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Despite twin and family studies having demonstrated a substantial heritability of individual
differences in intelligence, no genetic variants have been robustly associated with normal-range
intelligence to date. This is largely ascribed to the high polygenicity of intelligence, i.e., to its being
subject to the effects of a large number of genes of individually small effect. Intellectual disability,
on the other hand, frequently involves large effects of single genetic mutations, many of which
have been identified. The present paper aims to 1) introduce the reader to the current state of
genetic intelligence research, including next-generation sequencing and the analysis of rare
genetic variants, and 2) examine the possible effects of known disability genes on normal-range
intelligence. The rationale for the latter rests on the fact that genetic variants affecting continuous,
polygenic traits are often concentrated in the same areas of the genome as those underlying
related monogenic phenotypes. Using an existing pool of known intellectual disability genes, we
constructed a set of 168 candidate genes for normal-range intelligence, and tested their
association with intelligence in 191 individuals (aged 5–18) sampled from the high and low ends
of the IQ distribution. In particular, we 1) employed exon sequencing to examine the possible
effects of rare genetic variants in the 168 genes, and 2) used polygenic prediction to examine the
overall effect of common genetic variants in the candidate gene set in a larger sample (N= 2125,
mean age 20.4, SD = 14.1). No significant association between the candidate gene set and
intelligence was detected.
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1. Introduction

Intelligence is one of the most frequently studied human
behavioral traits and one of the strongest known predictors
of major life outcomes such as educational attainment,
occupational success, health, and longevity (Deary, Johnson, &
Houlihan, 2009; Deary, Whiteman, Starr, Whalley, & Fox, 2004;
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Gottfredson, 1997b; Gottfredson & Deary, 2004; Neisser et al.,
1996; Schmidt & Hunter, 2004). Over the past century it has
motivated research across a diverse range of fields including
not only the behavioral sciences, but also neurosciences,
molecular biology, economics, and genetics. Interestingly,
behavior genetic studies of intelligence frequently converge
on two seemingly incompatible findings. On the one hand,
twin and family studies have demonstrated 1) a substantial
genetic component of individual differences in intelligence
(e.g., Bouchard & McGue, 1981; Deary, Spinath, & Bates, 2006;
Plomin, Defries,McClearn, &McGuffin, 2008; Plomin& Spinath,
2004), and 2) an increase in the relative magnitude of this
component across development (from around 20% in infancy,
to ~40–50% in middle childhood and ~60–80% in adulthood
(e.g., Bartels, Rietveld, Van Baal, & Boomsma, 2002; Bishop
et al., 2003; Boomsma & van Baal, 1998; Deary, Spinath, et al.,
2006; Deary, Whalley, Batty, & Starr, 2006; Haworth et al.,
2009; Hoekstra, Bartels, & Boomsma, 2007; McGue, Bouchard,
Iacono, & Lykken, 1993; Petrill et al., 2004; Plomin, 1986;
Polderman et al., 2006). On the other hand, genetic association
studies aiming to identify the genetic variants contributing to
the observed individual differences have cumulatively identi-
fied genetic variants that explain less than 1% of the observed
variability (Benyamin et al., 2013; Chabris et al., 2012; Davies
et al., 2011). This gap between the estimated heritability and
the variance explained by known variants, frequently termed
the ‘missing heritability’ (Maher, 2008), has been assigned a
multitude of explanations. These include the insufficient
statistical power to detect genetic variants of small effect size,
the potential overestimation of heritability by twin studies,
issues pertaining to themeasurement and operationalization of
intelligence, and the possibility of causal genetic variants not
tagged on present genotyping platforms (including rare
and structural variation) underlying the heritability (see,
e.g., Dickson, Wang, Krantz, Hakonarson, & Goldstein, 2010;
Eichler et al., 2010; Goldstein et al., 2013; Manolio et al., 2009;
van der Sluis, Verhage, Posthuma, & Dolan, 2010; Zuk, Hechter,
Sunyaev, & Lander, 2012). The largest genome-wide associa-
tion (GWA) studies to date identified no genetic variants
robustly associated with intelligence, and only one gene,
FNBP1L, has been tentatively implicated in the etiology of
normal-range intelligence to date (Benyamin et al., 2013;
Davies et al., 2011).

Recent years have seen an increase in the use of several
additional approaches to addressing the missing heritability
issue. Firstly, the development of the methodology for the
estimation of heritability using measured genetic information,
implemented in the genome-wide complex trait analysis tool
(GCTA; Yang, Lee, Goddard, & Visscher, 2011), has enabled the
estimation of the proportion of the variance in intelligence
explained by the total additive effects of common genetic
variants tagged on the present genotyping platforms. Ranging
from ~22 to ~46% in children and adolescents (Benyamin et al.,
2013; Plomin, Haworth, Meaburn, Price, & Davis, 2013;
Trzaskowski, Shakeshaft, & Plomin, 2013; Trzaskowski, Yang,
Visscher, & Plomin, 2013; Trzaskowski et al., 2014) and from
~29 to ~51% in adults (Davies et al., 2011; Marioni et al., 2014),
these estimates are substantially larger than the variance
presently explained in the GWA studies. However, they remain
lower than the (twin and family study-based) estimates of
the total genetic variance of intelligence. In addition, while
demonstrating that a substantial proportion of the variance in
intelligence is attributable to the additive effects of common
genetic variation, GCTA estimates provide no information
on the specific genetic variants associated with intelligence.
Secondly, the recent advent of the large-scale use of sequencing
technologies, which enable the measurement of the complete
nucleotide sequence of a genome, has opened a wealth of
possibilities for the study of intellectual disability (much of
which is monogenic, i.e., caused by a single genetic mutation),
This led to the discoveries of many previously unknown
genetic causes of cognitive impairment (e.g., Najmabadi et al.,
2007; Najmabadi et al., 2011). For instance, sequencing has
enabled the identification of genes underlying a range of
sporadic, syndromic conditions involving intellectual disability
(e.g. Schinzel–Giedion syndrome, Kabuki syndrome; Hoischen
et al., 2010; Ng et al., 2010), as well as many sporadic and
familial causes of non-syndromic intellectual disability (see
Topper, Ober, & Das, 2011). However, sequencing technologies
are seldom employed to study the genetics of normal-range
intelligence. This is partly due to the highly polygenic nature of
intelligence (i.e., its being subject to a large number of very
small genetic effects), and the consequent need for (often
prohibitively) large samples to achieve sufficient statistical
power for the detection of individual causal variants.

