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We examined the performance of methylation scores (MS) and polygenic scores (PGS)

for birth weight, BMI, prenatal maternal smoking exposure, and smoking status to assess

the extent to which MS could predict these traits and exposures over and above the PGS

in a multi-omics prediction model. MS may be seen as the epigenetic equivalent of PGS,

but because of their dynamic nature and sensitivity of non-genetic exposures may add

to complex trait prediction independently of PGS. MS and PGS were calculated based

on genotype data and DNA-methylation data in blood samples from adults (Illumina

450K; N = 2,431; mean age 35.6) and in buccal samples from children (Illumina EPIC;

N = 1,128; mean age 9.6) from the Netherlands Twin Register. Weights to construct the

scores were obtained from results of large epigenome-wide association studies (EWASs)

based on whole blood or cord blood methylation data and genome-wide association

studies (GWASs). In adults, MSs in blood predicted independently from PGSs, and

outperformed PGSs for BMI, prenatal maternal smoking, and smoking status, but not

for birth weight. The largest amount of variance explained by the multi-omics prediction

model was for current vs. never smoking (54.6%) of which 54.4% was captured by the

MS. The two predictors captured 16% of former vs. never smoking initiation variance

(MS:15.5%, PGS: 0.5%), 17.7% of prenatal maternal smoking variance (MS:16.9%,

PGS: 0.8%), 11.9% of BMI variance (MS: 6.4%, PGS 5.5%), and 1.9% of birth weight

variance (MS: 0.4%, PGS: 1.5%). In children, MSs in buccal samples did not show

independent predictive value. The largest amount of variance explained by the two

predictors was for prenatal maternal smoking (2.6%), where the MSs contributed 1.5%.

These results demonstrate that blood DNA MS in adults explain substantial variance in

current smoking, large variance in former smoking, prenatal smoking, and BMI, but not

in birth weight. Buccal cell DNA methylation scores have lower predictive value, which

could be due to different tissues in the EWAS discovery studies and target sample, as

well as to different ages. This study illustrates the value of combining polygenic scores

with information from methylation data for complex traits and exposure prediction.
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INTRODUCTION

Nearly all complex traits in humans are a function of their
genotype and of environmental exposures, as shown by family
and twin studies (1–3). DNA-based predictors of complex traits
can increasingly serve to improve prediction of health outcomes
and disease and to optimize risk stratification (4) and are also
considered for application in social sciences and education (5, 6).
Whereas, DNA-based predictors are static and solely capture
genomic information, other predictors such as those based on
epigenome data are dynamic and may capture both genetic and
environmental information.

Polygenic scores (PGS; sometimes referred to as Polygenic
Risk Scores) are defined as the weighted sum of an individual’s
risk alleles, or increasing alleles for a continuous trait, of a pre-
selected number of single nucleotide polymorphisms (SNPs).
In some areas of medicine, polygenic risk scores are already
beginning to be employed to predict individual risk of disease
(7–9). The PGS of an individual for a trait is calculated by
multiplying, for each SNP, the number of risk alleles by a weight
and then summing over all SNPs. Weights are typically estimated
in a regression analysis, from a genome-wide association study
(GWAS) for the trait from an independent discovery sample
(typically, a large GWAS meta-analysis), and are included in the
GWAS summary statistics (i.e., the estimated effect sizes, the
standard errors of the estimates and the corresponding p-values).

This polygenic type of approach can be generalized to other
omics data, including epigenomics where it results in DNA
methylation scores (MS) (10), which can be described as weighted
sums of the individual’s methylation levels of a selected number
of CpG sites. The individual’s methylation levels at each CpG
in an independent study population are multiplied by their
corresponding weights and summed over multiple sites. Here
the weights are based on summary statistics from a single
or a meta-analysis epigenome-wide association study (EWAS)
of the trait. By combining the effects of multiple CpG sites
into a MS, a larger proportion of variance in traits is likely
be explained compared to the variance that is captured by
individual CpG sites. In addition to their value for prediction
of complex traits and disease risk, MSs could potentially be
informative as biomarkers for environmental exposures (11) or
to monitor disease progression, and might be considered in
association analyses in which individual CpG sites do not achieve
significance or as a dimension reduction approach in interaction
and mediation analyses (12, 13).

The number of genetic variants and CpG sites associated
with complex traits is growing based on findings from GWAS
and EWAS meta-analyses. Birth weight was associated with 60
independent signals in a multi-ancestry GWA meta-analysis,
capturing up to 4.9% of the variance in birth weight in
different cohorts (14), and with 914 epigenome-wide Bonferroni-
significant CpGs in an EWAS meta-analysis of multiple birth
cohorts with cord blood DNA methylation data (15). Body
mass index (BMI) was associated with 751 SNPs in adults in
the currently largest European ancestry GWAS meta-analysis,
capturing ∼6% of the BMI variance (16). The currently largest
EWAS meta-analysis of BMI based on whole blood from adults

identified association with 278 Bonferroni-significant CpGs (12).
Smoking initiation was associated with 566 genetic variants in
a GWAS of more than one million individuals, capturing 3.6
and 4.2% of the variance in the trait in prediction cohorts
(17). A large EWAS meta-analysis of smoking identified 18,760
CpGs significantly differentially methylated in relation to current
smoking in adults at a false discovery rate (FDR) of 5% from the
Cohorts for Heart and Aging Research in Genomic Epidemiology
(CHARGE) consortium, and 2,623 FDR significant CpGs in
association with former smoking (18). EWAS meta-analyses
conducted in newborns using cord blood DNA methylation data
identified 6,073 CpGs with FDR significance in association with
prenatal maternal smoking (19).

