the 

recordings (content-based, chapter 4). The other approach concerned organizing the 

data based on physiology and grouped ECG complexes of comparable heart rates 

(physiology-based, chapter 5). The latter physiology-based approach has the advantage 

of completely controlling for heart rate, and strongly, albeit not perfectly, reduces 

the confounding effects of postural change and physical activity. The disadvantage is 

that it cannot deal with effects of the emotional state of the subject at the time of the 

physiological recording. For this approach thousands of frequency-defined heart beats 

scattered across the entire measurement are used to constitute the different bins. As 

such, it is no longer possible to integrate the physiological signal with the emotion and/
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or activity that the participant was exposed to at a particular time during the recording. 

The content-based approach fares better here. However, posture and physical activity are 

far less stringently controlled for as compared to the physiology-based approach. Also, 

effects of heart rate on ECG parameters of interest cannot be as well controlled as with 

the physiology-based approach. Strong heart rate effects were for instance found for the 

TWA (van Lien et al., 2015).

From chapter 4, we concluded that all content-based rest (sleep, evening leisure time 

activity) and stress conditions (wake, work, work_sitting, work_peak) performed equally 

well from a psychometric point of view. Control for physical activity becomes particularly 

manifest when studying cardiovascular reactivity since this may put constraints on the 

pairs of conditions that can be used to define ambulatory reactivity (i.e. only make rest-

and-stress-pairs of conditions that are equal in posture and physical activity). One way to 

overcome the issue of confounding by postural change or physical activity in the content-

based approach would be to more rigorously control for these effects. A few decades ago, 

Blix, Stromme, & Ursin (Blix, Stromme, & Ursin, 1974) introduced the concept ‘additional 

heart rate’ which refers to heart rate increments that can be ascribed to (non-metabolic) task 

demands. This requires that metabolic demands are continuously monitored in addition 

to heart rate. Co-registration of heart rate and oxygen consumption (VO2) during different 

levels of physical activity can establish the linear slope between heart rate and VO2. This 

can be used to predict the heart rate at a given VO2 . Deviations of the actual heart rate 

form this predicted heart rate is known as the ‘additional heart rate’. This additional heart 

rate method could be partly extended to PEP and RSA, as cardiac SNS and PNS activity 

may also scale linearly with VO2, at least at low intensity physical activity.

For heart rate, this method has already proven to be successful in the laboratory 

(Carroll, Turner, & Rogers, 1987; Carroll, Turner, & Hellawell, 1986; Carroll, Turner, & 

Prasad, 1986; Sherwood, Allen, Obrist, & Langer, 1986; Stoney, Langer, & Gelling, 1986; 

Turner & Carroll, 1985). Since implementation of this method in prolonged ambulatory 

recordings is technically not possible due to the demanding requirements for VO2 

measurements, Myrtek & Brugner (Myrtek & Brugner, 1996) introduced a new method in 

which continuous co-registrations of the ECG and physical activity was realized by means 

of accelerometery. In this method, heart rate and accelerometer values at a given time 

point (during an event) were compared to the moving average of the previous minutes. 

When the difference in heart rate between these periods was at least 3 beats and the 

concurrent change in physical activity was minimal, an event was considered ‘emotional’. 
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Higher levels of physical activity were dealt with by an algorithm that is explained in 

detail in Myrtek (Myrtek, 2004). Although additional heart rate was succesfully captured 

by this method in several studies, associations with the emotional appraisal of the events 

have not been consistently found in the ambulatory situation (Ebner-Priemer et al., 

2007; Myrtek, Aschenbrenner, & Brugner, 2005; Myrtek & Brugner, 1996). This may in 

part be due to the fact that postural changes, with a large impact on heart rate through 

venous pooling effects on stroke volume, are not taken into account in their approach. 

The increased precision of accelerometer data and the improved algorithms for both 

posture and metabolic demands detection from such signals may well make it worthwhile 

to revive this method.

Gene by environment interaction

The most striking pattern observed in the ambulatory setting was the increase in genetic 

variance during psychologically engaging events. This increase, which reflects gene-

environment interaction, had already been noted in previous laboratory stress research 

(de Geus et al., 2007; Wang et al., 2009). Stress-specific genetic effects were generally 

more evident in the ambulatory setting (up to 40%) compared to those found in the 

standardized part of our study (4% to 11%) and previous laboratory studies (7% to 23%) 

(de Geus et al., 2007; Wang et al., 2009). This can probably be ascribed to the difference 

in the appraisal of the stressors encountered in the different studies. Whereas de Geus et 

al. (2007) included typical short mental stress tasks in their study, Wang et al. (2009) used 

tasks that more closely approached stress in real-life, and the ambulatory part of our study 

described in chapter 4 solely comprised of real-life work-related demands. The latter are 

more likely to be motivationally relevant for the individual and invoke more subjective 

stress. Unfortunately, we did not confirm this by adequate measurements of subjective 

stress, as an added set of items to the paper diary was considered to increase the already 

high burden of ambulatory monitoring for the subject. Current day smartphone-based 

ecological momentary assessment was not yet in reach when Study 1 was started. In 

retrospect, our data show that it is not necessary to include pre-planned stressors in 

the measurement protocol to induce sufficient reactivity. The choice of measurement 

days will depend on the research question. The inclusion of a work day with social 

engagement paired to mental effort seems important, but other stressors like child care 

or prolonged caregiving for elderly/diseased family members may also yield substantial 

psychophysiological reactivity. 
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Because the studies described in this thesis are larger than any previous study and 

have the added advantage of being performed under ecologically valid conditions they 

provide the research community with the best estimates of the genetic architecture of 

cardiac autonomic control to date. As it stands, we conclude that individual differences 

in sympathetic and parasympathetic influences on cardiac electrical activity are best 

explained by invoking only two sources of variance, additive genetic influences and 

unique environmental influences. The additive genetic variance varies between different 

markers, across the different times of day, and across the different pursuits of daily life, 

but the average of all reported ambulatory RSA heritabilities throughout this thesis was 

49% and for PEP it was 38%. 

The long-term association between ANS (re)activity and inflammatory and metabolic risk

Inflammatory processes and metabolic disturbances have both been associated 

with cardiovascular disease, and both have been associated with ANS functioning. 

Although evidence for a deleterious role of ANS functioning characterized by a shift 

in sympathovagal balance to sympathetic dominance in increased inflammatory and 

metabolic risk has previously been found in both directions, bidirectional influences 

between ANS functioning and both risk profiles has never been researched in one study 

before. The study described in chapter 7 was also the first to include reactivity to real-

life stress, captured as work-related ANS activity versus leisure time ANS activity in the 

evening, as a factor. 

Our results point to an unidirectional association of higher ambulatory resting 

heart rate paired to exaggerated cardiac sympathetic reactivity with higher inflammatory 

risk at follow-up. Exaggerated cardiac sympathetic reactivity did also precede higher 

metabolic risk measured 4.6 years later. Conversely, inflammatory and metabolic risk were 

not associated with ANS functioning measured 5.4 years later. With this study we show 

that both higher baseline heart rate and large sympathetic responsivity to work-related 

challenges can make one prone to develop cardiovascular problems in future. Multiple 

short-term stress experiences or stress that is experienced chronically may both be at 

the basis of these associations. Since the reactivity measure that was incorporated in this 

study pertains to work and recovery from work-related activity (evening leisure time), it 

may be noteworthy that considerable variation in the experience of work stress between 

individuals exists. Vrijkotte, van Doornen, & de Geus (Vrijkotte et al., 2000) studied this 

topic and found that individuals that experienced high imbalance at work (a combination 
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of high effort and low reward) had higher heart rates at work and directly after work, a 

higher systolic blood pressure during work and leisure time, and lower 24-h vagal tone 

on work days and a non-workday. Individuals that experienced high overcommitment 

(inability to unwind from work), on the other hand, showed a general pattern of shorter 

PEP during work and leisure time periods across workdays and the non-workday. In 

addition, smaller absolute sleep-wake differences and decreased PEP variability were 

observed in individuals experiencing high overcommitment, possibly pointing to down-

regulation of cardiac beta-receptors by chronic cardiac SNS activity (Vrijkotte et al., 2004). 

These results illustrate that certain coping styles or personality profiles may give rise to 

a particular ANS reactivity profiles that may compromise physical health in the long run. 

Future directions

Having established that the regulation of cardiac autonomic control can largely be 

explained by genetic variation, it becomes important to characterize the actual causal 

variants responsible for this heritability. As already outlined in the introductory chapter, 

the first steps have been undertaken towards this aim. Many candidate gene association 

studies have been conducted and even a few single-cohort GWA studies. The yield of 

these attempts has, perhaps not surprisingly, been modest. Cardiac autonomic activity is 

a complex phenotype, and only a very small percentage of the total genetic variance is 

expected to be explained by a single genetic variant. Instead, lots of variants with very 

small effects may be at play. In addition, structural variation and rare variants could be 

of importance to ANS traits in comparable ways as they are to other traits (Eichler et al., 

2010; Manolio et al., 2009). For future research, the key lies in expanding the sample 

sizes of the gene finding efforts, preferably by pooling across many studies in meta-

analysis and by taking a hypothesis-free stance, i.e. by focusing on a GWA approach 

rather than a candidate gene approach. This is exactly what is currently being done by 

the Genetic Variance in Heart Rate Variability (VgHRV) consortium, in an attempt to detect 

the genetic variants causing individual differences in resting RSA. A major concern that 

this consortium is facing is that the various studies to be pooled did not always use the 

same metric to quantify RSA. In that regard, our finding that future gene finding studies 

can safely pool studies that have assessed RSA and RMSSD or RMSSD and SDNN to gain 

power is very reassuring. 
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A major component missing from the current ANS data set is self-reported emotional 

state during the ambulatory recording. There are clear links between ANS functioning and 

emotion although a one-to-one mapping of emotional state on ANS remains very complex 

(Kreibig, 2010). Previous research found that people that have a genetic vulnerability to 

develop anxiety and/or depression showed more negative affect in response to stress 

in daily life compared to people who did not have this genetic vulnerability (Gunthert 

et al., 2007; Wichers et al., 2007; Wichers et al., 2008). These findings point to gene-

environment interaction effects that may also be reflected in ANS functioning. 

Emotional state can be assessed in several ways and at several levels. It was only 

until few decades ago that emotional state was solely assessed by means of classical 

questionnaires, the focus of which is on past experience and current beliefs built on that 

experience. This makes the outcomes of questionnaires inevitably prone to retrospective 

bias. Although this may be a good thing for some purposes, for instance in clinical 

practice where focus lies on the participants’ beliefs or mental representations of certain 

experiences, it may not be a good thing in other instances when one is interested in co-

occurring states of multiple modes (i.e. mood, physiology, and behavior). For this reason, 

emotional state is increasingly measured by Ecological Momentary Assessment (EMA) 

procedures that repeatedly assess e.g. mood at various (random) times of the day using 

tablets or smartphones (Conner & Barrett, 2012; Fahrenberg et al., 2007). The idea that 

two different constructs are measured by EMA and by questionnaires is emphasized even 

more by studies that found only moderate correlations between outcomes of real-time 

mood assessment and retrospective questionnaires measuring the same phenomena 

(Ebner-Priemer & Trull, 2009b). 

This discrepancy between momentary and recalled symptoms may also explain why 

research linking the physiological state to mood or personality assessed by retrospective 

questionnaire has been rather inconclusive (Conner & Barrett, 2012). Emotional states 

assessed by EMA in real-life settings may be more strongly correlated to ANS activity than 

questionnaire-based measures of anxiety and depression symptoms to laboratory based 

physiology. Support for this notion comes from studies that found ambulatory levels of 

cardiovascular parameters (BP, HR, HRV) to be more strongly associated to momentary 

self-report measures compared with the classical retrospective self-reports (Bhattacharyya, 

Whitehead, Rakhit, & Steptoe, 2008; Kamarck et al., 2005). In ANS Study 1 and 2 we used 

a paper-and-pencil diary to mainly record posture and (physical) activity at the expense 

of detailed emotional state measurement. The current-day more advanced assessment 
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methods were simply not available. We deliberately kept the protocol identical in Study 2 

as we needed to balance the comparability of data across waves against the advantages 

of the newly available technology. Future research, however, would do well to replace 

the paper dairies for applications on a smart phone. Such apps can accommodate many 

types of self-reported data collection, including the assessment of momentary mood 

(Trull & Ebner-Priemer, 2013). Data obtained from these assessments is ‘on the spot’ 

and has great potential to help us gain more insight in the complex interplay between 

our ambulatory behavioral state and our ambulatory ANS functioning. This thesis clearly 

confirmed that ambulatory ANS functioning plays a major role in our long-term health. 
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Hart- en vaatziekten zijn een van de belangrijkste doodsoorzaken in Westerse landen. 