In the present study, we utilize the existing knowledge on
the genetics of monogenic (i.e., Mendelian) disorders to
construct a plausible set of candidate genes for normal-range
intelligence. The study is based on a simple rationale, namely
the idea that the genetic variants giving rise to monogenic
disorders may be localized in the same areas of the genome as
those affecting continuous variation in related polygenic traits.
Previous research has amply demonstrated the plausibility of
this with respect to several other phenotypes. For instance,
several genes causing monogenic forms of Parkinson's disease
have been associated with the common, polygenic form of the
disease (Gasser, 2009). Rare genetic variants in three candidate
genes (ABCA1, APOA1, and LCAT), giving rise to pathogenically
low levels of HDL-cholesterol in plasma, are also found in
individuals with the common, polygenic version of the low-
HDL-cholesterol trait (Cohen et al., 2004; Frikke-Schmidt,
Nordestgaard, Jensen, & Tybjærg-Hansen, 2004). Other exam-
ples include height (Allen et al., 2010), body mass index (Loos
et al., 2008), lipid levels (Hirschhorn & Gajdos, 2011),
hemoglobin F levels (Hirschhorn & Gajdos, 2011), and type 2
diabetes (Sandhu et al., 2007).

Genes underlying monogenic disorders, in which protein
functioning is severely altered, may therefore provide an
opportunity to localize the genetic variation underlying a
similar, polygenic phenotype. Utilizing this idea, we sequenced
the exons (i.e., expressed regions) of 168 genes known to
underlie intellectual disability, and examined their association
with intelligence in a sample of 191 individuals. By design, we
focused on the detection of the possible effects of rare genetic
variation. This is in linewith the assumption of inter-individual
variability in intelligence being maintained by low-frequency,
disruptive mutations of small effect size (e.g., Hsu, 2012;
Marioni et al., 2014). Because selection on fitness-related traits,
including intelligence, is expected to a) preventmutationswith
large negative effects from becoming common in the popula-
tion, and b) lead to an accumulation of mutations with large
positive effects, resulting in their uniform presence in the
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population (as monomorphisms, i.e., non-variable DNA sites),
the genetic architecture of intelligence is expected to be
marked by the absence of genetic variants of large effect sizes.
Mutations of small negative effects, however, are expected to
linger at a low frequency (e.g., Hsu, 2012), and the genetic
architecture of high intelligence may potentially be conceptu-
alized as the absence of a large number of these disruptive
mutations (e.g., Hsu, 2012; Marioni, Penke, et al., 2014).

While the above argues in favor of rare deleterious variants,
we also consider common variants, as these may be present in
the form of effectively neutral mutations (subject to genetic
drift), or as relatively positive mutations (subject to positive
selection), which have yet to become fixed in the population.
To this end, we examine whether polygenic scores (Purcell
et al., 2007) summarizing the effects of common single-
nucleotide polymorphisms (SNPs) in the 168 genes of interest
are predictive of intelligence, in a larger random sample of 2125
individuals. More details on the polygenic score prediction,
next-generation sequencing and the analysis of rare variants
can be found in the Methods section.

2. Methods

2.1. Phenotype data

Data on psychometric intelligence were obtained from the
Young Netherlands Twin Register (YNTR, Boomsma et al., 2006;
van Beijsterveldt et al., 2013). YNTR is a population-based
register of Dutch twins born after 1986, recruited at birth and
measured longitudinally at ages 1 through 18. The sequenced
sample consisted of 191 unrelated children and adolescents of
Dutch ancestry (Abdellaoui et al., 2013), aged 5–18 at the time
ofmeasurement. 46% of the participants weremale. Intelligence
was assessed longitudinally, using the Revised Amsterdam
Children Intelligence Test (RAKIT; Bleichrodt, Drenth, Zaal, &
Resing, 1984), the Wechsler Intelligence Scale for Children
(WISC; Sattler, 1992; Van Haasen et al., 1986; Wechsler et al.,
2002), and the Wechsler Adult Intelligence Scale (WAIS;
Stinissen, Willems, Coetsier, & Hulsman, 1970; Wechsler,
1997), the choice of instrument being partly dependent on the
participants' age. IQ scoreswere derived based on the respective
age- and sex-appropriate norms for RAKIT, WISC, or WAIS, and
subsequently converted to z-scale within each measurement
occasion (i.e., within each time point used for assessment), and
averaged over measurement occasions (i.e., across the different
time points, within each participant). A previous study
employing the same dataset found a high temporal stability of
the additive genetic effects on intelligence (with the correla-
tions between the additive genetic factors at consecutive
measurement occasions ranging from .8 to 1; Franić et al.,
2014), implying that the same genetic factors are relevant to
intelligence over the developmental period under study (5–18
years of age). In situations of high genetic stability, averaging
over the measurement occasions has been shown to be a
sensible approach from the perspective of statistical power
(Minică, Boomsma, Van Der Sluis, & Dolan, 2010).

The scores of the 191 individuals belonged to the tails of the
IQ distribution: individuals were selected into the study from
an initial pool of 1387 children/adolescents. The inclusion
criterionwas either an IQ z-score exceeding .8 (~112 IQ points)
or an IQ z-score below -.8 (~88 IQ points), but above–1.33 (~80
IQ points). The rationale for excluding the individuals with an
IQ below 80 is the focus of the present study on non-
monogenic inheritance, i.e., the fact that the genetic architec-
ture underlying their intellectual (dis)ability may differ from
that of individuals from the rest of the distribution. Several
additional exclusion criteria were applied. Participants were
excluded if their IQ scores displayed excessive variation across
the different measurement points (SD N 1 on a z-scale), or
differed excessively from the IQ scores of their familymembers
(‘excessive’ being defined as a difference of ~18 and ~11
IQ points for monozygotic (MZ) and dizygotic (DZ) twins,
respectively; these numbers correspond to a difference at least
one standard deviation greater than the average twin differ-
ence in our sample). Additional exclusion criteria included low
birth weight (under 1000 g), known genetic defects, and
discordance between IQ and educational attainment scores
(individuals in the low IQ group were not included into the
study if their educational attainment score on the Dutch
national test of educational attainment (CITO, 2002) exceeded
539, i.e., belonged to the top 40% of the distribution). The IQ
scores were dichotomized (‘high’ and ’low’; N = 104 and N =
87, respectively) for the first set of the analyses (gene-based
testing).