Attempting to capture the DNA methylation differences,
previous studies have developed polygenic methylation
predictors. We extensively reviewed the literature on studies
that report methylation predictors as single MS and studies that
examined the combined predictive value of MS and PGS (see
Supplementary Table 1). Taking the results from EWASs into
independent target samples in whichMSs are defined, has yielded
promising results for birth weight (20), BMI (20–22), prenatal
maternal smoking (23, 24), and smoking status (11, 23, 25–28).
Reed et al. (20) computed MSs for birth weight based on the
135 CpGs from an adult BMI EWAS in the Framingham Heart
Study and Lothian Birth cohorts (N = 3,743) (29). These scores
captured 2% of birth weight variation in 823 ALSPAC newborns
with DNA methylation data in cord blood, which was higher
than the variance captured by a PGS (0.4%). Several studies
created whole blood DNA MSs of BMI and made predictions in
children and adults. MSs based on 78 probes from 2,377 adults
of the Framingham Heart Study and weights (effect sizes) from
750 adults of the LifeLines DEEP study explained 11% of the
variance in BMI in 1,366 adults from Lothian Birth cohorts and
5% of BMI variance in 403 adolescents from Brisbane Systems
Genetic Study (BSGS) (21). MSs based on 400 CpGs from 2,562
Generation Scotland participants explained 10% of BMI variance
in 892 adults from Lothian Birth cohort (22). MSs based on 135
probes from 3,742 adults from both Framingham Heart Study
and Lothian Birth cohorts explained 10% of BMI variance in 726
ALSPAC women and up to 3% of BMI variance in children at
different ages (20). It has been shown that MS for BMI perform
better in adults compared to children and adolescents (20, 21).
Attempts of cross-tissue performance testing were scarce (25, 30),
however, it have been shown that some alterations persist across
tissue types (31).

For prenatal maternal smoking, MS based on weights from
cord blood DNA methylation EWASs of 1,057 newborns from
Norwegian Mother and Child Cohort Study (MoBa) was tested
on another MoBa subset of 221 newborns (24), and MS based
on weights from cord blood DNA methylation EWAS meta-
analysis of 6,685 newborns done by Joubert and colleagues
(19) was tested on 754 ALSPAC women around 30 years old
(23); the predictive accuracy (the amount of variation in the
outcome explained by the score) was lower in women than in
newborns. Smoking predictors have been described based on
different numbers of probes from whole blood DNAmethylation
studies. Only 2 CpGs were included the smoking MS of Zhang
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TABLE 1 | Discovery epigenome-wide and genome-wide association studies that provided the summary statistics to calculate DNA methylation scores and polygenic

scores.

Trait/Exposure References Phenotype in Discovery

Study—DNA methylation

Tissue

N discovery cohort

used to create scores

N CpGs/SNPs reported at

significant level in

reference

EWAS

Birth weight Küpers et al. (15) Birth weight—Cord blood 8,825 newborns 914 (Bonferroni)

BMI Wahl et al. (12) BMI—Whole blood 5,387 adults 278 (Bonferroni)

Prenatal maternal smoking Sidkar et al. (51)* Prenatal maternal

smoking—Cord blood

4,994 newborns (897

exposed to sustained

prenatal smoking)

5,547 (FDR <0.05)

Smoking Sidkar et al. (51)* Current vs. never

smoked—Whole blood

9,389 adults (2,433 current

smokers)

34,541 (FDR <0.05)

Joehanes et al. (18) Former vs. never

smoked—Whole blood

13,474 adults (6,518 former

smokers)

2,623 (FDR <0.05)

GWAS

Birth weight http://www.nealelab.is/uk-

biobank/

Birth weight 280,250 (UK biobank) not published

BMI Yengo et al. (16) BMI ∼700,000 individuals of

different ancestry

652,099** were used in our

study for calculation of PGS

941

Prenatal maternal smoking UK Biobank

http://www.nealelab.is/uk-

biobank/

Maternal smoking around

birth

331,862 (UK Biobank) Not published

Smoking Liu et al. (17) Smoking initiation

(ever/never smoked)

Up to 1.2 million individuals

in discovery study

625,536** used in our study

for PGS

566

EWAS, Epigenome-wide association study; GWAS, Genome-wide association study; FDR, False Discovery Rate.

*Sikdar et al. (51) repeated the meta-analysis by Joubert et al. (2016) (EWAS in newborns) and Joehanes et al. (18) (EWAS in never vs. current smokers), and provided full genome-wide

summary statistics for a fixed-effects meta-analysis of maternal smoking in newborns (cord blood) and for current vs. never smokers (whole blood).