Ze vormen een verzamelnaam voor een groep aandoeningen betreffende het hart 

(bijvoorbeeld hartfalen, hartritmestoornissen), de vaten (bijvoorbeeld aneurysma, 

slagaderverkalking), maar ook een beroerte wordt tot de hart- en vaatziekten gerekend. 

De ontstaanswijze van deze aandoeningen is vaak heterogeen waar veel verschillende 

factoren in meer of mindere mate aan bij kunnen dragen. Hierbij kan men denken aan 

demografische factoren als sekse en leeftijd, maar ook sociaal-economische klasse, 

levensstijl (roken, alcoholgebruik, voeding), psychologische factoren (angst, stress, 

depressie), een bepaalde genetische aanleg, en mogelijk een samenspel tussen deze 

factoren (Brotman et al., 2007; Brotman et al, 2005). Voordat hart- en vaatziekten tot 

uiting komen, zijn er vaak wel al waarschuwingssignalen of condities aanwezig die 

vooraf kunnen gaan aan het ontstaan van de aandoening, of die hier een bij-product 

van zijn. Voorbeelden hiervan zijn het metabool syndroom dat gekenmerkt wordt 

door obesitas, hypertensie, hyperlipidemie, en hyperglycemie (Bayturan et al., 2010), 

inflammatie (Danesh et al., 2008), een coagulatie/fibrinolyse imbalans (Libby & Theroux, 

2005), een verminderde hartslagvariabiliteit (Dekker et al., 1997; Dekker et al., 2000), 

en een verhoogde hartslag (Fox et al., 2007). Al deze lichamelijke risicofactoren worden 

beïnvloed door de activiteit van het autonoom zenuwstelsel.

Het autonoom zenuwstelsel is verantwoordelijk voor onze homeostase en coördineert 

daartoe verschillende lichaamsfuncties die het lichaam beschermen tegen veranderingen 

in de interne of externe omgeving (bijvoorbeeld door fysieke inspanning, een verandering 

van lichaamshouding, voedselinname, of een bloeding). Het autonoom zenuwstelsel 

bestaat uit het parasympathische zenuwstelsel en het sympathische zenuwstelsel. Het 

sympathische zenuwstelsel wordt ook wel het ‘vecht-of-vlucht’ systeem genoemd; het 

maakt het lichaam klaar om in actie te komen. Het zorgt er onder meer voor dat de hartslag, 

ademhaling, hartcontractiliteit en bloeddruk omhoog gaan, dat de luchtpijptakken zich 

verwijden, de zweetproductie op gang komt, dat er epinefrine (een stimulerende stof) 

wordt vrijgegeven en dat er bloed naar de spieren wordt gestuurd. Het parasympathische 

zenuwstelsel daarentegen zorgt voor het behoud van het lichaam door de opname van 

voedingsstoffen te promoten en te zorgen dat het lichaam zich ontdoet van afvalstoffen. 

Deze tak van het autonoom zenuwstelsel wordt ook wel het ‘rust-en-verteer’ systeem 

genoemd. Het verlaagt de hartslag en verhoogt de hartslagvariabiliteit, de pupillen 

worden kleiner, en de maag en speekselklieren worden gestimuleerd. Beide takken van 

het autonoom zenuwstelsel origineren in het brein en projecteren naar verschillende 



 Nederlandse samenvatting 185

9

gebieden in het lichaam, waaronder het hart. Voor het onderzoek in dit proefschrift zijn 

24-uurs opnamen van het hart gemaakt. Er zijn continue electrocardiogram (ECG) en 

impedantiecardiogram (ICG) signalen verzameld in meer dan 1300 tweelingen en hun 

familieleden. Deze metingen vonden plaats op een representatieve doordeweekse dag. 

Uit het ECG hebben we de hartslag bepaald. Hartslag zelf is echter het resultaat van een 

onbekende mix van sympathische en parasympathische invloeden op het hart. Om goed 

onderscheid te kunnen maken tussen deze twee systemen, hebben we naast hartslag 

ook hartslagvariabiliteit, als maat voor de parasympathische aansturing van het hart, 

berekend. Hier zijn verschillende maten voor, maar aan de basis van het concept liggen 

de periodieke veranderingen in de tijdsintervallen tussen opeenvolgende hartslagen. Als 

maat voor de sympathische aansturing van het hart hebben we de pre-ejectieperiode 

(PEP) bepaald en hebben we in hoofdstuk 5 ook de T-golf amplitude (TWA) uit het ECG 

onder de loep genomen. De PEP is het tijdsinterval tussen de aanvang van de elektrische 

prikkel die het hart doet samenknijpen en het openen van de linker hartklep. 

Onderzoeksvragen

Eerder onderzoek heeft al aangetoond dat er grote individuele verschillen bestaan in 

de activiteit van het autonoom zenuwstelsel in rust (Berntson et al.1994; Berntson et al., 

2008; Cacioppo et al., 1994; Grossman & Kollai, 1993; Light et al., 1998; Salomon et 

al., 2000) en dat deze versterkt worden door stress opgewekt in een laboratorium (de 

Geus et al., 2007; Houtveen et al., 2002; Lucini et al., 2002; Wang et al., 2009), maar ook 

door aanhoudende psychosociale stress (Riese et al., 2000; Vrijkotte et al., 2004). Het 

is echter onduidelijk in hoeverre een laboratorium situatie een ware reflectie biedt van 

de werkelijke wereld, want dat is waar we uiteindelijk in geïnteresseerd zijn. Meten we 

wel dezelfde soort lichaamsreacties in het laboratorium als in het echte leven? Er zijn al 

belangrijke stappen gezet in het ambulante, of veldonderzoek, vaak nog gestructureerd 

met een vooraf geplande stressor en rustmeting, maar ook ongestructureerd al dan niet 

met inachtneming van de verschillende dagdelen. Laatstgenoemd onderzoeksterrein is 

een nog grotendeels onontgonnen gebied waar een grote uitdaging ligt in de volgende 

vraagstellingen: Hoe kunnen we het beste structuur aanbrengen in ongestructureerde 

24-uurs ambulante hartmetingen? Of met andere woorden, hoe kunnen we rust en stress 

condities definiëren zonder dat er een vooraf geplande stressor plaatsvindt tijdens de 

meting? Kunnen we deze condities ook gebruiken voor toekomstig stress-onderzoek? 

Wat is de invloed van genen en omgeving op verschillende fysiologische risicofactoren 
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voor hart- en vaatziekten, gemeten in het dagelijks leven? Zien we de invloed van genen 

in ambulante stress-situaties toenemen ten opzichte van een rustperiode, net als in het 

laboratorium? Hebben de ambulante rust- en stress condities predicerende waarde voor 

(cardiovasculaire) gezondheid op de lange termijn? En omgekeerd, zijn bloedmarkers 

gerelateerd aan de metabole en inflammatoire toestand voorspellend voor ambulante 

autonome zenuwstelsel (re)activiteit op een later moment? Dit zijn de hoofdvragen 

van het onderzoek dat wordt beschreven in dit proefschrift. Voor ik de belangrijkste 

bevindingen van dit onderzoek zal bespreken, wil ik eerst kort ingaan op de rationale 

achter het tweelingonderzoek.

Tweelingonderzoek

Het onderzoek beschreven in dit proefschrift is uitgevoerd bij tweelingen en hun 

familieleden die ingeschreven staan bij het Nederlands Tweelingen Register (NTR). Door 

onderzoek bij tweelingen uit te voeren kunnen we uitzoeken in hoeverre een bepaalde 

eigenschap wordt bepaald door genen en in welke mate door de omgeving. Aan de 

basis van het klassieke tweelingonderzoek ligt de wetenschap dat eeneiige (monozygote, 

of MZ) tweelingen nagenoeg 100% van hun genetische materiaal met elkaar delen en 

twee-eiige (dizygote, of DZ) tweelingen 50%. Door bepaalde eigenschappen van grote 

groepen MZ en DZ tweelingen met elkaar te vergelijken, kunnen we erachter komen of MZ 

tweelingen meer op elkaar lijken dan DZ tweelingen wat betreft de gemeten eigenschap. 

Als dat zo is, dan wijst dit erop dat genen (deels) van invloed zijn op het tot uiting komen 

van de eigenschap. Lijken de tweelingen meer op elkaar dan op basis van genetische 

invloeden kan worden verklaard, dan duidt dit op invloeden van een gedeelde omgeving. 

Hierbij kan gedacht worden aan de dagelijkse leefomgeving die gedeeld wordt tussen de 

tweelingen die hen op elkaar kan doen lijken, bijvoorbeeld het gezin. Als laatste is er nog 

de rol van de unieke omgeving, zoals het woord uniek al impliceert gaat dit om factoren 

die uniek zijn voor het individu. Met andere woorden omgevingsinvloeden die niet 

gedeeld worden door familieleden, zoals eigen vrienden. De erfelijkheid wordt voorts 

berekend door de proportie van de variatie die aan genetische factoren toegeschreven 

kan worden te delen door de totale variatie die de eigenschap laat zien.

Het klassieke tweelingmodel kan nog verder uitgebreid worden door naast 

tweelingen ook familieleden van tweelingen in het onderzoek te betrekken (bijvoorbeeld 

broers, zussen, ouders, of partners). Dit wordt dan ook een ‘uitgebreide tweelingstudie’ 

genoemd. De voornaamste reden waarom dit gedaan wordt is om de studie krachtiger 
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te maken zodat we beter onderscheid kunnen maken tussen de genetische en 

omgevingsinvloeden die gedeeld worden binnen een familie. Een uitbreiding van het 

klassieke model met ouders of partners maakt het ook mogelijk nog andere effecten te 

onderzoeken zoals gelijkenissen tussen partners (is er partnerselectie of gaan partners 

over de tijd meer op elkaar lijken doordat ze een omgeving delen) of culturele transmissie 

(Boomsma et al., 2002; Falconer & Mackay, 1996).

Naast een uitbreiding van het tweelingmodel met meer familieleden, kan het model 

ook uitgebreid worden wat betreft het aantal eigenschappen dat gemodelleerd wordt. 

Dit is interessant wanneer men wil onderzoeken op welke manier de eigenschappen met 

elkaar samenhangen. Zoals ook in dit proefschrift gedaan wordt kan dat bijvoorbeeld 

toegepast worden wanneer men geïnteresseerd is in de vraag in hoeverre dezelfde genen 

betrokken zijn bij verschillende maten voor eenzelfde eigenschap (hartslagvariabiliteit), of 

wanneer men de genetische samenhang en/of of het optreden van nieuwe genetische 

invloeden over herhaalde metingen wil onderzoeken (metingen van dezelfde eigenschap 

op verschillende hartslagniveaus, of tijdens rust en stress momenten).

Erfelijkheid van de parasympathische aansturing van het hart

In hoofdstuk 3 hebben we de erfelijkheid van de drie meest gebruikte maten voor 

hartslagvariabiliteit onderzocht in de grootste dataset met 24-uurs ambulante metingen 

tot nu toe (RMSSD, SDNN, en pvRSA). De erfelijkheid in deze studie werd geschat 

rond de 50%. Hiermee bevestigen we eerdere tweelingstudies, maar vonden daarbij 

ook dat de schattingen van gelijke orde waren voor alle drie parameters over drie 

verschillende condities (hartslagvariabiliteit gemeten tijdens slaap, uitsluitend zittende 

activiteiten overdag, en tijdens lichte niet-zittende fysieke activiteit overdag). Met deze 

studie toonden we ook aan dat ongeveer 50% van de samenhang tussen de drie maten 

voor hartslagvariabiliteit door genetische factoren verklaard kan worden. Ook vonden 

we dat de genetische overlap, of correlatie, tussen de drie hartslagvariabiliteit maten 

erg hoog was. Dit betekent dat nagenoeg dezelfde genen ten grondslag liggen aan 

de verschillende hartslagvariabiliteit maten en dit heeft belangrijke implicaties voor 

toekomstig onderzoek dat tracht de daadwerkelijke genen te vinden die hierbij betrokken 

zijn. Voor dit type onderzoek zijn enorm grote datasets nodig. Een trend op dit vlak is 

dat onderzoeksgroepen over de hele wereld steeds vaker de krachten bundelen door 

datasets samen te voegen om zo tot grotere aantallen te komen en meta-analyses te 

doen over deze samengevoegde datasets. De drie hartslagvariabiliteitmaten die we in 
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deze studie hebben onderzocht kunnen nu dus ook met een gerust hart samengevoegd 

worden omdat we verwachten dat de genetische architectuur vrijwel gelijk is. 