In the second set of the analyses (polygenic prediction), all
individuals from the Netherlands Twin Register (NTR;
Boomsma et al., 2006; Boomsma et al., 2002; Willemsen et al.,
2013) with psychometric intelligence and SNPmicroarray data
were included into the sample (N = 2125, 45.4% male). The
age distribution of the participants at the time of measurement
is given in Supplementary Fig. 1 (mean = 20.4, SD = 14.1).
The testing and the computation of IQ scores were performed
in the sameway as above,with the exception of participants for
whom only the scores on Raven's Progressive Matrices (Raven,
Raven, & Court, 1998; Raven, 1960) were available; for these
participants, a z-transformed number of correct answers,
rather than a z-transformed IQ score, was analyzed. Unlike
the sample used for exon sequencing (N = 191), the larger
sample was unselected on phenotype, i.e., the intelligence
scores followed the normal distribution.

2.2. Next-generation sequencing

Nucleic acid sequencing is a set of methods used in the
determinationof theprecise order of nucleotides in anucleic acid
molecule (see e.g. Grada & Weinbrecht, 2013 for a nontechnical
overview). Initially accomplished through chain-termination
methods (i.e., so-called Sanger or first-generation sequencing;
Sanger, Nicklen, & Coulson, 1977), DNA sequencing is presently
performed using a set of methodologies commonly denoted
next-generation sequencing (e.g., Metzker, 2010; Rusk &
Kiermer, 2008; Shendure & Ji, 2008). Next-generation sequenc-
ing is an umbrella term denoting a set of technologies
(e.g., Illumina (Solexa) sequencing, Roche 454 sequencing, Ion
torrent: Proton / PGM sequencing, SOLiD sequencing) that
perform sequencing in a massively parallel fashion, sequencing
millions of DNA fragments simultaneously. Unlike SNP microar-
rays that only measure common genetic variation (i.e., variants
whose population frequency exceeds ~1%), sequencing technol-
ogies enable the interrogation of the entire nucleotide sequence
of the genome, including rare and structural variation. The
development of next-generation sequencing technologies was
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accompanied by a rapid decline in the cost of DNA sequencing,
resulting in a sharp increase in the accessibility of sequence data
over the past decade. In addition, next-generation sequencing
coupled with efficient DNA capture (i.e., the isolation of specific
DNA targets) has facilitated the emergence of exome sequencing
as a novel approach to the identification of rare variants
underlying polygenic phenotypes, and a cost-efficient alternative
to whole-genome sequencing (see Kiezun et al., 2012). Exome
sequencing (i.e., targeted exome capture) denotes the sequenc-
ing of the entire set of expressed regions of the genome, while
exon sequencing refers to the sequencing of a particular
expressed region (i.e., exon) or a set of exons.

2.3. Genotype data

The genes examined in the present study were selected
from the pool of genes presently known to underlie various
forms of syndromic and non-syndromic intellectual disability
(Najmabadi et al., 2011; Ropers, 2008, 2010). The selection of
the genes was partially guided by practical considerations,
e.g., by the limited target size allowed by the HaloPlex G9901B
exon enrichment kit, which was used to selectively capture
the genomic regions of interest from DNA samples prior to
sequencing. 107 of the 168 genes were autosomal. Table 1 and
Supplementary Data provide an overview of the genes and
their function. Exon sequencing was performed using an
Illumina HiSeq2000 sequencer with 100 bp paired-end reads.
The raw reads were aligned to the NCBI37 human reference
genome using the Stampy package (Lunter & Goodson, 2011).
Variants were called using Platypus (Rimmer, Phan,Mathieson,
Lunter, & McVean, 2013). The information on quality control
and filtering of the genotype data can be found in Supplemen-
tary Methods. Mean sequencing depth (i.e., the mean number
of times each nucleotide base was sequenced) was ~212x.

The second set of analyses (i.e., polygenic prediction)
employed all common SNPs (i.e., SNPs with a minor allele
frequency exceeding 1%) in the 168 genes that were both
a) measured in the 2125 individuals, and b) analyzed in a
recentmeta-analysis of childhood intelligence (Benyamin et al.,
2013). The reason for applying the latter criterion is our
subsequent use of the effect size estimates from the meta-
analysis as weights in the construction of a polygenic predictor
(see Analyses). In total, this resulted in 8559 SNPs from 99
autosomal genes being used in the polygenic prediction
(sex-linked genes, and 8 out of the 107 autosomal genes were
not present in the meta-analysis dataset). Information on
imputation and quality control of the SNP data can be found in
Supplementary Methods.

2.4. Analyses

2.4.1. Association testing
To examine the association between intelligence and the

rare genetic variants in the genes of interest, we applied a series
of gene-based association tests implemented in the PLINK/SEQ
tool (https://atgu.mgh.harvard.edu/plinkseq/). Gene-based as
opposed to single-locus testing was used as a means of
increasing statistical power (Kiezun et al., 2012; Purcell,
Cherny, & Sham, 2003), seeing as the inherently small number
of observations of rare variants limits the statistical power for
their individual detection. Six gene-based association tests
were employed: a burden test using adaptive permutation to
test for excess of rare alleles in cases relative to controls (–assoc
keyword in PLINK/SEQ), a test based on the count of
case-unique rare alleles (–uniq command in PLINK/SEQ), a
frequency-weighted test (see Madsen & Browning, 2009; –fw
command), the variable threshold test (Price et al., 2010; –vt
command in PLINK/SEQ), the c-alpha test (B. M. Neale et al.,
2011; –calpha), and a sum of single-site statistics (–sumstat).
Overall, the tests aim to assess the genetic burden due to the
effects of rare genetic variants, working on the assumption that
the phenotypic variation may be explained by the overall
burden of rare deleterious mutations, while the individual
causal variants may be heterogeneous and interchangeable.