**NTR and 23andMe are excluded. For additional details, For additional details, see Supplementary Tables 2, 3.

et al. that predicted smoking status in 9,949 older adults (28).
The largest smoking MSs included 2,623 Bonferroni significant
CpGs from EWAS meta-analysis of 15,907 individuals (18) and
predicted smoking status during pregnancy in 754 women by
Richmond et al. (23). The same CpGs were used by Sugden et al.
(11) to predict smoking status in 1,037 adults from the Dunedin
Longitudinal Study and 2,232 twins from the Environmental Risk
Longitudinal Study.

Despite the growing number of cohorts that have both
genomic and methylation data, few attempts have been made
to combine PGS and MS in a multi-omics model. To the
best of our knowledge, BMI, and height are currently the only
traits for which the prediction by PGS and MS combined has
been investigated (21, 22). In a combined model, the PGS and
MS together explained 17% of the variance in BMI in 1,366
adults (21) and 18% in 889 adults (22), both from the Lothian
Birth cohorts, 13–16% in 750 adults from Lifelines and 8%
in adolescents from the Brisbane Systems Genetic Study (21),
corresponding to an added ∼4–9% extra variance explained
compared to the PGS alone.

We expand on the previous work by addressing several points.
First, it is largely unknown to what extent MS based on EWAS

weights derived in adults predict trait variation in children and
vice versa. Second, previous studies of MS were based on cord
blood or whole blood, and it is unknown if these scores translate
to other tissues. Third, for all traits, except BMI and height (20,
21), it is unknown whether MS add to prediction independently
of PGS.

In the current biomarker study, we analyze the predictive
accuracy of PGS and MS (both individually and combined). The
goal of our study is to examine if the MSs add predictive value
above the PGSs. The weights required for DNA methylation
data were obtained large EWAS and applied to methylation
levels from two different tissues (blood and buccal). We analyze
data from large groups of adults with DNA methylation in
blood (N = 2,431, mean age = 35.6) and children with
DNA methylation in buccal cells (N = 1,128, mean age =

9.6) who participate in research projects of the Netherlands
Twin Register and consider multiple traits. For an early-
life trait we analyze birth weight, and for a trait that is
dynamic in childhood and adulthood, we analyze BMI. As
early and later life exposures we examine prenatal maternal
smoking during pregnancy and own smoking. These four
phenotypes represent complex traits and exposures with different
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relative contributions of genetics and environment to inter-
individual variance.

MATERIALS AND METHODS

Overview
This study included adults and children who participated in
studies from the Netherlands Twin Register (NTR). DNA
samples in adult twins and family members were isolated from
whole blood DNA data and in twin children from buccal cells.
Adults took part in the NTR-Biobank (32) and children in
the FP7-Action project (33–36). The study was approved by
the Central Ethics Committee on Research Involving Human
Subjects of the VU University Medical Centre, Amsterdam, an
Institutional Review Board certified by the U.S. Office of Human
Research Protections (IRB number IRB00002991 under Federal-
wide Assurance FWA00017598; IRB/institute codes, NTR 03-
180). Adults provided written informed consent, for children
consent was given by their parents.

Adults
Study Population and Samples
After quality control, genome-wide DNA methylation profiles
in whole blood and genotype data were available for 2,431
NTR adults (37). This dataset included 2,426 individuals from
twin pairs, and 5 family members (mothers and spouses).
The mean age at DNA collection was 35.6 years (range =

17.6–79.2 years) and 32.7% of subjects were males. For 20
participants, longitudinal methylation data (methylation data at
two time points) were available. Individuals with missing data on
phenotypes or covariates, and phenotype outliers were excluded
from analysis, resulting in a sample size of 2,040 for birth weight,
2,410 for BMI, 1,914 for current vs. never smoking, and 1,938 for
former vs. never smoking. Because prenatal maternal smoking
exposure is equal for co-twins, one twin from each pair was
randomly included in the analysis, resulting in a sample size
of 720. The blood sampling procedure has been described by
Willemsen et al. (32).

DNA Methylation
DNA methylation in blood was assessed with the Infinium
HumanMethylation450 BeadChip Kit (Illumina, San Diego, CA,
USA) by theHumanGenotyping facility (HugeF) of ErasmusMC,
the Netherlands (http://www.glimdna.org/) as part of the
Biobank-based Integrative Omics Study (BIOS) consortium (38).
DNAmethylation measurements have been described previously
(37, 38). Genomic DNA (500 ng) from whole blood was bisulfite
treated using the Zymo EZDNAMethylation kit (Zymo Research
Corp, Irvine, CA, USA), 12 µl of buffer was utilized to elute
the converted DNA off the column after conversion, and 4 µl
(∼33 ng/µl) of bisulfite-converted DNA was measured on the
Illumina 450K array following the manufacturer’s protocol. A
number of sample- and probe-level quality checks and sample
identity checks were performed, as described in detail previously
(37). In short, sample-level QC was performed using MethylAid
(39). Probes were set to missing in a sample if they had an
intensity value of exactly zero, or a detection p > 0.01, or a bead

count of <3. After these steps, probes that failed based on the
above criteria in >5% of the samples were excluded from all
samples (only probes with a success rate ≥0.95 were retained).
For all samples, ambiguously mapped probes were excluded,
based on the definition of an overlap of at least 47 bases per
probe from Chen et al. (40), and all probes containing a SNP,
identified in the Dutch population (41), within the CpG site
(at the C or G position) were excluded, irrespective of minor
allele frequency. Only autosomal sites were kept in the current
analyses (N = 411,169). The methylation data were normalized
with functional normalization (42). Probes with missing values
(probes with missing values in more than 5% of the sample
were removed) were imputed with the function imputePCA
from the package missMDA as implemented in the pipeline for
DNAmethylation array analysis developed by the Biobank-based
Integrative Omics Study (BIOS) consortium (43).