Erfelijkheid van de sympathische aansturing van het hart

Om op niet-invasieve manier de sympathische aansturing van het hart te meten wordt 

vooral gebruikt gemaakt van systole tijdsintervallen, met de PEP als eerste keuze (de 

Geus et al., 2015). In hoofdstuk 4 wordt de erfelijkheid van de PEP geschat tussen de 22 

en 45%. Recent onderzoek door onze groep heeft echter laten zien dat de TWA tijdens 

de repolarisatie fase goed gebruikt kan worden als extra indicator van de sympathische 

aansturing van het hart (van Lien et al., 2015). In hoofdstuk 5 van dit proefschrift laten we 

zien dat deze maat gemiddeld tot hoog erfelijk is (58 tot 72%). Dat deze maat, net als de 

PEP significante erfelijkheid laat zien, geeft dat extra ondersteuning aan het idee dat de 

sympathische aansturing van het hart onderhevig is aan genetische invloeden.

Manieren om de ongestructureerde ambulante hartmetingen in betekenisvolle condities 

op te delen

In hoofdstuk 4 hebben we met behulp van de activiteitendagboeken die de deelnemers 

gedurende de meetdag bijhielden en de bewegingsmeter die ingebouwd is in de VU-

AMS hartmeter, twee ambulante rust- en vier ambulante stresscondities geëxtraheerd 

voor elke deelnemer. Voor de rustcondities hebben we de gemiddelde hartactiviteit 

tijdens slaap en in de vrije tijd berekend. De eerste stressconditie was de gemiddelde 

hartactiviteit over de gehele wakkere periode. Als tweede hebben we de gemiddelde 

activiteit tijdens een werkdag berekend. Deze laatste conditie hebben we ook nog 

een keer berekend maar dan alleen voor zittende activiteiten op het werk. Als laatste 

hebben we nog de periodes met de hoogste hartslag tijdens zittende activiteiten op 

het werk geselecteerd die optelden tot minstens een half uur en daar de mediaan van 

genomen. Op basis van deze condities hebben we verschillende maten voor ambulante 

reactiviteit samengesteld die berekend werden door het absolute verschil tussen de 

rust- en stressconditie te berekenen voor de verschillende autonome maten (hartslag, 

hartslagvariabiliteit en de PEP).

De bruikbaarheid van deze maten als zijnde ‘real-life’ reactiviteitsmaten hebben we 

getest door de betrouwbaarheid, temporele stabiliteit en de erfelijkheid te onderzoeken. 

We vonden dat de maten betrouwbaar gemeten konden worden en een gemiddelde 

tot hoge temporele stabiliteit lieten zien over een periode van drie jaar. Deze temporele 
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stabiliteit konden we in kaart brengen omdat een deel van de deelnemers twee keer 

mee heeft gedaan met het onderzoek. Hierdoor konden we de hartprestatie in de 

verschillende condities correleren met de hartprestatie in dezelfde condities drie en een 

half jaar later. Tot slot vonden we dat de meeste ambulante reactiviteit maten erfelijk 

waren; de schattingen lagen tussen de 16 en 47%. Het bleek dat de erfelijkheid van 

reactiviteit gemeten in het dagelijks leven grotendeels verklaard kon worden doordat er 

nieuwe genetische variatie in het spel kwam bij een hogere ten opzichte van een lagere 

mate van interactie met de psychosociale omgeving. De conclusie van deze studie is dan 

ook dat reactiviteit in het dagelijks leven goed en betrouwbaar gemeten kan worden en 

dat hiermee andere genetische informatie wordt blootgelegd dan die wordt gevonden 

tijdens rustmetingen in het laboratorium of standaard klinische ECG metingen.

In hoofdstuk 5 hebben we een andere benadering gekozen om de 24-uurs metingen 

te organiseren. In plaats van de dag op te delen in homogene periodes gebaseerd op 

fysieke activiteit en psychosociale omstandigheden, gebruikten we voor deze studie een 

fysiologisch criterium om homogeniteit te creëren in de ambulante signalen. In deze 

studie richtten we ons volledig op geselecteerde delen van het 24-uurs ECG zodanig dat 

alle ECGs werden gemiddeld van hartslagen met eenzelfde duur. De aanname was dat 

alle hartslagen met eenzelfde duur (dat wil zeggen bij eenzelfde hartfrequentie) eenzelfde 

fysiologische toestand representeren. Er werden drie toestanden geselecteerd: hartslagen 

bij een lage hartfrequentie (1 Hz, 60 slagen per minuut), hartslagen bij een gemiddelde 

frequentie (1.3 Hz, 78 slagen per minuut), en hartslagen bij een hoge frequentie (1.6 Hz, 

96 slagen per minuut). Hiervoor werd een speciaal ‘beat binning’ algoritme ontwikkeld. 

Vervolgens hebben we de erfelijkheid van vier klinisch relevante repolarisatie (TpTe, QT, 

en TWA) en depolarisatie (QRS) parameters geschat per frequentie.

We hebben deze schattingen vergeleken met de erfelijkheidsschattingen van 

dezelfde parameters onttrokken uit een typisch 10 seconde durend rust-ECG op 1.12 Hz 

(67 slagen per minuut), zoals vaak gebruikt wordt in de klinische praktijk. We vonden een 

gemiddelde tot hoge erfelijkheid voor alle parameters (TpTe: 52 tot 63%, QT: 34 tot 69%, 

TWA: 55 tot 72%, en QRS: 32 tot 42%). De erfelijkheidsschattingen voor het klinische 

rust-ECG waren in het algemeen lager dan die gebaseerd op het frequentiespecifieke 

ambulante ECG. Dit verschil was zelfs significant voor QT en TWA wanneer het rust-ECG 

vergeleken werd met het gemiddelde ECG in de laagste hartfrequentie. Ook hebben 

we de genetische correlatie tussen de verschillende hartslagfrequenties binnen elke 

parameter onderzocht. We vonden dat deze correlatie erg hoog was, wat suggereert 
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dat de genetische factoren die een rol spelen bij grotere fysieke activiteit niet significant 

anders zijn dan de genen die actief zijn tijdens rustigere periodes gekenmerkt door 

een lagere hartfrequentie. Voor QT en TWA nam de erfelijkheidsschatting echter wel 

af met een toenemende hartslag. Deze resultaten impliceren dat het goed mogelijk is 

ongestructureerde ECG metingen te organiseren op basis van hartslagfrequentie. Daarbij 

toont dit onderzoek aan dat de parameters vastgesteld door middel van deze benadering 

misschien zelfs beter gebruikt kunnen worden voor genetische studies dan het typische 

klinische rust-ECG. 

Tot slot hebben we in dit zelfde onderzoek nog de genetische overlap tussen de 

verschillende repolarisatieparameters onderzocht. Alhoewel de correlatie tussen de 

verschillende repolarisatieparameters vooral door genen verklaard kon worden, was de 

overlap tussen de genetische factoren die de parameters beïnvloedden niet zo groot. 

Dit suggereert dat elke onderzochte repolarisatieparameter unieke genetische informatie 

met zich meedraagt met betrekking tot de repolarisatiefase en dat er informatie wordt 

gemist wanneer slechts een of een deel van deze parameters onder de loep wordt 

genomen. 

Erfelijkheid van inflammatoire markers

In hoofdstuk 6 hebben we de erfelijkheid van een ander cardiovasculair risicocluster 

onderzocht: inflammatie. De inflammatoire respons wordt in gang gezet door de pro-

inflammatoire cytokines Tumor Necrosis Factor-alpha (TNF-α) en Interleukin(IL)-1 (Tracey, 

2002). De inflammatoire cascade wordt verder gestimuleerd door de productie van IL-6 

welke op haar beurt de acute fase respons stimuleert. Deze respons wordt gekenmerkt 

door de synthese van C-Reactive Protein (CRP) en fibrinogeen (Gabay, 2006; Gabay 

& Kushner, 1999; Packard & Libby, 2008). Eerder onderzoek heeft aangetoond dat 

verhoogde TNF-α, IL-6, CRP en fibrinogeen niveaus geassocieerd zijn met onder meer 

een toegenomen risico op hart- en vaatziekten (Cesari et al., 2003; Danesh et al., 2008; 

Danesh et al., 2004; Humphries et al., 2007; Libby & Theroux, 2005; Packard & Libby, 

2008; Woods et al., 2000). Eerder onderzoek heeft ook aangetoond dat de manifestatie 

van deze markers deels door genetische factoren verklaard kan worden. Echter, de variatie 

in de erfelijkheidsschattingen die tot op heden zijn gevonden is erg groot. Daarbij zijn 

de schattingen, met een paar uitzonderingen daargelaten, gebaseerd op relatief kleine 

groepen (~ 400) tweelingen (de Lange, et al., 2001; de Lange et al., 2006; de Maat et al., 

2004; Grunnet et al., 2006; Jermendy et al., 2011; MacGregor et al., 2004; Rahman et al., 
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2009; Reed et al., 1994; Sas et al., 2012; Su et al., 2008; Su et al., 2009a; Su et al., 2009b; 

Wessel et al., 2007; Wang et al., 2011; Worns et al., 2006). Voor deze studie hebben we 

gebruik gemaakt van data die verzameld is tijdens een grote biobank studie, uitgevoerd 

door het NTR. Aan dit project hebben naast tweelingen en hun broers en zussen ook 

andere familieleden, waaronder de ouders van tweelingen, deelgenomen. 

Het toevoegen van familieleden van tweelingen aan het onderzoek, maakt het 

mogelijk verder te differentiëren tussen additief genetische en non-additief genetische 

effecten en daarbij ook de gedeelde omgeving mee te modeleren (in het klassieke 

tweeling model dient op basis van de tweelingcorrelaties gekozen te worden tussen 

het modeleren van ofwel additief genetische effecten ofwel de gedeelde omgeving). 

Het toevoegen van ouders aan een tweelingstudie, maakt het verder mogelijk ook de 

mogelijke effecten van partnerselectie te onderzoeken. De immuun-parameters die we 

hebben onderzocht waren de cytokines TNF-α en IL-6 en de acute fase reactanten CRP 

en fibrinogeen. In totaal hebben er 3,534 tweelingen, 1,568 broers en zussen, en 2,227 

ouders van tweelingen uit 3,095 families meegenomen in de analyses voor deze studie. 

Dit maakt deze studie het meest omvangrijk in zijn soort tot nu toe. 

We vonden dat de pro-inflammatoire markers gemiddeld erfelijk waren, schattingen 

kwamen uit op 39%, 21%, 45%, en 46% voor TNF-α, IL-6, CRP en fibrinogeen, respectievelijk. 

Daarbij vonden we dat een substantieel deel van de genetische variatie in TNF-α, CRP 

en fibrinogeen non-additief van aard was terwijl de erfelijkheid van IL-6 volledig toe te 

schrijven was aan additief genetische effecten. Invloeden van een gedeelde omgeving 

bleken voor geen enkele immuunmarker significant. Ook vonden we geen bewijs dat 

partnerselectie een prominente rol speelt in de manifestatie van de onderzochte markers. 

We concluderen dat deze grote studie duidelijke erfelijkheidsschattingen neerzet welke 

gebruikt kunnen worden als referentie voor toekomstige genoom-wijde associatie 

studies die trachten de daadwerkelijke genen te vinden die verantwoordelijk zijn voor de 

manifestatie van deze markers. 

Wederkerige associatie tussen sympathische en parasympatische (re)activiteit  

en de inflammatoire en metabole risicoprofielen?

In hoofdstuk 7 onderzochten we de lange termijn relatie tussen sympathische en para-

sympathische zenuwstelsel (re)activiteit en de inflammatoire en metabole risico profielen. 

In het verleden zijn zowel een verschuiving in autonome balans van sympathische 

dominantie en een overdreven autonome reactiviteit op stress geassocieerd met een 
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verhoogd cardiovasculair risico. Eerder onderzoek wijst op parallele autonome effecten 

op de metabole en inflammatoire risicoprofielen die deels verantwoordelijk zijn voor dit 

risico. Deze eerdere studies waren echter vaak cross-sectioneel van aard en uitgevoerd 

in het laboratorium of in een kliniek. In het onderzoek beschreven in dit hoofdstuk testen 

we de bidirectionele lange termijn associatie tussen autonome zenuwstelsel activiteit 

en reactiviteit en inflammatoir en metabool risico in twee onafhankelijke prospectieve 

studies. We hebben inflammatoire en metabole risiscoscores berekend door de Z-scores 

van een aantal van de belangrijkste markers van de pro-inflammatoire (TNF-α, IL-6, CRP 

en fibrinogeen) en metabole (middelomtrek, body mass index, glucose, triglyceride, 

low-density cholesterol, en high-density cholesterol levels) toestand bij elkaar op te 

tellen. Deze markers zijn bepaald tijdens de eerder genoemde biobank studie. De 

dataverzameling van de 24-uurs ambulante autonome zenuwstelsel activiteit vond vijf 

jaar voor en vijf jaar na de biobank studie plaats. Op basis van de resultaten beschreven 

in hoofdstuk 4, hebben we de hartslag, RSA, en PEP tijdens slaap en in de vrije tijd 

als rustlevels meegenomen, samen met de reactiviteitsmaat (werk_zittend – vrije tijd) 

die het minst onderhevig was aan vertekening door houding en/of fysieke activiteit. 