The first test uses adaptive permutation to test for excess of
rare alleles in the individuals in the low IQ group relative to
those in the high IQ group. Permutation entails random re-
allocation of genotypes over the phenotypes to generate an
empirical distribution of p-values under the null-hypothesis,
against which the p-value of interest can be compared. The
permutation is adaptive in the sense that the variants that are
highly unlikely to achieve statistical significance are dropped
from the procedure. The second test is based on the count of
alleles exclusive to the low end of the phenotypic distribution
(i.e., low IQ). This strategy effectively eliminates common alleles
from the test, because they would be present in individuals at
both extremes unless they have a very large effect. The
frequency-weighted test (similar to Madsen & Browning,
2009) scores each individual by a weighted sum of mutation
counts within each gene. The weighing scheme assigns higher
weights to variants that are rare in individuals from thehigh end
of the phenotypic distribution (and thus presumably detrimen-
tal), effectively preventing common variants from dominating
the test. Group counts (i.e., weighted sums in cases and
controls) are compared, and permutation is used to evaluate
the significance of the result. The variable threshold test (Price
et al., 2010) is based on the regression of the phenotype on the
genotype. The test assumes that there is an unknown threshold
T, such that variants with a minor allele frequency below T are
substantially more likely to have a functional effect than
variants with aminor allele frequency above T. The test consists
of computing a test statistic using only the variants that fall
below a certain minor allele frequency cutoff, for the full range
of cutoffs. The final test statistic is subsequently defined as the
maximum of the test statistics across all the cutoffs. By
optimizing the test statistic in this way, the test effectively
gives higher weight to variants predicted to be functionally
significant (i.e., to variants that fall below a minor allele
frequency cutoff that resulted in the best test statistic). All of
the aforementioned tests entail the assumption of rare variants
within a given gene acting in the same direction (either
increasing or decreasing intelligence). The c-alpha test (Neale
et al., 2011) does not involve this assumption, i.e., it accommo-
dates possible differences in the direction of effect across the
measured variants. The test assesses the imbalance in the
distribution of alleles over cases and controls, such that, e.g., the
risk variants are more present in cases and protective variants
more present in controls. Under the null hypothesis of no effect,
the risk and the protective variants are expected to be
distributed randomly over the cases and controls. An excess of,
for instance, a risk allele in the cases, would result in an
overdispersion in the distribution of this allele. C-alpha assesses
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Table 1
List of the 168 genes included into the study, including gene description, chromosome (Chr), the base-pair positions of the start (Start (bp)) and the end (End (bp)) of
the gene, length in base-pair units (Length (bp)), and the number of variants on each gene (Nvar). Supplementary Data provide detailed gene descriptions.

Gene Description Chr Start (bp) End (bp) Length (bp) Nvar

ACBD6 Acyl-CoA binding domain containing 6 1 180256351 180473022 216671 6
ACSL4 Acyl-CoA synthetase long-chain family member 4 X 108883563 108977621 94058 14
ADK Adenosine kinase 10 75909942 76470061 560119 8
ADRA2B Adrenoceptor alpha 2B 2 96777622 96782888 5266 3
AFF2 AF4/FMR2 family, member 2 X 147581138 148083193 502055 22
ALG6 Alpha-1,3-glucosyltransferase 1 63832260 63905233 72973 12
AP1S2 Adaptor-related protein complex 1, sigma 2 subunit X 15842928 15874100 31172 2
AP4B1 Adaptor-related protein complex 4, beta 1 subunit 1 114436370 114448741 12371 12
AP4E1 Adaptor-related protein complex 4, epsilon 1 subunit 15 51199868 51299097 99229 24
AP4M1 Adaptor-related protein complex 4, mu 1 subunit 7 99698129 99705803 7674 19
AP4S1 Adaptor-related protein complex 4, sigma 1 subunit 14 31493311 31566656 73345 6
ARHGEF6 Rac/Cdc42 guanine nucleotide exchange factor (GEF) 6 X 135746711 135864503 117792 13
ARHGEF9 Cdc42 guanine nucleotide exchange factor (GEF) 9 X 62853847 63006426 152579 3
ARID1B AT rich interactive domain 1B (SWI1-like) 6 157098063 157532913 434850 31
ARID5A AT rich interactive domain 5A (MRF1-like) 2 97201463 97219371 17908 4
ARX Aristaless related homeobox X 25020812 25035065 14253 4
ASCL1 Achaete-scute complex homolog 1 (Drosophila) 12 103350451 103355294 4843 1
ASPM Asp (abnormal spindle) homolog, microcephaly associated (Drosophila) 1 197052256 197116824 64568 44
ATRX Alpha thalassemia/mental retardation syndrome X-linked X 76759355 77042719 283364 12
AUTS2 Autism susceptibility candidate 2 7 69062904 70258885 1195981 31
BCOR BCL6 corepressor X 39909498 40037582 128084 18
BRWD3 Bromodomain and WD repeat domain containing 3 X 79923986 80066233 142247 13
C12orf57 Chromosome 12 open reading frame 57 12 7052202 7056165 3963 11
C9orf86 RAB, member RAS oncogene family-like 6 9 139701373 139736639 35266 30
CACNA1F Calcium channel, voltage-dependent, L type, alpha 1F subunit X 49060522 49090833 30311 23
CACNA1G Calcium channel, voltage-dependent, T type, alpha 1G subunit 17 48637428 48705832 68404 60
CACNG2 Calcium channel, voltage-dependent, gamma subunit 2 22 36955915 37099690 143775 7
CASK Calcium/calmodulin-dependent serine protein kinase (MAGUK family) X 41373188 41783287 410099 5
CC2D1A Coiled-coil and C2 domain containing 1A 19 14015955 14042693 26738 27
CCNA2 Cyclin A2 4 122736598 122746088 9490 11
CDK16 Cyclin-dependent kinase 16 X 47076527 47090394 13867 7
CDK5RAP2 CDK5 regulatory subunit associated protein 2 9 123150146 123343437 193291 65
CDKN2AIP CDKN2A interacting protein 4 184364788 184370049 5261 11
CENPJ Centromere protein J 13 25455411 25498085 42674 27
CLCN4 Chloride channel, voltage-sensitive 4 X 10123984 10206699 82715 9
CNKSR1 Connector enhancer of kinase suppressor of Ras 1 1 26502980 26517375 14395 24
CNKSR2 Connector enhancer of kinase suppressor of Ras 2 X 21391535 21673813 282278 15
CRBN Cereblon 3 3190316 3222401 32085 20
CSTF2 Cleavage stimulation factor, 3′ pre-RNA, subunit 2, 64 kDa X 100074347 100096923 22576 4
CUL4B Cullin 4B X 119657445 119710684 53239 10
DCX Doublecortin X 110536006 110656460 120454 6
DLG1 Discs, large homolog 1 (Drosophila) 3 196768430 197026447 258017 18
DLG3 Discs, large homolog 3 (Drosophila) X 69663704 69726339 62635 22
DYRK1A Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A 21 38738858 38888679 149821 11
EEF1B2 Eukaryotic translation elongation factor 1 beta 2 2 207023317 207028653 5336 4
EHMT1 Euchromatic histone-lysine N-methyltransferase 1 9 140512443 140731578 219135 49
EIF2AK3 Eukaryotic translation initiation factor 2-alpha kinase 3 2 88855258 88928094 72836 13
EIF2S3 Eukaryotic translation initiation factor 2, subunit 3 gamma, 52 kDa X 24072064 24097927 25863 1
ELP2 Elongator acetyltransferase complex subunit 2 18 33708836 33755688 46852 29
ENTPD1 Ectonucleoside triphosphate diphosphohydrolase 1 10 97470535 97638023 167488 17
EPB41L1 Erythrocyte membrane protein band 4.1-like 1 20 34699347 34821721 122374 21
ERLIN2 ER lipid raft associated 2 8 37593096 37616319 23223 13
FASN fatty acid synthase 17 80035213 80057106 21893 68
FGD1 FYVE, RhoGEF and PH domain containing 1 X 54470886 54523599 52713 17
FMR1 Fragile X mental retardation 1 X 146992468 147033647 41179 10
FOXG1 Forkhead box G1 14 29235286 29239871 4585 1
FOXP2 Forkhead box P2 7 113725364 114334827 609463 20
FRMPD4 FERM and PDZ domain containing 4 X 12155584 12743642 588058 29
GDI1 GDP dissociation inhibitor 1 X 153664258 153672814 8556 8
GFAP Glial fibrillary acidic protein 17 42981993 42993920 11927 14
GPC3 Glypican 3 X 132668775 133120673 451898 5
GRIA3 Glutamate receptor, ionotropic, AMPA 3 X 122317095 122625766 308671 14
GRID1 Glutamate receptor, ionotropic, delta 1 10 87358311 88127250 768939 33
GRIK2 Glutamate receptor, ionotropic, kainate 2 6 101845860 102518958 673098 19
GRIN1 Glutamate receptor, ionotropic, N-methyl D-aspartate 1 9 140032608 140064214 31606 15
GRIN2A Glutamate receptor, ionotropic, N-methyl D-aspartate 2A 16 9846264 10277611 431347 19
GRIN2B Glutamate receptor, ionotropic, N-methyl D-aspartate 2B 12 13713409 14134022 420613 38
GRIP1 Glutamate receptor interacting protein 1 12 66740210 67073925 333715 43
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Table 1 (continued)