Phenotyping
Data on birth weight were obtained from self-report or by
parental report. If data were available from multiple surveys by
Adult Netherlands Twin Register (ANTR) and/or informants,
they were checked for consistency (44). When multiple data
points differed by <200 g, the average was taken, and in the
cases of larger differences, data were excluded. Information on
maternal smoking during pregnancy was obtained in ANTR
Survey 10 (data collection in 2013) with the following question:
“Did your mother ever smoke during pregnancy?” Answer
categories were “no,” “yes,” and “I don’t know.” For twin pairs,
the answers were checked for consistency and missing data for
one twin were supplemented with data from the co-twin where
possible. In the case of inconsistent answers, the data from both
co-twins were set to missing. If both twins answered “I don’t
know,” the variable was coded as missing. Data on body mass
index (BMI) and smoking status were collected at blood draw
(32). We analyzed two smoking phenotypes: current smokers
(1) vs. never smokers (0), and former smokers (1) vs. never
smokers (0). The percentage of white blood cell was obtained in
fresh blood samples collected in EDTA (Ethylene Diamine Tetra
Acetic acid) tubes (45). For birth weight and BMI, we removed
outliers using a cut-off of 3 standard deviations from the mean.
For birth weight, 6 outliers were removed; for BMI, 27 outliers
were removed.

Children
Study Population and Samples
Genotype data and genome-wide DNA methylation profiles
in buccal cells were collected in a children that participated
in a larger project on childhood aggression “Aggression in
Children: Unraveling gene-environment interplay to inform
Treatment and InterventiON strategies” (ACTION; http://www.
action-euproject.eu/) and consists of twins who score high or
low on aggression (33–36). After quality control, genome-wide
DNAmethylation data and genotype data were available for 1,128
children from twin pairs (mainly monozygotic twins). The mean
age at DNA collection was 9.6 years (range = 5.6–12.9 years)
and 52.8% were males. For 2 participants, a technical replicate
measure on with the Infinium MethylationEPIC BeadChip
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Kit was included (36). Individuals without missing data on
phenotypes or covariates were included in the analyses, and
phenotype outliers were excluded, resulting in a sample size
of 1,070 children for birth weight and 1,072 for BMI. Because
prenatal maternal smoking exposure is equal for co-twins, one
twin from each pair was randomly included in the analysis,
resulting in a sample size of 547. The sample collection
protocol is available at: http://www.action-euproject.eu/content/
data-protocols. DNA was collected from buccal swabs at home:
16 cotton sticks were individually rubbed against the inside
of the cheek in the morning and evening on 2 days by the
participants and placed in buffer. Individuals were asked to
refrain from eating or drinking 1 h prior to sampling. High
molecular weight genomic DNA was extracted from the swabs
by standard DNA extraction techniques and visualized using
agarose gel electrophoresis. The DNA samples were quantified
using the Quant-iT PicoGreen dsDNA Assay Kit (ThermoFisher
Scientific, Waltham, MA, USA).

DNA Methylation
DNA methylation was assessed with the Infinium
MethylationEPIC BeadChip Kit (Illumina, San Diego, CA, USA)
by the Human Genotyping facility (HugeF) of ErasmusMC, the
Netherlands (http://www.glimdna.org/) [see van Dongen et al.
(36)]. Quality control (QC) and normalization of the methylation
data were performed using a pipeline developed by the Biobank-
based Integrative Omics Study (BIOS) consortium (43), which
includes sample quality control using the R package MethylAid
(39) and probe filtering and functional normalization (42) as
implemented in the R package DNAmArray. The following
probe filters were applied: probes were set to missing (NA) in a
sample if they had an intensity value of exactly zero, detection
P > 0.01, or bead count < 3; probes were excluded from all
samples if they mapped to multiple locations in the genome, if
they overlapped with a SNP or Insertion/Deletion (INDEL), or
if they had a success rate < 0.95 across samples. Annotations
of ambiguous mapping probes (based on an overlap of at least
47 bases per probe) and probes where genetic variants (SNPs
or INDELS) with a minor allele frequency > 0.01 in Europeans
overlap with the targeted CpG or single base extension site (SBE)
were obtained from Pidsley et al. (46). For two twins, a technical
replicate measure on EPIC was obtained (on different BeadChip
Arrays). Probes with missing values (probes with missing values
in more than 5% of the sample were removed) were imputed
with the function imputePCA from the package missMDA as
implemented in the pipeline for DNA methylation array analysis
developed by the BIOS consortium (43).