We vonden dat een hogere rusthartslag in de vrije tijd gekoppeld met een verhoogde 

sympathische reactiviteit geassocieerd waren met hoger inflammatoir risico vijf jaar later. 

Ook werd gevonden dat een hogere sympathische reactiviteit geassocieerd was met een 

verhoogd metabool risico vijf jaar later. Een ongunstig metabool of inflammatoir profiel 

had omgekeerd geen nadelig effect op autonome zenuwstelsel (re)activiteit vijf jaar later. 

Uit deze studie concluderen we dat er slechts unidirectionele causale effecten zijn van 

een verhoogde rusthartslag en sympathische reactiviteit op inflammatoir risico. Ook zijn 

er slechts unidirectionele effecten van sympathische reactiviteit op metabool risico.

Conclusies

De studies die beschreven staan in dit proefschrift zetten duidelijke numerieke erfelijk-

heidsschattingen neer wat betreft de regulatie van autonome controle over het hart 

gemeten in het dagelijks leven. Gebleken is dat individuele verschillen in sympathische en 

parasympathische invloeden op de elektrische activiteit van het hart het beste verklaard 

kunnen worden door twee typen variantie: additieve genetische invloeden en unieke 

omgevingsinvloeden. De additieve genetische variantie varieert voor de verschillende 

markers, over de verschillende dagdelen, en over de verschillende bezigheden in het 

dagelijks leven. We hebben aangetoond dat er verschillende manieren zijn om data 
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van ongestructureerde ambulante hartregistraties dusdanig te organiseren zodat deze 

gebruikt kunnen worden voor (klinisch) psychofysiologisch onderzoek. We vonden dat 

genetische invloeden over het algemeen toenemen tijdens stress en dit lijkt vooral te 

komen doordat er andere genen actief worden bij lichaamsreacties op psychosociale 

gebeurtenissen in het dagelijks leven. Dit patroon wordt ook wel gezien bij reacties op 

typische stress taken die vaak in laboratoria worden gebruikt, maar niet altijd en veel 

minder sterk. Tot slot is met dit proefschrift aangetoond dat het functioneren van het 

autonoom zenuwstelsel ook op de lange termijn een belangrijke rol speelt in onze 

gezondheid.
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Appendix I 

Invitation letter and brochure

NEDERLANDS TWEELINGEN REGISTER (NTR) 

 
FACULTEIT DER PSYCHOLOGIE EN PEDAGOGIEK 
Biologische Psychologie 

BEZOEKADRES 
Van der Boechorststraat 1 
Kamer 2B-35 
1081 BT Amsterdam 

POSTADRES 
Van der Boechorststraat 1 
1081 BT Amsterdam 

WWW.FPP.VU.NL  

  

DATUM ONS KENMERK UW BRIEF VAN UW KENMERK 

 NETAMB3-082010/b1       

E-MAIL TELEFOON FAX BIJLAGE(N) 

m.neijts@.vu.nl 020 5982537 020 598 8832 Informatiefolder 
   

Betreft: Uitnodiging Familieonderzoek naar lichamelijke en geestelijke gezondheid 
 
   
Geachte heer, mevrouw ……., 
 
U ontvangt deze brief omdat wij u graag willen uitnodigen voor bovengenoemd onderzoek. In de afgelopen 
jaren hebben u en een aantal van uw familieleden meegedaan met (vragenlijst)onderzoek van het 
Nederlands Tweelingen Register (NTR). Uw medewerking hieraan was van zeer groot belang.  
 
Het onderzoek waar wij u nu voor uitnodigen is in 1997 begonnen en inmiddels hebben reeds 800 tweelingen 
en hun familieleden hieraan meegewerkt. Bij dit onderzoek zullen wij u thuis bezoeken om een korte 
vragenlijst met u door te nemen en u een hartactiemeter om te doen. Hiermee zal uw hartactie gedurende 24 
uur gemeten worden. Verder zal de onderzoeker uw bloeddruk meten. Ook wordt u gevraagd een aantal 
maal op een watje te kauwen voor de verzameling van speekselhormonen. Meer informatie over het 
onderzoek en de metingen, vindt u in de bijgaande folder.  
 
Binnen één tot twee weken nadat u deze brief heeft ontvangen, zullen wij telefonisch contact met u opnemen 
om verdere uitleg te geven en om een afspraak met u te maken. Uw persoonlijke hartslaggegevens met een 
korte toelichting worden u kort na de metingen toegestuurd. Wij hopen op uw medewerking. 
 
Met vriendelijke groet, namens het onderzoeksteam, 

 
Drs. Melanie Neijts  
Dr. Gonneke Willemsen 
Prof. dr. Eco de Geus  
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Achtergrond 
 

In 1991 is in Nederland een langlopend tweeling-familieonderzoek gestart naar de geestelijke en 

lichamelijke gezondheid. Bij dit onderzoek wordt gebruik gemaakt van het Nederlands 

Tweelingen Register (NTR) dat in 1987 is opgericht aan de Vrije Universiteit in Amsterdam. Met 

behulp van vragenlijsten en soms ook interviews wordt informatie verzameld over de geestelijke 

gezondheid. De lichamelijke gezondheid wordt gemeten door bloed- en speekselonderzoek, door 

bloeddrukonderzoek, of door onderzoek waarbij de hartfunctie wordt gemeten met elektrodes op 

de borst. De aansturing van het hart is rechtstreeks van belang voor hart- en vaatziekten. 

Daarnaast zijn er aanwijzingen dat de aansturing van het hart gekoppeld is aan het 

immuunsysteem. In dit onderzoek willen wij de aansturing van het hart verder onderzoeken en 

daarvoor vragen wij uw medewerking.  
 

Resultaten tot nu toe 
 

Wij hebben al kunnen aantonen dat veel aspecten van de lichamelijke gezondheid deels bepaald 

worden door familiale aanleg. Voor een groot deel komt dat omdat familieleden hun erfelijk 

materiaal delen. Bij bloeddruk, hartslag, cholesterol en de bloedsuikerspiegel blijkt deze erfelijke 

invloed zelfs van zeer groot belang. Het afgelopen jaar zijn variaties in een aantal genen 

gevonden die deze erfelijke invloeden verklaren. Deze genen zijn mede dankzij onderzoek van 

het NTR opgespoord. Dit helpt ons verder om te begrijpen hoe het mechanisme van erfelijke 

invloed op hart- en vaatziekten werkt.  
 

Waarom bent u belangrijk voor dit nieuwe onderzoek? 
 

Tussen 2004 en 2008 heeft u meegedaan aan onderzoek van het NTR, waarbij u thuis bent 

bezocht door onze medewerkers, die bloed bij u hebben afgenomen. In het nieuwe onderzoek 

willen we de gegevens uit dit eerdere onderzoek koppelen aan metingen van bloeddruk en 

hartfunctie. Omdat u deel uitmaakt van een tweelingfamilie kunnen we het totale belang van 

erfelijke aanleg op bloeddruk en hartfunctie in kaart brengen. Daarvoor wordt gebruik gemaakt 

van de metingen bij eeneiige en twee-eiige tweelingen en hun broers of zussen. Voor dit deel 

van het onderzoek wordt gekeken naar de overeenkomsten tussen familieleden.  

Waarschijnlijk heeft u in het verleden ook aan het vragenlijstonderzoek van het NTR 

meegedaan. Daarin werd gevraagd naar stressvolle gebeurtenissen, gevoelens van angst en 

depressie maar ook geluk en tevredenheid. In dit nieuwe onderzoek zullen we ook kijken in 

welke mate het effect van erfelijke aanleg afhangt van uw geestelijke gezondheid, nu en in het 

verleden. 
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Wat houdt het onderzoek in? 
 

U hoeft voor het onderzoek niet naar de VU te komen, wij komen naar u. Enkele dagen voor het 

thuisbezoek krijgt u van ons een vragenlijst en materiaal voor het afnemen van speeksel 

thuisgestuurd. Op de dag van het onderzoek komen we u 's ochtends thuis bezoeken op een 

datum en tijd die u het beste schikt. Het bezoek neemt 30-40 minuten van uw tijd in beslag. U 

krijgt dan een hartmeter om. Via zeven meetelektroden, die met plakkertjes op de rug en borst 

bevestigd zijn, worden de aansturing en de samentrekkingskracht van het hart gemeten. Wij 

stellen u een aantal vragen over uw gezondheid. Tevens meten we de bloeddruk in rust en 

tijdens een kort computertestje. Daarna vragen we u om de hartmeter gedurende de verdere 

dag en de nacht om te houden tot aan de volgende morgen. De meter is daarvoor speciaal 

ontworpen aan de Vrije Universiteit. Hij is klein, kan onder de kleding worden gedragen en levert 

weinig hinder op bij dagelijkse werkzaamheden.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

 

 

 

De VU AMS hartactiemeter bij een  

verpleegkundige tijdens het werk 

 
Omdat de hartactie kan veranderen als gevolg van veranderingen in activiteit, houding en 

stemming, vragen wij u om tijdens de meetdag een dagboekje bij te houden. De ochtend van de 

meetdag, vlak voor het slapen gaan en de ochtend erna neemt u wat speeksel af. Dit gebeurt 

door even op een watje te kauwen dat u daarna in een bijgeleverd buisje doet. De volgende dag 

kunt u zelf de hartmeter afdoen en deze samen met de buisjes in een retourenvelop 

terugsturen. Binnen enkele weken na het onderzoek ontvangt u een overzicht van uw 

hartslaggegevens.  

 

Eerder hebben al ruim 800 personen uit families, ingeschreven bij het Nederlands Tweelingen 

Register, meegedaan aan dit soort onderzoek. In totaal zullen ongeveer 1300 mensen aan dit 

onderzoek deelnemen. Door hun èn uw medewerking krijgen we meer kennis over het verband 

tussen lichamelijke en geestelijke gezondheid en over de reden waarom mensen daarin van 
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elkaar verschillen. We hopen dat die kennis zal bijdragen aan een betere gezondheid van 

iedereen. 

Vertrouwelijkheid 
 

Alle persoonlijke gegevens worden strikt vertrouwelijk behandeld en gecodeerd verwerkt bij een 

wetenschappelijke rapportage.  
 

Vrijwilligheid van deelname 
 

Deelname is vrijwillig en u kunt zich op elk moment, ook na ondertekening van het 

toestemmingsformulier, zonder opgave van redenen uit het onderzoek terugtrekken. 
 

Meer informatie 
 

Voor praktische informatie kunt u te allen tijde contact opnemen met de uitvoerend 

onderzoeker: drs. Melanie Neijts. 

Verdere informatie over de wetenschappelijke achtergrond van de studie wordt desgevraagd 

verstrekt door: prof. dr. Eco de Geus of dr. Gonneke Willemsen.  

Wilt u informatie over dit onderzoek inwinnen bij een onafhankelijk arts, dan is dr. Richard 

Ijzerman, tel. 020-4440533, bereid uw vragen te beantwoorden.  

 

Dit onderzoek is door de Medisch Ethische Toetsingscommissie van het VU Medisch Centrum 

aangeduid als een onderzoek zonder risico, waarvoor een vrijstelling van verzekering is 

afgegeven. 

 

Vrije Universiteit Amsterdam 

Biologische Psychologie  

T.a.v. drs. M. Neijts 

Van der Boechorststraat 1 

1081 BT Amsterdam 

Tel. 020 5988787 

 

U kunt ook een kijkje nemen op onze website: http://www.tweelingenregister.org onder 

“Onderzoek.”  