Gene Description Chr Start (bp) End (bp) Length (bp) Nvar

HCFC1 Host cell factor C1 (VP16-accessory protein) X 153212007 153237819 25812 29
HDAC4 Histone deacetylase 4 2 239968863 240323643 354780 60
HFE2 Hemochromatosis type 2 (juvenile) 1 145412190 145418545 6355 3
HIST1H4B Histone cluster 1, H4b 6 26026123 26028480 2357 9
HIST3H3 Histone cluster 3, H3 1 228611545 228614026 2481 4
INPP4A Inositol polyphosphate-4-phosphatase, type I, 107 kDa 2 99060320 99208496 148176 24
IQSEC2 IQ motif and Sec7 domain 2 X 53261057 53351522 90465 12
KCNJ10 Potassium inwardly-rectifying channel, subfamily J, member 10 1 160006256 160041051 34795 6
KDM5A Lysine (K)-specific demethylase 5A 12 388222 499620 111398 37
KDM5C Lysine (K)-specific demethylase 5C X 53219502 53255604 36102 14
KDM6B Lysine (K)-specific demethylase 6B 17 7742234 7759118 16884 33
KIF1A Kinesin family member 1A 2 241652180 241760725 108545 91
LARP7 La ribonucleoprotein domain family, member 7 4 113557119 113579742 22623 7
LAS1L LAS1-like (S. cerevisiae) X 64731461 64755686 24225 5
LMAN2L Lectin, mannose-binding 2-like 2 97370666 97406813 36147 8
MAN1B1 Mannosidase, alpha, class 1B, member 1 9 139980378 140004639 24261 25
MAOA Monoamine oxidase A X 43514408 43607068 92660 15
MAPK10 Mitogen-activated protein kinase 10 4 86935275 87375283 440008 12
MBD5 Methyl-CpG binding domain protein 5 2 148777579 149272044 494465 10
MBTPS2 Membrane-bound transcription factor peptidase, site 2 X 21856655 21904541 47886 8
MCPH1 Microcephalin 1 8 6263112 6502140 239028 48
MECP2 Methyl CpG binding protein 2 (Rett syndrome) X 153286263 153364188 77925 7
MED13L Mediator complex subunit 13-like 12 116395380 116715991 320611 37
MEF2C Myocyte enhancer factor 2C 5 88013057 88200922 187865 6
NCK2 NCK adaptor protein 2 2 106360519 106511730 151211 10
NDST1 N-Deacetylase/N-sulfotransferase (heparan glucosaminyl) 1 5 149886673 149938773 52100 24
NLGN4X Neuroligin 4, X-linked X 5807082 6147706 340624 8
NSDHL NAD(P) dependent steroid dehydrogenase-like X 151998510 152038907 40397 8
NSUN2 NOP2/Sun RNA methyltransferase family, member 2 5 6598351 6634473 36122 40
OPHN1 Oligophrenin 1 X 67261185 67654299 393114 22
PAFAH1B1 Platelet-activating factor acetylhydrolase 1b, regulatory subunit 1 (45 kDa) 17 2495922 2589909 93987 4
PAK3 p21 protein (Cdc42/Rac)-activated kinase 3 X 110186512 110465173 278661 8
PARP1 Poly (ADP-ribose) polymerase 1 1 226547391 226596801 49410 34
PECR Peroxisomal trans-2-enoyl-CoA reductase 2 216902110 216947539 45429 10
PHF6 PHD finger protein 6 X 133506341 133563822 57481 4
PHF8 PHD finger protein 8 X 53962112 54072569 110457 14
POLR3B Polymerase (RNA) III (DNA directed) polypeptide B 12 106750435 106904976 154541 22
PQBP1 polyglutamine binding protein 1 X 48754194 48761422 7228 5
PRMT10 Protein arginine methyltransferase 10 (putative) 4 148558533 148606280 47747 14
PRSS12 Protease, serine, 12 (neurotrypsin, motopsin) 4 119200192 119274922 74730 19
PTCH2 Patched 2 1 45284515 45309616 25101 18
PTCHD1 Patched domain containing 1 X 23351984 23415918 63934 9
RAI1 Retinoic acid induced 1 17 17583786 17715765 131979 12
RALGDS ral guanine nucleotide dissociation stimulator 9 135972106 136025588 53482 36
RGS7 Regulator of G-protein signaling 7 1 240937816 241521478 583662 22
RLIM Ring finger protein, LIM domain interacting X 73801810 73835461 33651 5
RPL10 Ribosomal protein L10 X 153625570 153631680 6110 2
SARS Seryl-tRNA synthetase 1 109755514 109781804 26290 13
SCAPER S-phase cyclin A-associated protein in the ER 15 76639526 77177217 537691 30
SETBP1 SET binding protein 1 18 42259137 42649475 390338 21
SHANK2 SH3 and multiple ankyrin repeat domains 2 11 70312960 70936808 623848 44
SHANK3 SH3 and multiple ankyrin repeat domains 3 22 51112069 51172641 60572 43
SIM1 Single-minded homolog 1 (Drosophila) 6 100835749 100912551 76802 21