Phenotyping
Data on birth weight of the young twins came from surveys
sent to mothers shortly after the registration of the newborn
twins (47). Data on BMI were collected from surveys filled
out by mothers and fathers in the Young Netherlands Twin
Register (YNTR) when children were around 5, 7, 10, and 12
years of age. If both parents completed the survey, preference
was given to data provided by the mother. BMI closest to the
date of DNA collection was selected. The average time between

DNA collection and BMI assessment was 1.9 years before the
survey (median = −0.9, range: from buccal sample collection
10.3 years before survey to buccal sample collection 2.1 years after
survey). Information on maternal smoking during pregnancy
was reported by mothers after registration for three trimesters of
pregnancy andwas coded as “non-smoking” if themother did not
smoke during the entire pregnancy and “smoking” if the mother
smoked at least during one trimester (48). For birth weight and
BMI, we removed outliers using a cut-off of 3 standard deviations
from the mean. For birth weight, 1 outlier was removed; for BMI,
12 outliers were removed.

Cellular proportions were predicted with hierarchical
epigenetic dissection of intra-sample-heterogeneity (HepiDISH)
with the RPC method (reduced partial correlation), as described
by Zheng et al. (49) and implemented in the R package
HepiDISH. HepiDISH is a cell-type deconvolution algorithm
developed for estimating cellular proportions in epithelial tissues
based on genome-wide methylation profiles and makes use of
reference DNAmethylation data from epithelial cells, fibroblasts,
and seven leukocyte subtypes. This method was applied to the
data after data QC and normalization.

Genotyping
Genotyping in children (YNTR) and adults (ANTR) was done
on multiple platforms over time including Perlegen-Affymetrix,
Affymetrix 6.0, Affymetrix Axiom, Illumina Human Quad Bead
660, Illumina Omni 1M and Illumina GSA. Quality control
and processing of the genotype data was performed on the
complete dataset of all genotyped participants from the NTR.
Quality control was carried out and haplotypes were estimated
in PLINK. CEU population outliers, based on per platform
1000 Genomes PC projection with the Smartpca software (50),
were excluded. Data were phased per platform using Eagle, and
then imputed to 1000 Genomes using Minimac, following the
Michigan imputation server protocols. For the polygenic scoring
imputed data were converted to best guess genotypes, and filtered
to include only ACGT SNPs, SNPs with MAF > 0.01, HWE p >

10−5 and genotype call rate > 0.98, and exclude SNPs with more
than 2 alleles. All Mendelian errors were set to missing. Principal
components (PCs) were calculated with Smartpca using linkage-
disequilibrium-pruned (LD-pruned) 1000 Genomes–imputed
SNPs that were also genotyped on at least one platform, hadMAF
> 0.05 and were not present in the long-range LD regions.

Statistical Methods
EWAS and GWAS Summary Statistics
MSs and PGSs were created using weights based on large
epigenome-wide association study (EWAS) and genome-wide
association study (GWAS) meta-analyses. These studies are
summarized in Table 1. Additional information on the studies
and derived scores is provided in Supplementary Tables 2, 3.

DNA Methylation Scores
The effect sizes obtained from the summary statistics
from previously published EWAS meta-analyses (Table 1,
Supplementary Table 2) were used to calculate weighted MSs
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in NTR participants as previously done by Sugden et al. (11),
Wahl et al. (12), Shah et al. (21), Richmond et al. (23), and Elliott
et al. (26). For each trait and for each individual, a score was
calculated by multiplying the methylation level at a given CpG
by the previously reported effect size of the CpG (β), and then
summing these values over all CpGs:

DNA methylation score = β∗1CpG1 + β∗2CpG2 . . . .+ β∗i CpGi

where CpGi is the methylation level at CpG site i, which ranges
between 0 and 1, and βi is the effect size (regression coefficient)
at the CpGi obtained from summary statistics of EWAS meta-
analyses that did not include participants from the NTR.

For each phenotype, except for former smoking, we calculated
multiple MSs based on different subsets of CpGs according to
their significance level. Subsets of CpGs were selected based on
p-value thresholds of <1 × 10−1, <1 × 10−5, and <1 × 10−7.
For former vs. never smoking, genome-wide summary statistics
were not available, and we calculated MSs for former smoking
based on CpGs that were significant in the EWAS of former vs.
never smokers at a False Discovery Rate of 5%. Additionally, we
tested prediction of former smoking based on the MSs derived
from the genome-wide EWAS summary statistics of current vs.
never smoking. To examine if removal of CpGs with correlated
DNAmethylation levels affects trait prediction, we also calculated
pruned scores by step-wise selection of the most significant CpG
site and excluding CpG sites with a correlation of 0.1 or higher
[threshold chosen based on Shah et al. (21)] in order to keep an
independent set of CpGs.