 

© Vrije Universiteit Amsterdam / NTRAMB3-082010    
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Appendix II 

Confirmation letter

NEDERLANDS TWEELINGEN REGISTER (NTR) 

 
FACULTEIT DER PSYCHOLOGIE EN PEDAGOGIEK 
Biologische Psychologie 

BEZOEKADRES 
Van der Boechorststraat 1 
Kamer 2B-35 
1081 BT Amsterdam 

POSTADRES 
Van der Boechorststraat 1 
1081 BT Amsterdam 

WWW.FPP.VU.NL  

  

DATUM ONS KENMERK UW BRIEF VAN UW KENMERK 

 NETAMB3-062010/b2       

E-MAIL TELEFOON FAX BIJLAGE(N) 

m.neijts@vu.nl 020 5982537 
 

020 598 8832 3 

   

Betreft: Bevestiging deelname familieonderzoek naar lichamelijke en geestelijke gezondheid 
 
Geachte heer, mevrouw ……., 
 
Hierbij sturen wij de bevestiging van de afspraak die we telefonisch hebben gemaakt voor de ambulante 
meting. De afspraak zal plaatsvinden op: 
 
Datum:  ……..………………………  Tijd:  ……………………………..   

(Het bezoek zal ongeveer 45 minuten duren)  
 
Bij deze brief is het volgende gevoegd: 
 

1. Een toestemmingsformulier. Dit formulier wordt gebruikt om uw deelname aan de studie te bevestigen. Wilt u 
het invullen zodat de onderzoeker het mee kan nemen na het bezoek?  

2. Een vragenlijst. Het zou fijn zijn als u deze ingevuld hebt voor wij bij u langskomen zodat wij deze meteen 
mee terug kunnen nemen. Het duurt ongeveer 15 minuten om deze in te vullen. 

3. Materialen voor de speekselverzameling. Er moeten 2 verzamelingen op de ochtend vóór het bezoek worden 
gedaan. Wij hebben hiervoor twee buisjes met watjes en een instructie meegestuurd. Leest u deze de avond 
van tevoren alstublieft goed door.  
 
Omdat hartslag en bloeddruk beïnvloed worden door inspanning en alcoholgebruik, willen wij u vragen om de 
dag voor de meting niet te sporten en de avond voor de meting geen of slechts weinig alcohol te gebruiken. 
Als u medicijnen (inclusief de pil) gebruikt, wilt u deze dan klaarleggen voor wij bij u langskomen? 
Wij komen met de auto naar u toe en doen ons uiterste best om op het afgesproken tijdstip bij u aanwezig te 
zijn. Mocht dit door files of om een andere reden niet mogelijk zijn, dan laten wij u dit vanzelfsprekend zo 
spoedig mogelijk weten. Mocht u zelf onverhoopt verhinderd zijn op de afgesproken datum, zou u ons dit dan 
zo snel mogelijk willen laten weten? Wij zijn te bereiken op 020-5982537 of 06-50698826. Bedankt voor uw 
deelname! Wij zien ernaar uit u te bezoeken. 
 
Met vriendelijke groet, 
Melanie Neijts 



236 Appendices

Appendix III

Informed consent

 
 
 

 
 

© Vrije Universiteit Amsterdam / NTRAMB3-082010 
 

 

Toestemmingsformulier (Informed Consent) 
 

Familieonderzoek naar lichamelijke en geestelijke gezondheid 
 

 
- Ik bevestig dat ik de informatiefolder voor de proefpersoon (kenmerk NTRAMB3-

082010) heb gelezen en ik begrijp de informatie. Ik heb voldoende tijd gehad om 
over mijn deelname na te denken en ben in de gelegenheid geweest om vragen te 
stellen. Deze vragen zijn naar tevredenheid beantwoord. 

 
- Ik geef toestemming voor deelname aan bovengenoemd medisch-wetenschappelijk 

onderzoek. 
 
- Ik weet dat mijn deelname geheel vrijwillig is en dat ik mijn toestemming op ieder 

moment kan intrekken zonder dat ik daarvoor een reden hoef op te geven. Mijn 
gegevens zullen dan, als ik dat wil, worden vernietigd. 

 
- Ik geef toestemming om de gegevens te verwerken voor doeleinden zoals beschreven 

in de informatiefolder met kenmerk NTRAMB3-082010. 
 
- Ik ga ermee akkoord dat de gegevens uit het huidige onderzoek gekoppeld mogen 

worden aan gegevens die eerder van mij verzameld zijn, zoals erfelijk materiaal, 
resultaten van de bloedmonsters en/of de vragenlijsten. 

 
 
 
 
 
Voornaam    ………………………………………………………………………………  man / vrouw 
 
Achternaam  ……………………………………………………………………………… 
 
Adres   ……………………………………………………………………………… 
 
   ……………………………………………………………………………… 
 
Telefoonnr  ……………………………………………………………………………… 
 
Geboortedatum ……………………………………………………………………………… 
 
 
 
Handtekening           Datum 
 
 
 
………………………………………………………………………………………………………………………………………………………. 

                                                           
 Doorhalen wat niet van toepassing is 
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Appendix IV

Instructions saliva collection

 
 

© Vrije Universiteit Amsterdam / NTRAMB3-062010 

 

Speekselverzameling 
 
Er zijn in totaal 5 momenten waarop speekselverzamelingen plaatsvinden. De eerste 2 
speekselverzamelingen vinden plaats op de ochtend dat de onderzoeker bij u langskomt. U krijgt 
daarom alvast een instructie en een setje wattenrolletjes meegestuurd.  
 
Het is de bedoeling dat u direct na het wakker worden, terwijl u nog in bed ligt, èn 30 minuten 
daarna speeksel verzamelt. Wilt u de avond van te voren de buisjes bij uw bed, bijvoorbeeld op het 
nachtkastje, klaarleggen? Wij willen u verder vragen in het onderstaande schema in te vullen hoe laat 
u het speeksel hebt verzameld. Dit is belangrijk omdat de hoeveelheid van het hormoon ook 
afhankelijk is van het tijdstip op de dag. 
 
Het is belangrijk dat u een half uur van tevoren niet eet of drinkt. Een glas water mag wel. Wij willen u 
dus ook vragen te wachten met het ontbijt tot u de 2 speekselverzamelingen hebt gedaan. Verder is 
het belangrijk dat u niet vlak voor de speekselverzameling uw tanden poetst (zo vermijdt u dat het 
speeksel met bloed wordt vermengd). In de ruimte voor opmerkingen kunt u aangeven als er iets niet 
helemaal goed is gegaan of als zich misschien een uitzonderlijk voorval heeft voorgedaan.  
 

Instructie 
 

 U draait de dop van de buis en haalt het wattenrolletje eruit. 
 U legt het wattenrolletje in uw mond gedurende 1 minuut. Het is belangrijk dat het 

wattenrolletje goed doordrenkt wordt. U kunt dit bevorderen door niet te slikken en licht op 
het wattenrolletje te kauwen. 

 Stop het wattenrolletje na 1 minuut terug in het plastic hulsje in de juiste buis en draai de dop 
erop. 

 Vul in onderstaand schema de tijd van de speekselverzameling in. 
 
Buisje Verzamelmoment Tijd 
1. Ontwaken In bed, direct na het wakker 

worden, op de dag dat de 
onderzoeker bij u langskomt 

 
….. uur ….. min 

2. Ontwaken +30 30 minuten na het wakker 
worden 

 
….. uur ….. min 

Opmerkingen 
 
 
 
 
 
 
Op de buisjes staat aangegeven welke u eerst gebruikt (1. Ontwaken) en welke daarna (2. Ontwaken 
+ 30). Er wordt een reserve buisje meegestuurd, mocht er iets misgaan. De onderzoeker zal de 
buisjes na het bezoek meenemen. 
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Appendix V

Health and lifestyle interview

 

 

Interview 
 

Familieonderzoek naar lichamelijke en 
geestelijke gezondheid 

 
 

 
 

 
- In te vullen door de testleider -  
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2012 
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Meten van taille en heupomtrek 
 
 
Algemeen 
 
We gebruiken een centimeter van 1,5 meter lang. De centimeter wordt om het lichaam getrokken, zodat deze goed 
aansluit (niet te los en niet te strak). De taille omtrek wordt op de blote huid gemeten. De heupomtrek over de broek. 
Zorg dat de centimeter parallel loopt op buik- en rugzijde. Omtrek is opgeschreven op een halve cm nauwkeurig.  
 
Taille 
 
De taille wordt gemeten op het smalste punt van het middel. Dit punt ligt net boven de navel.  
 
Heupomtrek 
 
De heupomtrek wordt gemeten op het breedste punt van de heupen. Als hulpmiddel: dit is het punt waar je de 
heupkom goed kunt voelen. 
 
 

 
 

Plakken VU-AMS elektrodes 
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Identificatie door proefleider 
Voornaam?                                                                             Sekse? M / V 

Geboortedatum?                         
□  Testleider: Checken informed consent / speekselverzameling 1 en 2 + instructie met ingevulde tijden / vragenlijst 1 / supplement 

□  Testleider: Voorstellen + uitleg metingen 

□  Testleider: Navraag medicatie: zie medicatiedoosjes 

 

Merknaam  Substantienaam  Dosis / hoe vaak?   Reden  

 

…………………………..  …………………………..  …………………………..  …………………………..  

 

…………………………..  …………………………..  …………………………..  …………………………..  

 

…………………………..  …………………………..  …………………………..  …………………………..  

 

…………………………..  …………………………..  …………………………..  …………………………..  

 

 

□  Assistent: Aansluiten VU-AMS staand: noteren serienummer VU-AMS op dagboekje + tijdstip start (= einde) 24-uurs meting in DB  

□  Assistent: Vragen lengte, meten gewicht, omvang middel en heupomvang  

    Lengte        ……….. cm 

 

    Gewicht           ……….. kg 
    
    Omvang middel  ……….. cm 
    
    Heupomvang    ……….. cm  
 

□  Interview, rustig zitten 

 

Inventarisatie dag / beroep 
1. Wat voor dag is het? 

□  Vrije dag 

□  Werkdag (ook indien u huisvrouw / -man bent) 

□  U heeft momenteel geen werk 

□  Anders, namelijk …………………………………………. 

 

2. Wat voor soort werk doet u momenteel? (Meerdere antwoorden mogelijk) 

□  fulltime betaald werk: meer dan 32 uur per week, specificeer ………. 

□  parttime betaald werk: 12-32 uur per week, specificeer ………. 

□  parttime betaald werk: minder dan 12 uur per week, specificeer ………. 

□  scholier / student 

□  werkeloos, sinds ………. (jaartal) 

□  huisman / huisvrouw, sinds ………. (jaartal) 

□  arbeidsongeschikt ………. (jaartal) 

□   anders, namelijk ………. 
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IN GEVAL VAN WERK 

3. Werkt u in ploegendiensten? Zo ja, hoe zien uw diensten er uit? 

□  Nee, geen ploegendiensten 

□  Ja, ik werk in ploegendiensten. Toelichting: ………………………………………….  

 

4. Hoeveelste werkdag in een rij is dit? 

 

5. Wat is uw beroep? (Gedetailleerd weergeven, ook: leidinggevende functie of niet?) 

 

 
6. Heeft u een zelfstandig beroep? 

□  Ja, geheel zelfstandig: eigen bedrijf of vrij beroep 

□  Gedeeltelijk zelfstandig, toelichting: …………………………………………. 

□  Niet zelfstandig / loondienst 

□  Vrijwilligerswerk 

□  Nooit gewerkt 

7. Wat is uw hoogst genoten opleiding welke u met een diploma hebt afgerond?  

 

Hoe lang duurde deze opleiding? ………. jaar 

 

En betrof dit: 

□  Lager onderwijs  

□  Middelbaar onderwijs (mavo, lbo, vmbo)  

□  Hoger middelbaar onderwijs (havo / vwo, mbo) 

□  Hoger onderwijs (universiteit, hoger niet-universitair, hbo, BaMa) 

□  Anders, namelijk: ……………………….. 

 

Gezondheid 
8. Voelt u zich gezond? 

□  Ja, ik voel me gezond > volgende vraag overslaan 

□  Normaal wel, maar vandaag niet 

□  Nee, ik voel me de laatste tijd niet gezond 

9. Kunt u aangeven waarom u zich niet gezond voelt? 

 

 

 

 
Inspanning 
10. Heeft u zich gisteren zwaar fysiek ingespannen? 
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Sport en beweging 
11. Doet u regelmatig aan sport of lichaamsbeweging? 

□  Nee > alleen volgende vraag overslaan  

□  Ja  

 

 
12. Zo ja, welke sport(en) beoefent u? En kunt u per sport aangeven hoe lang en hoe vaak u deze sport gemiddeld beoefent? 