SLC16A2 Solute carrier family 16, member 2 (thyroid hormone transporter) X 73640084 73754752 114668 9
SLC2A1 Solute carrier family 2 (facilitated glucose transporter), member 1 1 43390045 43425847 35802 10
SLC31A1 Solute carrier family 31 (copper transporter), member 1 9 115982807 116027772 44965 1
SLC6A8 Solute carrier family 6 (neurotransmitter transporter), member 8 X 152952751 152963048 10297 10
SLC9A6 Solute carrier family 9, subfamily A (NHE6, cation proton antiporter 6), member 6 X 135066582 135130428 63846 13
SNAP25 Synaptosomal-associated protein, 25 kDa 20 10198476 10289066 90590 9
SNAP29 Synaptosomal-associated protein, 29 kDa 22 21212291 21246501 34210 8
SNRPN Small nuclear ribonucleoprotein polypeptide N 15 25067793 25224729 156936 5
SOX3 SRY (sex determining region Y)-box 3 X 139584151 139588225 4074 2
ST3GAL3 ST3 beta-galactoside alpha-2,3-sialyltransferase 3 1 44172217 44397831 225614 13
STIL SCL/TAL1 interrupting locus 1 47714810 47780819 66009 27
STXBP1 Syntaxin binding protein 1 9 130373485 130455995 82510 22
SYN1 Synapsin I X 47430299 47480256 49957 6
SYNGAP1 Synaptic Ras GTPase activating protein 1 6 33386846 33422466 35620 30
SYP synaptophysin X 49043264 49057661 14397 3
TAF2 TAF2 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 150 kDa 8 120742013 120846074 104061 35

(continued on next page)
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Table 1 (continued)

Gene Description Chr Start (bp) End (bp) Length (bp) Nvar

TCF4 Transcription factor 4 18 52888561 53304188 415627 21
TMEM135 Transmembrane protein 135 11 86747885 87040876 292991 16
TRAPPC9 Trafficking protein particle complex 9 8 140741585 141469678 728093 44
TRMT1 tRNA methyltransferase 1 homolog (S. cerevisiae) 19 13214713 13228563 13850 14
TSPAN7 Tetraspanin 7 X 38419730 38549172 129442 3
TUBA1A Tubulin, alpha 1a 12 49577582 49583861 6279 6
TUBA8 Tubulin, alpha 8 22 18592452 18615498 23046 15
TUSC3 Tumor suppressor candidate 3 8 15396595 15625158 228563 8
UBE2A Ubiquitin-conjugating enzyme E2A X 118707498 118719379 11881 4
UBE3A Ubiquitin protein ligase E3A 15 25581395 25685175 103780 11
UBR7 Ubiquitin protein ligase E3 component n-recognin 7 (putative) 14 93672400 93696561 24161 13
UPF3B UPF3 regulator of nonsense transcripts homolog B (yeast) X 118966988 118987991 21003 12
WDR45L WD repeat domain 45B 17 80571437 80607411 35974 20
WDR62 WD repeat domain 62 19 36544782 36597012 52230 68
WHSC1 Wolf–Hirschhorn syndrome candidate 1 4 1872122 1984934 112812 28
WHSC2 Negative elongation factor complex member A 4 1983440 2011962 28522 17
YWHAE Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein,

epsilon polypeptide
17 1246833 1304556 57723 6

ZBTB40 Zinc finger and BTB domain containing 40 1 22777343 22858650 81307 26
ZCCHC12 Zinc finger, CCHC domain containing 12 X 117956786 117961931 5145 3
ZCCHC8 Zinc finger, CCHC domain containing 8 12 122955145 122986543 31398 16
ZDHHC9 Zinc finger, DHHC-type containing 9 X 128936263 128978910 42647 2
ZNF526 Zinc finger protein 526 19 42723491 42733353 9862 6
ZNF621 Zinc finger protein 621 3 40565375 40582043 16668 5
ZNF711 Zinc finger protein 711 X 84497996 84529368 31372 3

16 S. Franić et al. / Intelligence 49 (2015) 10–22
this overdispersion, regardless of its origin (risk or protective),
and is ideally suited for detecting a mixture of effects, such that
some variants confer risk while others are neutral or protective.
As evident, all of the six tests focus on the detection of the
possible effects of rare genetic variants. This is consistent with
our expectation of rare variants being enriched for functional
alleles, and exhibiting stronger effect sizes than common
genetic variants (e.g., Frazer, Murray, Schork, & Topol, 2009;
Kryukov, Pennacchio, & Sunyaev, 2007; Pritchard, 2001).