Polygenic Scores
Polygenic scores (PGSs) were calculated based on weighting
of genotypes by effect sizes as made available from GWAS
summary statistics (see Table 1, Supplementary Table 3) in
discovery samples without NTR. Before calculating the PGSs,
linkage disequilibrium (LD) weighted β’s were calculated from
these summary statistics by the LDpred package to correct
for the effects of LD and to maximize predictive accuracy of
the PGSs (52). QC has been applied: MAF > 0.01, duplicated
SNPs, mismatching alleles, ambiguous SNPs were excluded. We
randomly selected 2,500 unrelated individuals from NTR as a
reference population to calculate the LD patterns. The adjusted
β’s were calculated from an LD pruning window of 250KB, with
the fraction of causal SNPs set at 0.01 for birth weight, because
this fraction was previously shown to perform optimally for
birth weight in the NTR population (53) and at 0.50 for other
phenotypes. The PGSs were obtained for all NTR participants
with genotyping data with the PLINK 1.9 software.

Statistical Analysis
Continuous traits, MSs and PGSs were z-score transformed
[trait value—trait mean/trait standard deviation] before analysis.
Pairwise Pearson correlations between each trait, MSs, PGSs, and
covariates were computed in NTR adults and children EWAS
datasets for each phenotype and visualized in correlation plots.
For each trait, we fitted a series of regression models to examine:

TABLE 2 | Characteristics: NTR adults and children.

Adults Children

DNA methylation tissue Whole blood Buccal cells

DNA methylation array Illumina 450 k Illumina EPIC

Sample size 2,431 1,128

Age, mean (sd) 35.6 (11.9) 9.6 (1.9)

Males, n (%) 794 (32.7%) 596 (52.8%)

Females, n (%) 1,637 (67.3%) 532 (47.2%)

Birth weight, mean (sd) 2,507.8 (573.7) 2,395.9 (544.1)

Missing 404 59

BMI, mean (sd) 24.1 (3.9) 16 (2.1)

Missing 14 46

Prenatal maternal smoking (no), n (%) 1,169 (90.1%) 921 (91.1%)

Prenatal maternal smoking (yes), n (%) 129 (9.9%) 90 (8.9%)

Missing 1,133 117

Never smokers, n (%) 1,395 (57.5%) NA

Former smokers, n (%) 527 (21.7%) NA

Current smokers, n (%) 506 (20.8%) NA

Missing 3 NA

Cell counts, mean (sd)

Neutrophil percentage 52.5 (9.1) NA

Eosinophil percentage 3.1 (2.3) NA

Monocyte percentage 8.4 (2.4) NA

Epithelial cell proportion NA 0.806 (0.116)

NK cell proportion NA 0.03 (0.013)

NTR, Netherlands Twin Register; sd, standard deviation; NA, not available; NK, natural

killer cells.

Descriptives are provided for covariates that were included as covariates in the

prediction models.

The number of samples with complete data on DNA methylation, cell counts, and

genotyping data are presented. For a small number of individuals, two samples are

included in the analysis in adults (n = 20) and children (n = 2).

(1) the predictive value of MSs; (2) the predictive value of a
PGS; and (3) whether MS and PGS contributed independently
to trait prediction in a combined predictor. First, for each trait,
we evaluated the performance of multiple different MSs based
on different p-value thresholds, pruned, and unpruned. We took
the score that explained the largest amount of variance forward
to the combined model. Second, we evaluated the performance
of PGS in prediction of each trait. Finally, we examined if MSs
predict these traits over and above the PGSs and estimated
how much variance in each trait was explained by multi-omics
predictor, e.g., by MSs and PGSs together. Sex and age at DNA
collection were included as covariates in all three models. In the
prediction models with whole blood DNA MSs, we corrected
for percentages of neutrophils, monocytes, and eosinophils. In
the prediction models with buccal DNA MSs, we corrected for
epithelial cell and natural killer cell proportions. To adjust for
technical variation, array row and bisulfite plate (dummy-coding)
were included as covariates in all models with EWAS covariates.
In models including PGSs, we corrected for genotype data-
specific covariates: the first ten genetic principal components and
genotype platform dummy variables (GWAS covariates).
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Continuous Traits

For birth weight and BMI, the following models were fitted in
each of the two datasets (whole blood methylation data from
adults and buccal methylation data from children):

Model 1: Trait∼MS+ sex+ age+ EWAS covariates
Model 2: Trait∼ PGS+ sex+ age+ GWAS covariates
Model 3: Trait ∼MS + PGS + sex + age + EWAS covariates
+ GWAS covariates

Analyses were carried out with generalized estimation equation
(GEE) models accounting for familial relatedness, fitted with
the R package “gee” with the following settings: Gaussian
link function for continuous data, 100 iterations, and the
“exchangeable” option to account for the correlation structure
within families. To calculate the variance explained by the MS
and the PGS, we squared the regression coefficient of each score
obtained in GEE. This value was multiplied by 100 to obtain the
percentage of variance explained.