 

Naam sport  Aantal jaar Aantal maanden  Aantal keer Gemiddelde tijd  

                                                                per jaar               per week per keer 

 

…………………………… ……………….. ………………………..  ………………… ………………… min 

 

…………………………… ……………….. ………………………..  ………………… ………………… min 

 

…………………………… ……………….. ………………………..  ………………… ………………… min 

 

…………………………… ……………….. ………………………..  ………………… ………………… min 

 
 

13. Hoeveel fietst u in een normale week?       ……….. uur en ……….. minuten per week 

 

14. Hoeveel wandelt u in een normale week?    ……….. uur en ……….. minuten per week 

 

Roken 
15. Heeft u ooit gerookt? 

□  Nee > sectie roken kan worden overgeslagen 

□  Een paar keer om te proberen > sectie roken kan worden overgeslagen  

□  Ja 

 
16. Hoeveel jaar rookt of rookte u in totaal?    ……….. jaar  

 

17. Hoe vaak rookt u nu? 

□  Ik ben gestopt met roken sinds …………………….. (mm/jjjj) 

□  Ik rook 1 keer per week of minder 

□  Ik rook meerdere keren per week, niet elke dag 

□  Ik rook 1 of meerdere malen per dag 

 

18. Hoeveel keer heeft u serieus geprobeerd met roken te stoppen?      ……….. keer  

 

 

19. Wat rookt of rookte u? 

 

□  Sigaretten en shag, eventueel samen met sigaren, pijptabak etc. 

□  Uitsluitend sigaren of pijptabak > sectie roken kan verder worden overgeslagen 
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VOOR ROKERS EN EX-ROKERS 
 

20. Hoeveel sigaretten rookt(e) u gemiddeld per dag?                            ……….. sigaretten per dag 

 

 

Alcohol 
21. Hoe vaak drinkt u een alcoholische drank? (Inclusief de keren dat u slechts een kleine hoeveelheid, bijvoorbeeld een paar slokjes, 

drinkt). 

□  Ik drink geen alcohol 

□  1 keer per jaar of minder 

□  Aantal keren per jaar 

□  Ongeveer 1 keer per maand 

□  1 keer per week 

□  Aantal keren per week 

□  Dagelijks 

 

22. Hoeveel glazen alcohol drinkt u gemiddeld per week (inclusief weekend)? 

□  Minder dan 1 glas 

□  1-5 glazen per week 

□  6-10 glazen per week 

□  11-15 glazen per week 

□  16-20 glazen per week 

□  21-40 glazen per week 

□  Meer dan 40 glazen per week 

 

Nachtrust 
 

23. Hoe laat bent u vanochtend opgestaan?     ……….. uur ……….. minuten 

24. Is dit ook uw normale tijd van opstaan? 

□  Ja 

□  Nee, normaal sta ik op om             ……….. uur ……….. minuten 

 

Familie- / gezinssituatie 

25. Hebt u nu een duurzame relatie? 

□  Nee 

□  Ja, niet samenwonend 

□  Ja, samenwonend / gehuwd 

 

26. Hoe lang hebt u een relatie met uw partner? ………. jaar en ………. maanden  

 

27. Bent u eerder getrouwd geweest / hebt u eerder een duurzame relatie gehad (samengewoond / getrouwd)? 

□  Nee 

□  Ja, deze verbintenis is geëindigd in een scheiding / verbroken sinds (jaartal) ……….. 

□  Ja, deze verbintenis is geëindigd door overlijden partner, sinds (jaartal) ……….  

□  Ja, anders, namelijk ………. 
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28. Hebt u kinderen? Zo ja, hoeveel? 

□  Nee 

□  Ja, ik heb ………. biologische kinderen  

□  Ja, ik heb ………. niet-biologische kinderen 

 

29. Wilt u voor uw kinderen aangeven wat hun geboortedatum en geslacht is? 

30. Hoeveel kinderen wonen er op dit moment bij u thuis? 

 
Biologisch / niet-biologisch              Geboortedatum   Geslacht  Thuiswonend ja / nee 
 
…………………………………………  ………. - ………. - ……………….. ……….  ………. 
 
…………………………………………  ………. - ………. - ……………….. ……….  ………. 
 
…………………………………………  ………. - ………. - ……………….. ……….  ………. 
 
…………………………………………  ………. - ………. - ……………….. ……….  ………. 
 

 

ALLEEN VOOR VROUWEN 

Menstruatie 
31. Enkele vragen met betrekking tot de menstruele cyclus. 

Is uw menstruele cyclus regelmatig? 

□  Ja 

□  Nee onregelmatig 

□  Menopauze 

□  Anders, nl. …………………………………………… 

 

32. Wat is gemiddeld het aantal dagen tussen twee menstruaties?     ……….. dagen 

 

33. Wat was de eerste dag van uw laatste menstruatie?    ……………………….. (dd/mm/jjjj) 

34. Gebruikt u anticonceptie? 

□  Ja, nl. ………………………………. (pil / spiraaltje / pessarium / injecties / etc.) 

    Van het merk: ………………………………………………..  

□  Nee 

IN GEVAL VAN MENOPAUZE 
35. Komt de onregelmatigheid van uw menstruatie mogelijk door het begin van de menopauze? 

□  Ja 

□  Nee 

 

36. Hoe lang geleden was uw laatste menstruatie?      ……….. jaar en ……….. maanden 

 

37. Weet u de eerste dag van uw laatste menstruatie nog? Zo ja, Welke dag was dat?  

□  Ja, dat was ……………………….. (dd/mm/jjjj) 

□  Nee 

 

38. Gebruikt u hormoon vervangende middelen? Zo ja, welke medicatie gebruikt u? 

□  Ja, nl. ………………………………………………………… 

□  Nee 
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□  Invullen vragenlijst 2 

□  Stroop / Serial Subtraction 

 

Bloeddruk SBP DBP HR  Tijd (uu:mm) 
 

Rust 1 

 

 

 

   

Start vragenlijst 2  

 

 

Rust 2 

 

 

 

   

Eind vragenlijst 2  

 

 

Stroop 

 

 

 

   

Start Stroop 

 

 

 

SS 

 

 

   

Eind SS 

 

 

 
 

 

Toelichten 

□  Folder overheid 

□  Dagboekje 

□  Retour sturen spullen 

 

Meenemen   

□  Getekende Informed Consent 

□  Cortisol samples 1 en 2 

□  Instructie speekselverzameling met ingevulde tijden van verzameling 1 en 2 

□  Vragenlijst 1 (met supplement) en 2 
 
□  Handtekening op formulier proefpersoonvergoeding  
 
Opmerkingen 
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Stroop  
Volgorde van de 
juiste kleuren 

 
Nr Kleur Fout 
1 Blauw  
2 Geel  
3 Groen  
4 Geel  
5 Rood  
6 Blauw  
7 Rood  
8 Geel  
9 Rood   
10 Blauw  
11 Groen  
12 Geel  
13 Groen  
14 Groen  
15 Rood  
16 Groen  
17 Blauw  
18 Groen  
19 Geel  
20 Geel  
21 Rood  
22 Rood  
23 Geel  
24 Blauw  
25 Groen   
26 Rood  
27 Blauw  
28 Groen  
29 Rood  
30 Geel  
31 Groen  
32 Groen  
33 Geel  
34 Groen  
35 Geel  
36 Blauw  
37 Blauw  
38 Groen  
39 Rood   
40 Geel   
41 Rood  
42 Groen  
43 Geel  
44 Rood  
45 Groen  
46 Rood  
47 Blauw  
48 Groen  
49 Blauw  
50 Groen  
51 Geel  
52 Groen  

53 Groen  
54 Groen  
55 Rood  
56 Geel  
57 Groen  
58 Groen  
59 Geel  
60 Groen  
61 Geel  
62 Geel  
63 Groen  
64 Geel  
65 Rood  
66 Blauw  
67 Rood  
68 Geel  
69 Rood  
70 Blauw  
71 Groen  
72 Geel  
73 Groen  
74 Groen  
75 Blauw  
76 Geel  
77 Groen  
78 Geel  
79 Rood  
80 Blauw  
81 Rood  
82 Geel  
83 Rood  
84 Blauw  
85 Groen  
86 Geel  
87 Groen  
88 Groen  
89 Rood  
90 Groen  
91 Blauw  
92 Groen  
93 Geel  
94 Geel  
95 Rood  
96 Rood  
97 Geel  
98 Blauw  
99 Groen  
 

Aantal fouten: ……… 
 
 
 
 
 
 
 

Serial Subtraction 
2 min terugtellen in 
stappen van 7 vanaf 
1263  

 
Nr Count Fout 
1 1256  
2 1249  
3 1242  
4 1235  
5 1228  
6 1221  
7 1214  
8 1207  
9 1200  
10 1193  
11 1186  
12 1179  
13 1172  
14 1165  
15 1158  
16 1151  
17 1144  
18 1137  
19 1130  
20 1123  
21 1116  
22 1109  
23 1102  
24 1095  
25 1088  
26 1081  
27 1074  
28 1067  
29 1060  
30 1053  
31 1046  
32 1039  
33 1032  
34 1025  
35 1018  
36 1011  
37 1004  
38 997  
39 990  
40 983  
41 976  
42 969  
43 962  
44 955  
45 948  
46 941  
47 934  
48 927  
49 920  
50 913  
51 906  

52 899  
53 892  
54 885  
55 878  
56 871  
57 864  
58 857  
59 850  
60 843  
61 836  
62 829  
63 822  
64 815  
65 808  
66 801  
67 794  
68 787  
69 780  
70 773  
71 766  
72 759  
73 752  
74 745  
75 738  
76 731  
77 724  
78 717  
79 710  
80 703  
81 696  
82 689  
83 682  
84 675  
85 668  
86 661  
87 654  
88 647  
89 640  
90 633  
91 626  
92 619  
93 612  
94 605  
95 598  
 

 
Aantal fouten: ……… 
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Appendix VI

Activity diary

 

 

Dagboekje 
 

Familieonderzoek naar lichamelijke en 
geestelijke gezondheid 

 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 

 

 

 

 

 

STICKER 
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1. Wat wordt er van u verwacht? 
 

De hartactiemeter 
 
U krijgt de meter ’s ochtends aan het begin van de (werk)dag bevestigd. Als de meter eenmaal gestart is, 
hoeft u er verder niets aan te doen; u kunt uw dagelijkse activiteiten gewoon verrichten. Graag zouden wij 
zien dat u gedurende de meetdag geen extreem fysieke inspanning verricht en niet teveel alcohol drinkt. 
Gelieve de hartactiemeter 24 uur, dag en nacht, om te houden. Wanneer de hartactiemeter is 
aangesloten, knippert er een groen lampje. 
Als het lampje langzaam knippert (2-3 maal per 10 seconden), is alles in orde en wordt de hartactie 
gemeten. Als het lampje snel knippert, is dit meestal een teken dat een van de elektrodes heeft 
losgelaten. In dat geval, willen wij u vragen de elektrodes te controleren en opnieuw vast te maken.  
 

 
 
 
 

Invullen van het activiteitendagboek 
 
De gemeten biologische signalen (zoals de hartslag) worden beïnvloed door lichamelijke activiteit en 
lichaamshouding. Om de gegevens goed te kunnen interpreteren is het noodzakelijk een nauwkeurig beeld 
te hebben van uw activiteiten. Daarom vragen we u tijdens de ambulante metingen elk uur een 
activiteitendagboek in te vullen.   
 
1. U vult eerst in het dagboekje de begin- en eindtijd in. 
2. Vervolgens vult u, op volgorde van tijd, in wat u sinds de vorige keer hebt gedaan. Van belang hierbij is 
dat u naast het soort activiteit ook de verandering in houding vermeldt. Als u bijvoorbeeld eerst aan tafel 
hebt gezeten en vervolgens een tijdje hebt gestaan, schrijft u dit dan op. Ook willen wij graag weten of u 
in gezelschap van mensen was of alleen. Probeer het dagboek elk uur in te vullen.  
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Voorbeeld dagboekje 
 
Tijd  
Van 7 uur 15 min  
Tot 8 uur 15 min 

Vul in: activiteit, houding, aanwezigheid andere personen 
(collega, partner, etc.), locatie (werk, thuis, etc.) 

 

Kastje werd omgehangen, gestaan en gegeten (thuis). Onderzoeker was 7.30 weg, rondgelopen, 

ontbijt klaargezet. Alleen ontbeten, zittend (thuis). Daarna beetje opgeruimd en katten eten 

gegeven. Om 8 uur naar buiten met vuilnis (lopen en staan). Daarna ongeveer 20 minuten 

naar het werk gefietst. 

 

 

 

Tijd 
Van 8 uur 15 min  
Tot 9 uur 15 min 

Vul in: activiteit, houding, aanwezigheid andere personen (collega, 
partner, etc.), locatie (werk, thuis, etc.) 

 

Aangekomen op werk, computer aan gezet (zittend), koffie gehaald (gelopen), gekletst met 

collega’s (staand). 9.00 uur aan het werk. PC werk (alleen) zittend. 