Correction for multiple testing was performed by dividing
the desired significance threshold (.05) by the total effective
number of independent tests in the study. The estimate of the
number of independent tests was based on the number of
genes for which PLINK/SEQ's I-statistic (i.e., estimate of the
minimal achievable p-value for a gene) was smaller than .05, as
genes with an I-statistic greater than .05 are considered
insufficiently powered and thus necessitate no correction
(Kiezun et al., 2012). Bonferroni correction would be too
stringent in the present context, as it assumes that each gene
displays sufficient variation to achieve the asymptotic proper-
ties for the test statistic (Kiezun et al., 2012); an assumption
that is not necessarily realistic in the context of rare variant
data and the present sample size. For genes on the X
chromosome, in addition to being performed on the entire
sample, the analyses were performed for the males and the
females separately.

2.4.2. Polygenic prediction
Subsequently, we examined whether continuous intelli-

gence scores in the larger (N= 2125) sample can be predicted
from a polygenic score constructed on the basis of the common
SNPs in the candidate gene set. Here, the polygenic score is
used as a means of summarization of genetic effects across the
relevant genes: it is obtained as a weighted sum of the number
of effect alleles within an individual, across all common SNPs in
the candidate gene set. The weighing of the SNPs, and the
determination of ‘effect allele’, were informed by prior
knowledge: the weights were the effect size estimates for
individual SNPs obtained in a large meta-analysis of GWA
studies on childhood intelligence (Benyamin et al., 2013). The
continuous intelligence scores were subsequently regressed on
the polygenic scores. A significant regression coefficient would
imply a genetic signal among the variants (see, e.g., Dudbridge,
2013).

The meta-analysis results were based on an analysis of six
independent cohorts (combined N = 12,441): the Avon
Longitudinal Study of Parents and Children, the Lothian Birth
Cohorts, the Brisbane Adolescent Twin Study, the Western
Australian Pregnancy Cohort Study, and the Twins Early
Development Study (Benyamin et al., 2013). The polygenic
scores were constructed by multiplying the number of effect
alleles (0, 1, or 2) at a given locus in the present dataset by the
meta-analysis regression coefficient for that locus, and sum-
ming the resulting scores over all relevant loci within an
individual. The subsequent regression of intelligence on the
polygenic scores was performed using generalized estimating
equations (‘gee’ package in R; Carey, Lumley, & Ripley, 2012;
Minică, Dolan, Kampert, Boomsma, & Vink, 2014; RCoreTeam,
2013) to control for the dependency in the data arising from
the fact that some individuals in the sample are closely
genetically related (e.g., twins, parents). To control for possible
spurious association arising from population stratification
(i.e., from any possible systematic differences in allele frequen-
cies between the high and low IQ groups due to differences
in ancestry; see, e.g., Cardon & Palmer, 2003; Freedman et al.,
2004; Price et al., 2006), nine principal components reflective
of the Dutch population structure (Abdellaoui et al., 2013)
were included into the regression as covariates. As different
populations frequently exhibit systematic differences in allele
frequencies, principal components of a genome-wide covari-
ance matrix of the individuals' allelic values frequently reflect
variation in ancestry, and are known to efficiently control for
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population stratification (e.g., Price et al., 2006). To remove any
phenotypic variance associated with sex, sex was included as
an additional covariate.

3. Results

The application of deep sequencing to the 168 genes of
interest revealed 2900 point-mutations that passed quality
control filters and differed from the reference dataset
(Consortium, 2012) in at least one of the 191 DNA samples.
Of these 2900 variants, 972 and 61 were observed only once
and twice in the 191 samples, respectively. The estimated
population frequencies of the 2900 variants are displayed in
Fig. 1. Note that the estimated population frequencies may
differ from the frequencies observed in our dataset. For
instance, a mutation observed once in the present dataset will
have a frequency of ~.5%; however, it could range from being a
private mutation in a single individual in the world, to being
common in the population (i.e., having a frequency exceeding
1%). As evident from Fig. 1, ~70% and ~76% of the variants have
an estimated population frequency lower than 10% and 20%,
respectively. Around 50% of the exonic variants were synony-
mous (i.e., base substitutions did not affect the produced amino
acid sequence), with the remainder being non-synonymous.
The distribution of the variants over the 168 genes is displayed
in Fig. 2.

The QQ plots of the gene-based p-values obtained using the
six association tests in Plink/SEQ are shown in Fig. 3. An inflation
of the QQ plot, i.e., an excess of low p-values relative to the
uniform expectation, would indicate a possible genetic signal in
the candidate set of genes. As visible in the Figure, no inflation
was observed for any of the six gene-based tests. After correction
for multiple testing, none of the individual genes displayed a
significant association with intelligence. Sex-stratified analysis
confirmed the absence of a detectable association for the genes
on the X chromosome. In addition, the polygenic score was not
predictive of intelligence (p = .69).
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Fig. 1.Polymorphic sites in a DNA sequence can be describedby the frequency of one of
sites (i.e., all sites displaying two alternate forms) in the present dataset. 97.25% sites in
non-reference allele; y-axis: frequency count in the present sample.
4. Discussion

Utilizing existing knowledge on the genetics of monogenic
disorders, the present study sought to examine the association
of 168 genes implicated in genetics of intellectual disability
with normal-range intelligence. Using exon sequencing and
focusing primarily on rare genetic variation, we addressed this
question in a sample of 191 individuals sampled from the ends
of the IQ distribution (N112, b88 and N80). Several different
methods of gene-based testing, implemented in the PLINK/SEQ
tool, indicated the absence of a detectable association at the
present sample size. Additionally, we employed polygenic
prediction to examine the overall effect of common genetic
variation in the candidate gene set, and found no significant
prediction.