Dichotomous Traits

For dichotomous traits, i.e., prenatal maternal smoking, current
vs. never smoking, and former vs. never smoking, the following
models were fitted in two datasets (whole blood methylation data
from adults and buccal methylation data from children):

Model 1a: Trait∼MS+ sex+ age+ EWAS covariates
Model 1b: Trait∼ sex+ age+ EWAS covariates
Model 2a: Trait∼ PGS+ sex+ age+ GWAS covariates
Model 2b: Trait∼ sex+ age+ GWAS covariates
Model 3a: Trait∼MS+ PGS+ sex+ age+ EWAS covariates
+ GWAS covariates
Model 3b: Trait ∼ PGS + sex + age + EWAS covariates +
GWAS covariates
Model 3c: Trait ∼ MS + sex + age + EWAS covariates +
GWAS covariates

To obtain the variance explained, models were fitted with
logistic regression with binomial family setting (link = “logit”).
Estimation of the variance explained by the MS and PGS, was
based on the approach proposed by Lee et al., where coefficients
of determination (R2) for binary responses are calculated on the
liability scale (54). R2 is equal to the explained variance divided
by the total variance; that is the sum of explained variance and
residual (homoscedastic) variance. We first regressed the trait on
the MS, sex, age and EWAS covariates (model 1a), and then on
sex, age, and EWAS covariates only (model 1b). We calculated
variance explained by all predictors in each model. We calculated
the predictive value of the MS by subtracting the difference
between the variance explained by the model 1a and 1b. The
same was done for models with PGS with sex, age, and GWAS
covariates (model 2a and 2b), and then for combined model with
both MS and PGS scores (models 3a-c). In the last case, the
difference between explained variance in model 3a and model 3b
gave us an estimate explained by MS, and the difference between
explained variance in model 3a and model 3c resulted in estimate
explained by PGS.

To correct for relatedness in smoking prediction, p-values
were obtained from GEE models, fitted with the R package

“gee,” with the binomial link function for dichotomous data,
100 iterations, and the “exchangeable” option to account for
the correlation structure within families. For prenatal smoking
exposure (yes/no) we randomly chose one of the twins from the
pair, and p-values were obtained from logistic regression models.

Sensitivity Analysis
We carried out a sensitivity analysis in which we repeated the
models for BMI prediction in children from MSs after removal
of children for whom information on BMI was collected more
than 3 years before or after DNA collection (N = 324 children
removed; new N= 748).

Multiple Testing Correction
Statistical significance was assessed following Bonferroni
correction for multiple testing (six tests in model 1 for birth
weight, BMI, prenatal maternal smoking and current smoking,
seven tests in model 1 for former smoking, one test in models
2 and 3 for each trait in adults; the same number of tests in
children except smoking status and plus eight tests in sensitivity
analysis for BMI). This resulted in a significance level of 0.0012
(α = 0.05/42) for adults and 0.0016 (α = 0.05/32) for children.

RESULTS

Characteristics of the NTR adult and children are presented
in Table 2. Distribution of the traits/exposures as main
outcomes and MSs and PGs as predictors are presented
in Supplementary Figures 1–3. Correlations between
trait/expoosure, PGS, MSs, sex, age, and cellular compositions
of the samples are shown in Supplementary Figures 4, 5. The
correlations between PGS and MSs for the same trait were
weak in adults (r = [0.01–0.15]) and children (r = [0.01–0.05]).
Further, we report the correlation between the PGS and the
MS that captured the largest amount of variation in the trait.
We examined prediction of each phenotype by its MS and PGS
separately. The explained variance and corresponding p-values
for unpruned and pruned MSs with different thresholds for
inclusion of CpGs are presented in Table 3, and for PGS in
Table 4. To examine to what extent the PGS and the MS capture
independent information, we fitted the model in which the
outcome was regressed on both scores as multi-omics prediction
presented in Table 5. Figure 1 shows the variance explained
by the MSs and PGSs separately and together as multi-omics
predictor in previous and our studies.

Birth Weight
The birthweight MSs were calculated based on the birthweight
EWAS of cord blood samples from neonates (15). The results of
GEE showed that none of the MSs was strongly associated with
birth weight in adults (p < 0.0012) and children (p < 0.0016).
The pruned blood MS based on 934 CpGs with a p-value lower
than 1 × 10−1 performed better in prediction of birth weight
in adults compared with unpruned and other threshold pruned
scores, accounting for 0.39% of the variance (p= 0.004) (Table 3,
Figure 1A). The PGS significantly predicted birth weight in
adults (variance explained by PGS = 1.52%, p = 1.56 × 10−7)
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TABLE 3 | Results of the methylation score prediction of birth weight, BMI, prenatal maternal smoking and current and former smoking.

Trait Group—DNA

methylation tissue

CpGs included in

MS

N CpGs βMS SEMS PMS MS R2 (%)