 

 

 

 

 

Tijd 

Van 9 uur 15 min  

Tot   10 uur 15 min 

Vul in: activiteit, houding, aanwezigheid andere personen (collega, 
partner, etc.), locatie (werk, thuis, etc.) 

 

Vergadering met collega’s zittend, hevige discussies (op werk). Daarna zitten achter PC 

(alleen). 2 keer opgestaan om naar printer te lopen 
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2. Dag 1 
 

Ochtend 
 
Ontbijt … uur … min 

 
Tijd  

Van ….. uur …min  

Tot ….. uur …min 

Vul in: activiteit, houding, aanwezigheid andere 
personen (collega, partner, etc.), locatie (werk, thuis, 
etc.) 

 

 

 

 

 

 

 

Tijd  

Van ….. uur …min  

Tot ….. uur …min 

Vul in: activiteit, houding, aanwezigheid andere personen 
(collega, partner, etc.), locatie (werk, thuis, etc.) 

 

 

 

 

 

 

 

 

Tijd  

Van ….. uur …min  

Tot ….. uur …min 

Vul in: activiteit, houding, aanwezigheid andere personen 
(collega, partner, etc.), locatie (werk, thuis, etc.) 
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Tijd  

Van ….. uur …min  

Tot ….. uur …min 

Vul in: activiteit, houding, aanwezigheid andere 
personen (collega, partner, etc.), locatie (werk, 
thuis, etc.) 

 

 

 

 

 

 

 

 

Tijd  

Van ….. uur …min  

Tot ….. uur …min 

Vul in: activiteit, houding, aanwezigheid andere 
personen (collega, partner, etc.), locatie (werk, thuis, 
etc.) 

 

 

 

 

 

 

 

 

 

Tijd  

Van ….. uur …min  

Tot ….. uur …min 

Vul in: activiteit, houding, aanwezigheid andere 
personen (collega, partner, etc.), locatie (werk, thuis, 
etc.) 
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Middag 
 
Lunch … uur … min 

 
Tijd  

Van ….. uur …min  

Tot ….. uur …min 

Vul in: activiteit, houding, aanwezigheid andere 
personen (collega, partner, etc.), locatie (werk, thuis, 
etc.) 

 

 

 

 

 

 

Tijd  

Van ….. uur …min  

Tot ….. uur …min 

Vul in: activiteit, houding, aanwezigheid andere personen 
(collega, partner, etc.), locatie (werk, thuis, etc.) 

 

 

 

 

 

 

 

Tijd  

Van ….. uur …min  

Tot ….. uur …min 

Vul in: activiteit, houding, aanwezigheid andere personen 
(collega, partner, etc.), locatie (werk, thuis, etc.) 
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Tijd  

Van ….. uur …min  

Tot ….. uur …min 

Vul in: activiteit, houding, aanwezigheid andere 
personen (collega, partner, etc.), locatie (werk, thuis, 
etc.) 

 

 

 

 

 

 

 

Tijd  

Van ….. uur …min  

Tot ….. uur …min 

Vul in: activiteit, houding, aanwezigheid andere personen 
(collega, partner, etc.), locatie (werk, thuis, etc.) 

 

 

 

 

 

 

 

 

Tijd  

Van ….. uur …min  

Tot ….. uur …min 

Vul in: activiteit, houding, aanwezigheid andere personen 
(collega, partner, etc.), locatie (werk, thuis, etc.) 
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Avond 
 
Avondeten … uur … min 

 
Tijd  

Van ….. uur …min  

Tot ….. uur …min 

Vul in: activiteit, houding, aanwezigheid andere 
personen (collega, partner, etc.), locatie (werk, thuis, 
etc.) 

 

 

 

 

 

 

Tijd  

Van ….. uur …min  

Tot ….. uur …min 

Vul in: activiteit, houding, aanwezigheid andere personen 
(collega, partner, etc.), locatie (werk, thuis, etc.) 

 

 

 

 

 

 

 

Tijd  

Van ….. uur …min  

Tot ….. uur …min 

Vul in: activiteit, houding, aanwezigheid andere personen 
(collega, partner, etc.), locatie (werk, thuis, etc.) 

 

 

 

 

 

 

 
Vanavond om 22.30uur, of daarvoor als u eerder gaat slapen, gaat u weer speeksel verzamelen. 
Wilt u ervoor zorgen dat u een half uur van tevoren niets meer eet of drinkt (behalve een glas 
water)? Vergeet u niet in te vullen hoe laat u het speeksel verzamelt? 
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Tijd  

Van ….. uur …min  

Tot ….. uur …min 

Vul in: activiteit, houding, aanwezigheid andere personen 
(collega, partner, etc.), locatie (werk, thuis, etc.) 

 

 

 

 

 

 

Tijd  

Van ….. uur …min  

Tot ….. uur …min 

Vul in: activiteit, houding, aanwezigheid andere personen (collega, 
partner, etc.), locatie (werk, thuis, etc.) 

 

 

 

 

 

Tijd  

Van ….. uur …min  

Tot ….. uur …min 

Vul in: activiteit, houding, aanwezigheid andere personen (collega, 
partner, etc.), locatie (werk, thuis, etc.) 

 

 

 

 

 
 

Speekselverzameling 3 
(3. Avond) 

22.30 uur òf 
voor het slapen 
gaan als dit 
eerder is 
 

Werkelijke tijd: 
 
….. uur ….. min 

 
 

 
Wilt u voor u gaat slapen nog de POMS stemmingsvragenlijst op de volgende pagina invullen? 
 
En denkt u er aan de 2 laatste buisjes voor de speekselverzameling alvast op uw nachtkastje 
klaar te leggen voor morgenvroeg, als u wakker wordt? 
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POMS Stemmingsvragenlijst 

 
De woorden in de lijst hieronder beschrijven stemmingen of gevoelstoestanden. Lees ieder woord nauwkeurig 
en kruis dan aan hoe u zich vandaag voelde. Denk niet te lang na over uw antwoord. Het gaat om uw eerste 
indruk. Er bestaan geen foute antwoorden. Elk antwoord is goed, als het maar uw eigen stemming weergeeft. 
Sla geen woord over. 
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1. Neerslachtig □ □ □ □ □ 20. Ongelukkig □ □ □ □ □ 
2. Slecht gehumeurd □ □ □ □ □ 21. Woedend □ □ □ □ □ 
3. Uitgeput □ □ □ □ □ 22. Lusteloos □ □ □ □ □ 
4. Actief □ □ □ □ □ 23. Vol energie □ □ □ □ □ 
5. Zenuwachtig □ □ □ □ □ 24. Rusteloos □ □ □ □ □ 
6. Hulpeloos □ □ □ □ □ 25. Onwaardig □ □ □ □ □ 
7. Geërgerd  □ □ □ □ □ 26. Knorrig □ □ □ □ □ 
8. Helder □ □ □ □ □ 27. Doodop □ □ □ □ □ 
9. Paniekerig □ □ □ □ □ 28. Schuldig □ □ □ □ □ 
10. Droevig □ □ □ □ □ 29. Opgeruimd □ □ □ □ □ 
11. Vriendelijk □ □ □ □ □ 30. Angstig □ □ □ □ □ 
12. Opstandig □ □ □ □ □ 31. Droefgeestig □ □ □ □ □ 
13. Vermoeid □ □ □ □ □ 32. Kwaad □ □ □ □ □ 
14. Levendig □ □ □ □ □ 33. Afgemat □ □ □ □ □ 
15. Gespannen □ □ □ □ □ 34. Onzeker □ □ □ □ □ 
16. Eenzaam □ □ □ □ □ 35. Wanhopig □ □ □ □ □ 
17. Bezorgd □ □ □ □ □ 36. Behulpzaam □ □ □ □ □ 
18. Verbitterd □ □ □ □ □ 37. Ontmoedigd □ □ □ □ □ 
19. Aan het eind van mijn 
krachten 

□ □ □ □ □ 38. Mopperend □ □ □ □ □ 
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3. Dag 2 
 

Ochtend 
 
Wilt u als u wakker wordt, terwijl u nog in bed ligt, speekselverzameling 4 doen? En vult u dan 
in onderstaand schema in hoe laat u dit heeft gedaan? 
 
 

Speekselverzameling 4 
(4. Ontwaken) 

Wakker worden  
(in bed) 

Werkelijke tijd: 
 
….. uur ….. min 

 
Om de hartactiemeter uit te zetten, houdt u het knopje bovenaan het kastje 5 seconden 
ingedrukt. Daarna mag u de hartactiemeter afdoen en de batterijen er uit halen. Over 30 
minuten vragen we u voor de laatste keer speeksel te verzamelen. Denkt u er aan dat u in de 
tussentijd niets eet of drinkt (behalve een glas water)? Wacht u alstublieft ook nog even met 
het poetsen van uw tanden? U mag ondertussen de laatste vragen invullen. Ze staan hieronder. 
 
Slaapkwaliteit 

 
Hieronder volgen 15 uitspraken over de kwaliteit van uw slaap. Het gaat er om dat u aangeeft of de 
uitspraak van toepassing is op uw slaap zoals die de afgelopen nacht was. De uitspraken lijken soms op 
elkaar, maar zijn nooit hetzelfde. Beantwoord alstublieft elke vraag. 
 
 Ja Nee 

1. Ik heb geen oog dicht gedaan □ □ 
2. Ik had, nadat ik wakker geworden was, moeite weer in slaap te vallen □ □ 
3. Ik ben tijdens de slaapperiode opgestaan □ □ 
4. Ik vind dat ik heel slecht geslapen heb □ □ 
5. Ik sliep makkelijk in □ □ 
6. Ik sliep niet langer dan 5 uur □ □ 
7. Ik lag langer dan een half uur wakker □ □ 
8. Ik ben meerdere malen wakker geworden □ □ 
9. Ik lag erg te woelen □ □ 
10. Ik vind dat ik goed geslapen heb □ □ 
11. Ik heb naar mijn gevoel maar een paar uur geslapen □ □ 
12. Ik had, nadat ik was opgestaan, een moe gevoel □ □ 
13. Ik ben naar mijn gevoel slaap tekort gekomen □ □ 
14. Ik voelde me, nadat ik was opgestaan, goed uitgerust □ □ 
15. Heeft u vannacht slechter geslapen als gevolg van de hartslagmetingen? □ □ 
16. Hoe laat ging u naar bed?    uur    min  

17. Hoe laat stond u op?    uur    min 
 

Speekselverzameling 5 
(5. Ontwaken + 30) 

30 min na het 
wakker worden  
 

Werkelijke tijd: 
 
….. uur ….. min 

 
 
Ontbijt … uur ... min 
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4. Einde van het onderzoek 
 
Het onderzoek is afgelopen! Wij willen u zeer hartelijk bedanken voor uw medewerking en inzet. Als laatste  
willen wij u vragen onderstaande spullen naar ons terug te sturen. U heeft daarvoor een grote bubbeltjes- 
envelop gekregen waar het goede adres al op staat. Let u goed op dat u alles in de envelop doet:  
 
□  Hartactiemeter  

□  Elektroden           

□  Beschermhoes hartactiemeter + draagriem  

□   Batterijen     

□  3 buisjes met wattenrolletjes van de speekselverzameling 

□  Dagboekje     

Als u de vragenlijsten nog niet heeft meegegeven aan de onderzoeker:     

□  Vragenlijst 1      

□  Vragenlijst 2 

 
Een postzegel plakken is niet nodig, dit betaalt de VU (u stuurt de spullen terug naar ons antwoordnummer). 
Helaas is de envelop net wat te dik om door de brievenbus te kunnen. Wij willen u daarom vriendelijk  
verzoeken deze: 
 
□  Af te geven / in de postbak te deponeren bij een postkantoor bij u in de buurt  

□  TNT Post is tegenwoordig ook steeds vaker gevestigd in winkels als supermarkten, boekhandels,  

    tabakszaken en drogisterijen. Vaak kunt u ook daar een postbak of -zak vinden waar u grotere pakketten  

    kunt posten         

□  Indien mogelijk, kunt u de envelop afgeven bij de postafdeling van uw werk  
 
U krijgt van ons binnen enkele weken, nadat wij uw gegevens hebben verwerkt, een uitdraai van uw hartslag  
en bloeddruk thuisgestuurd. Als dank voor uw deelname, sturen wij een cadeaubon van EUR 10,- mee. 
 
Als u nog vragen of opmerkingen heeft, kunt u deze op de volgende pagina kwijt. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Naam onderzoeker / contactpersoon: …………………………………………………………………………………………………………. 
 