The first set of analyses focused on the detection of the
possible effects of rare genetic variation, in line with the
assumption of the inter-individual variability in intelligence
being maintained by low-frequency, disruptive mutations of
small effect size. Two findings in combination support the
notion that the existing genetic variation in intelligence is likely
to be retained through mutation–selection balance, i.e., a
balance between the rate of occurrence of new, mostly
deleteriousmutations, and the rate of their removal by selection
(Falconer &Mackay, 1996;Marioni, Penke, et al., 2014). The first
is the consistent positive associations between intelligence and
fitness components across the life span (Arden, Gottfredson,
Miller, & Pierce, 2009; Banks, Batchelor, & McDaniel, 2010;
Batty, Deary, & Gottfredson, 2007; Deary, Strand, Smith, &
Fernandes, 2007; Deary, Whalley, Batty, & Starr, 2006; Gale,
Batty, Tynelius, Deary, & Rasmussen, 2010; Silventoinen,
Posthuma, Van Beijsterveldt, Bartels, & Boomsma, 2006;
Strenze, 2007; Van Dongen & Gangestad, 2011). The second is
the absence of the consequently expected depletion of the
underlying genetic variation. Because selection will quickly
eliminate mutations of strong deleterious effect on fitness-
related traits, this mechanism suggests a genetic architecture
ncy distribution

uency of non-relerence allele
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their alleles. The figure shows thedistribution of these frequencies for all diallelic
the present datasetwere diallelic. X-axis: estimated population frequency of the
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Fig. 2. Distribution of the 2900 variants over the 168 genes. x-axis: gene index, y-axis: number of variants on the gene.
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that lacks common genetic variants of large effect size (Gibson,
2012; Marioni, Penke, et al., 2014); an expectation consistent
with the lack of replicable findings from candidate gene and
GWA studies (e.g., Benyamin et al., 2013; Chabris et al., 2012;
Davies et al., 2011).

Utilizing the same rationale, Marioni et al. (Marioni, Penke,
et al., 2014) recently examined the relationship between the
genome-wide count of rare exonic variants and cognitive
ability in childhood and old age (N = 1596), and detected no
significant association. Yeo et al. (Yeo, Gangestad, Liu, Calhoun,
& Hutchison, 2011) found a negative association between the
genome-wide burden of rare copy number variants and
psychometric intelligence in a sample of 74 individuals.
However, subsequent studies using larger sampleswere unable
to replicate this finding (Bagshaw et al., 2013; MacLeod et al.,
2012; McRae, Wright, Hansell, Montgomery, & Martin, 2013).

The present study focused on a smaller part of the genome,
in line with the hypothesis that the genetic variation affecting
continuous variation in quantitative traits may be concentrated
in the same areas of the genome as that underlying similar
monogenic phenotypes. The lack of detectable association is
consistent with the aforementioned studies, and provides
evidence against this hypothesis. Indeed, the opposite hypoth-
esis may conceivably hold, i.e., exomes that display monogenic
effects may be less likely to contribute to heritability of normal
variability — a notion supported by the fact that a substantial
number of replicated association fromGWA studies are located
outside of genes. However, a larger study may still be advisable
to minimize the probability of the finding reflecting a power
issue. In addition, considering the diverse nature of intellectual
abilities, as well as the pervasive disagreement between
intelligence researchers on the existence and causal relevance
of general intelligence (e.g., Gottfredson, 1997a; Neisser et al.,
1996), future studies may also employ a finer-grained defini-
tion of the phenotype (e.g., verbal and nonverbal intelligence,
specific subscale scores, or additive genetic factor(s) derived
through the application of genetic covariance structure
modeling to twin data; e.g., Franić, Dolan, Borsboom, &
Boomsma, 2012; M. C. Neale & Cardon, 1992). A substantial
heterogeneity in the genetic etiology of intelligence has been
demonstrated by previous studies (e.g., Johnson et al., 2007;
Luo, Petrill, & Thompson, 1994; Rijsdijk, Vernon, & Boomsma,
2002), which typically show significant additive genetic
influences specific to distinct cognitive abilities (e.g., verbal,
special, perceptual, arithmetic, etc.), in addition to a genetic g
factor. Provided that such subscale-specific influences are a
significant contributor to the genetic etiology of intelligence,
future studies may consider their explicit modeling (using, for
instance, a multivariate approach). More fundamentally, the
question of the ontological and biological reality of the g factor
has been widely debated (Jensen, 1998; van der Maas, Kan, &
Borsboom, 2014; van der Maas et al., 2006); if g is a causal
entity generating the observed covariation between distinct
cognitive abilities, as assumed throughout much of the
literature, the search for genes for g is sensible both from a
substantive perspective and the perspective of statistical
power. However, if g is simply an index variable summarizing
the covariation between different cognitive abilities without
playing a causal role, then seeking genetic influences at the
level of gwill diminish the statistical power to detect the effects
of measured genetic variants, relative to seeking genetic
influences at the level of its constituent abilities. Genetically
informed item-level analyses that assess the mediatory role of
intelligence with respect to genetic and environmental effects
(Franić et al., 2013) can be used to address this issue.

The rationale behind the present study, namely the
supposition of the relevance of genes involved in intellectual
disability to normal-range intelligence, is based on ample
similar examples from the literature, including height (Allen
et al., 2010), body mass index (Loos et al., 2008), lipid levels
(Hirschhorn & Gajdos, 2011 review), hemoglobin F levels
(Hirschhorn & Gajdos, 2011), type 2 diabetes (Sandhu et al.,
2007), Parkinson's disease (Gasser, 2009; Lesage& Brice, 2009),
and others. A recent study by Blair et al. (2013) identified
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nearly 3000 comorbidities between Mendelian disorders and
complex diseases present in the electronic medical records in
the United States and Denmark. They found that each complex
disease displayed an associationwith a unique set ofMendelian
disorders, implying a sharing of the causal pathways between
the Mendelian and the polygenic phenotypes. Consistent with
this, we recently demonstrated an enrichment of 43 genes
underlying Mendelian disorders of intellectual functioning (39
of which were included in the present study) for common
polymorphisms associated with intelligence (Franić et al., in
press). The present study aimed to extend this work to a larger
set of genes and examine the role of rare variants, in addition to
common genetic variation. The absence of a detectable associ-
ation at the present sample size may be considered a (partial)
non-replication, although, as mentioned, a larger sample size
may be advisable. Other improvements to the present study
may include the examination of structural variation (including,
for instance, copy-number variants; Redon et al., 2006), gene-
by-gene interactions, heterogeneity of genetic effects across
different environments, or the intronic regions of the genome.
The increasing availability of next-generation sequencing tech-
nologies is expected to facilitate amore detailed study into some
of the above issues.
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