Telefoonnummer: 020-5982537 òf 06-50698826  
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Appendix VII

Thank you letter and annotated review of the recording

NEDERLANDS TWEELINGEN REGISTER (NTR) 

 
FACULTEIT DER PSYCHOLOGIE EN PEDAGOGIEK 
Biologische Psychologie 

BEZOEKADRES 
Van der Boechorststraat 1 
Kamer 2B-35 
1081 BT Amsterdam 

POSTADRES 
Van der Boechorststraat 1 
1081 BT Amsterdam 

WWW.FPP.VU.NL  

  

DATUM ONS KENMERK UW BRIEF VAN UW KENMERK 

 NETAMB3-062010/b5       

E-MAIL TELEFOON FAX BIJLAGE(N) 

m.neijts@vu.nl 020 5982537 020 598 8832 uitdraai hartslag 
cadeaubon 
 

   

 
Geachte heer , mevrouw, 
 
 
Wij zijn onlangs bij u op bezoek geweest in het kader van het familieonderzoek naar lichamelijke en 
geestelijke gezondheid. Tijdens dat bezoek hebben wij uw bloeddruk gemeten en kreeg u een hartactiemeter 
om, die u tot de volgende ochtend omhield. Zoals beloofd ontvangt u van ons hierbij een uitdraai van uw 
resultaten met een korte toelichting. 
 
Als blijk van dank voor uw deelname voegen wij tevens een cadeaubon van EUR 10,- bij.  
 
Via de NTR website wwww.tweelingenregister.org kunt u op de hoogte blijven van de ontwikkelingen binnen 
dit onderzoek. De knop “Onderzoek” aan de linkerkant van de site brengt u op een pagina waarop ook dit 
onderzoek vermeld wordt.  
 
Wij willen u bij deze hartelijk danken voor uw bijdrage aan het onderzoek van het Nederlands Tweelingen 
Register. 
 
 
Met vriendelijke groet, namens het onderzoeksteam, 
 
 
 
 
Drs. Melanie Neijts 
Prof. dr. Eco de Geus 
Dr. Gonneke Willemsen 
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Uw persoonlijke gegevens 
 

De hartactiemeter die u tijdens ons bezoek om kreeg en dat u tot de volgende ochtend omhield, 
registreerde ondermeer uw hartslag en de hoeveelheid lichaamsbeweging.  
Door de bewegingsregistratie te combineren met de gegevens uit uw dagboekje konden we de 
gemiddelde hartslag tijdens verschillende bezigheden bepalen. Hieronder ziet u deze gegevens 
weergegeven. Aan de linkerkant ziet u de verschillende bezigheden gedurende de meetperiode. In het 
balkje daarnaast ziet u uw gemiddelde hartslag voor iedere bezigheid. Deze wordt tevens aangegeven 
door de lengte van de balk. 

 
Een uitleg van de categorieën kunt u vinden op onze website www.tweelingenregister.org door via de 
knop 'Onderzoek' aan de linkerkant naar de lijst met NTR onderzoeken te gaan. Onder 'TITEL 
ONDERZOEK' ziet u deze studie, ‘Familieonderzoek naar lichamelijke en geestelijke gezondheid,‘ staan. 
 

Op de achterzijde vindt u een grafiek die uw hartslag en beweging weergeeft over de gehele periode dat 
u de hartactiemeter om had. Bovenaan in de figuur staan de gegevens voor de eerste helft van de 
meetperiode, onderaan de gegevens voor de tweede helft van de meetperiode.  

 
Naast de hartactiviteit hebben wij tijdens het bezoek een aantal keer uw bloeddruk gemeten. Bloeddruk 
wordt altijd weergegeven door twee waarden: de bovendruk en de onderdruk. Deze waarden worden 
uitgedrukt in millimeters kwikdruk (mm Hg).  
 
Uw gemiddelde bloeddruk over de metingen was … /… mm Hg. 
 
Een bloeddruk wordt als verhoogd beschouwd als de bovendruk hoger is dan 160 mm Hg en/of de 
onderdruk hoger is dan 95 mm Hg.  
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List of abbreviations 
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-2LL Minus twice the logarithm of the likelihood

ACh Acetylcholine

AIC Akaike’s information criterion

ANS Autonomic nervous system

BMI Body mass index

BRS Baroreflex sensitivity

CN Cranial nerve

CRP C-reactive protein

CVD Cardiovascular disease

DOS Dizygotic opposite-sex

DZ Dizygotic

dZ/dt Change in thoracic impedance

E Epinephrine

ECG Electrocardiogram

EF Ejection fraction

GSKL Groningse slaap kwaliteit lijst

GWAS Genome wide association study

HDL-cholesterol High-density lipoprotein cholesterol

HF High frequency

HR  Heart rate

HRV Heart rate variability

IBI Interbeat interval

ICG Impedance cardiogram

IML Intermediolateral

IL-6 Interleukin-6

LDL-cholesterol Low-density lipoprotein cholesterol

LF Low frequency

LF/HF The ratio of low to high frequency power

MSNA Muscle sympathetic nerve activity

MZ Monozygotic

NE Norepinephrine

nsSCR Nonspecific skin conductance responses

NTR Netherlands twin register

NTS Nucleus of the solitary tract
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PEP Pre-ejection period

POMS Profile of mood states

PNS Parasympathetic nervous system

pvRSA Respiratory sinus arrhythmia derived by peak-valley estimation

RMSSD  Root mean square of differences between valid, successive interbeat 

intervals

RSA Respiratory sinus arrhythmia 

RVLM Rostral ventrolateral medulla

SA Sinoatrial

SBP Systolic blood pressure

SCL Skin conductance level

SCR Skin conductance response

SDNN Standard deviation of all valid interbeat intervals

SEM Structural equation modeling

SES Socioeconomic status

SNP Single nucleotide polymorphism

SNS Sympathetic nervous system

SVR Systemic Vascular Resistance

TNF-α Tumor necrosis factor-alpha

TP Total power

TWA T-wave amplitude

ULF Ultra low frequency

VLF Very low frequency

VU-AMS VU university ambulatory monitoring system

Z Thoracic impedance
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Klaar! Althans, voor zover dit mogelijk is binnen de zich voortdurend aan ontwikkeling 

onderhevig zijnde wetenschap. Maar, dit project is nu afgesloten en wat was het een 

groot project en wat waren er veel mensen bij betrokken! Graag zou ik dit proefschrift 

dan ook willen besluiten de mensen te bedanken die mee hebben geholpen aan de 

totstandkoming ervan.

Allereerst grote dank aan alle tweelingen en hun familieleden voor hun trouwe 

deelname aan het doorlopende onderzoek van het Nederlands Tweelingen Register en 

in het bijzonder natuurlijk de deelnemers aan deze studie. Ik zou kunnen zeggen zonder 

deelnemers geen onderzoek wat een waarheid als een koe is, maar dan zou ik jullie 

bijdrage nog tekort doen. De fijne onthalen, jullie interesse, inzet en welwillendheid mee 

te werken was vaak hartverwarmend. 

Dan wil ik graag mijn promotor en copromotor bedanken. Eco, bedankt voor je 

wijsheid, doortastendheid en humor. Je enthousiasme is aanstekelijk; een werkbespreking 

stapte ik vaak weer vol goede moed en met veel nieuwe inzichten en ideeën rijker weer uit. 

Ondanks je enorme takenpakket bij zowel de VU als het VUmc, wist jij altijd binnen afzienbare 

tijd mijn vragen te beantwoorden of mijn stukken van commentaar te voorzien. Ik heb 

enorm veel van je kunnen leren tijdens mijn promotietraject. Gonneke, van jou heb ik ook 

zoveel mogen leren tijdens mijn aanstelling bij de VU. Je stond altijd voor me klaar tijdens 

elke fase van het traject. Altijd kon ik bij je langskomen en bood je een luisterend oor. Als 

ik door de bomen het bos even niet meer zag, kwam jij met een helder stappenplan. Als ik 

vastliep met een script, maakte jij tijd om het samen door te lopen. Dank voor jouw begrip, 

geduld en support. Dorret, ook jou wil ik expliciet bedanken voor de mooie ervaringen die 

ik op heb mogen doen tijdens mijn aanstelling bij de afdeling Biologische Psychologie. Ik 

ben je heel dankbaar dat ik de kans heb gekregen zoveel over onderzoek en methoden te 

leren en te werken in zo’n dynamische en gemotiveerde onderzoeksgroep.

Ik wil de leden van de leescommissie bedanken voor het lezen en beoordelen van  

mijn proefschrift: prof. dr. Huizink, dr. Ijzerman, dr. Kupper, prof. dr. Snieder, en dr. Tiemeier. 

Ook alle (ex-)collega’s, mede-AIO’s, en collega’s van het secretariaat zou ik hartelijk 

willen bedanken voor de afgelopen tijd. In het bijzonder ook mijn (ex)kamergenootjes: 

Tinca, Inge, Laura, Michelle, en Fiona. En natuurlijk Suzanne: jij bent bijna van het begin 

tot het eind mijn kamergenoot geweest en ik heb ook jouw traject van heel dichtbij mogen 

aanschouwen. Voor jou nu ook de laatste loodjes!! Rene, Ineke, en Nienke, de mede-AMS 

AIO’s ook jullie wil ik nog even speciaal bedanken voor de fijne samenwerking. Rene 

wij gaan het langste terug; het was een hele belevenis samen met jou bij de practica 
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voor Psychophysiology te assisteren. Er was altijd leven in de brouwerij en we hebben 

samen heel wat afgelachen. Dit stokje werd vorig jaar overgedragen aan Ineke. Het is 

bewonderenswaardig met hoeveel gemak jij dit overgenomen hebt, naast dat je het zo 

druk hebt met de dataverzameling voor je eigen project. Respect! 

Ik wil graag nog bedanken mijn onderzoeksassistenten Lena en Rianne; wat waren  

we een goed team en wat hebben we samen veel meegemaakt in die twee jaar data-

verzameling. Door weer en wind en in alle vroegte hebben we bijna 600 huisbezoeken 

afgelegd, gewapend met een tray red bull, flessen bar le duc citroen en een doos napo-

leons. Ook wil ik graag alle stagiaires bedanken die mee hebben geholpen aan dit 

project: Amber, Elisabeth, Eline, Hester, Kirsten en Naomi. Door jullie inzet hebben we 

nog even extra gas kunnen geven.

De TD: Cor, Evert, Jarik, Rob, Daan en Menaka. Ik weet niet wat ik zonder jullie 

had gemoeten. Jullie stonden altijd met en raad en daad voor ons klaar als we tegen 

software of hardware problemen aanliepen. Samenwerken met jullie was een feest door 

jullie enorme drive en gastvrijheid; ook de keukendeur stond altijd open voor een lekker 

kopje koffie met koek wat na die vroege ritten zeer welkom was! Rene, Marwin en Marco: 

bedankt voor jullie fantastische ICT support. Jullie kwamen altijd direct voor me in actie 

als er problemen waren, zelfs in de tijd van de rode computers. Klasse!

Jenny en Laili, wat ontzettend fijn dat jullie mijn paranimfen willen zijn. Jenny, jou 

heb ik leren kennen bij BioPsy. We zijn in eerste instantie min of meer meteen aan elkaar 

gekoppeld toen ik twee maanden na aanvang van mijn aanstelling een kamer in Boulder 

met je ging delen. Gelukkig bleek dat wel een goede match; ik heb je leren kennen als 

een lief en oprecht persoon, barstensvol met leuke ideeën. Ik vind het fijn dat jij mij bij 

wilt staan! Laili, wij kennen elkaar van onze studie Psychologie en hebben lief en leed 

met elkaar gedeeld. Ik vind het heel speciaal dat ik ook dit met jou kan delen. Dan wil ik 

nog bedanken mijn andere lieve Maastricht-vrienden Michiel, Casper en Tessa. Allemaal 

verschillende kanten op gegaan, letterlijk en figuurlijk, maar ik geniet nog steeds van 

onze get togethers. En natuurlijk Aafke, jouw steun betekent heel veel voor mij. Ik vind 

het heel bijzonder dat we zo veel levensfases later nog steeds zo betrokken zijn bij elkaar. 

Als laatste mijn familie en in het bijzonder mijn vader Peter en broertje Bram. Dank 

voor jullie onvoorwaardelijke steun en geloof in mij. Mama, wat had ik dit graag ook met 

jou willen delen, ik weet zeker dat je het fantastisch had gevonden! En tot slot, Dennis.. ik 

ben heel blij dat ik jou heb leren kennen en wil je bedanken voor alle liefde, vertrouwen 

en steun. Ik hoop dat we samen nog veel mooie momenten gaan beleven!




	Blank Page