Birth weight Adults—Whole blood

(N = 2,040)

p < 10−1 72,570 0.044 0.029 0.127 0.192

p < 10−5 2,274 0.055 0.029 0.057 0.304

p < 10−7 963 0.049 0.027 0.074 0.238

p < 10−1 pruned** 934 0.062 0.022 0.004 0.386

p < 10−5 pruned 30 0.015 0.023 0.513 0.023

p < 10−7 pruned 18 0.025 0.023 0.277 0.064

Children—Buccal cells

(N = 1,070)

p < 10−1 72,205 −0.013 0.031 0.679 0.016

p < 10−5 2,249 0.031 0.032 0.344 0.094

p < 10−7** 958 0.038 0.032 0.237 0.141

p < 10−1 pruned 184 0.015 0.029 0.613 0.022

p < 10−5 pruned 13 0.016 0.032 0.613 0.025

p < 10−7 pruned 9 −0.005 0.033 0.882 0.002

BMI Adults—Whole blood

(N = 2,410)

p < 10−1 55,653 0.134 0.025 6.98 × 10−08* 1.786

p < 10−5 1,067 0.261 0.026 5.07 × 10−24* 6.822

p < 10−7** 412 0.277 0.026 9.79 × 10−27* 7.673

p < 10−1 pruned 671 0.124 0.021 3.14 × 10−09* 1.538

p < 10−5 pruned 13 0.220 0.023 1.70 × 10−22* 4.827

p < 10−7 pruned 6 0.206 0.023 7.50 × 10−20* 4.258

Children—Buccal cells

(N = 1,072)

p < 10−1 55,279 0.003 0.017 0.878 0.001

p < 10−5 1,079 −0.006 0.017 0.733 0.003

p < 10−7 422 −0.008 0.018 0.676 0.006

p < 10−1 pruned** 183 0.021 0.019 0.276 0.042

p < 10−5 pruned 13 0.005 0.019 0.772 0.003

p < 10−7 pruned 6 0.007 0.018 0.720 0.004

Prenatal maternal

smoking

Adults—Whole blood

(N = 720)

p < 10−1 76,531 0.761 0.168 5.83 × 10−06* 8.512

p < 10−5 1,581 0.946 0.140 1.51 × 10−11* 15.115

p < 10−7** 607 1.009 0.136 1.28 × 10−13* 17.277

p < 10−1 pruned 962 0.580 0.136 2.01 × 10−05* 7.076

p < 10−5 pruned 33 0.661 0.123 7.12 × 10−08* 6.820

p < 10−7 pruned 16 0.620 0.119 1.94 × 10−07* 5.963

Children—Buccal cells

(N = 547)

p < 10−1 76,146 −0.256 0.158 0.105 0.930

p < 10−5 1,571 −0.285 0.187 0.127 1.683

p < 10−7** 606 −0.304 0.183 0.096 2.223

p < 10−1 pruned 187 −0.125 0.153 0.416 0.386

p < 10−5 pruned 16 −0.096 0.164 0.559 0.149

p < 10−7 pruned 9 −0.120 0.161 0.456 0.274

Smoking current

vs. never

Adults—Whole blood

(N = 1,914)

p < 10−1 98,972 1.420 0.095 4.65 × 10−43* 20.974

p < 10−5 11,433 1.923 0.104 1.93 × 10−66* 40.086

p < 10−7 6,938 1.999 0.105 6.89 × 10−69* 44.449

p < 10−1 pruned 913 1.170 0.070 2.70 × 10−47* 27.626

p < 10−5 pruned 37 2.194 0.108 5.21 × 10−75* 56.237

p < 10−7 pruned** 24 2.245 0.111 1.25 × 10−73* 57.461

Smoking former

vs. never

Adults—Whole blood

(N = 1,938)

p < 10−1 from

current vs. never

smoking EWAS

98,972 0.429 0.085 6.63 × 10−07* 2.004

(Continued)
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TABLE 3 | Continued

Trait Group—DNA

methylation tissue

CpGs included in

MS

N CpGs βMS SEMS PMS MS R2 (%)

p < 10−5 from

current vs. never

smoking EWAS

11,433 0.689 0.086 2.73 × 10−15* 5.127

p < 10−7 from

current vs. never

smoking EWAS

6,938 0.758 0.086 3.37 × 10−18* 6.217

FDR significant

from Former vs.

Never Smoking

EWAS

2,568 0.935 0.088 3.56 × 10−24* 9.340

p < 10−1 pruned

from current vs.

never smoking

EWAS

913 0.499 0.066 3.38 × 10−13* 4.399

p < 10−5 pruned

from current vs.

never smoking

EWAS

37 1.186 0.087 6.64 × 10−36* 15.625

p < 10−7 pruned

from current vs.

never smoking

EWAS**

24 1.226 0.088 5.44 × 10−36* 16.316

FDR significant

from Former vs.

Never Smoking

EWAS, pruned

2,330 0.692 0.071 1.96 × 10−18* 7.569

β is the regression coefficient for each methylation score (MS) with standard error (SE) and p-value (P). MS R2 is the phenotypic variance explained by the MS.

* indicates p < 0.0012 in adults and <0.0016 in children. **indicate methylation score with lowest p-value for a trait/exposure.

TABLE 4 | Results of the polygenic score prediction of birth weight, BMI, prenatal maternal smoking, and current and former smoking.

Trait Group βPGS SEPGS PPGS PGS R2 (%)

Birth weight Adults (N = 2,040) 0.123 0.024 1.56 × 10−07* 1.520

Children (N = 1,070) 0.118 0.030 9.67 × 10−05* 1.387

BMI Adults (N = 2,410) 0.259 0.022 3.43 × 10−32* 6.725

Children (N = 1,072) 0.173 0.041 2.20 × 10−05* 3.003

Prenatal maternal smoking Adults (N = 720) 0.259 0.132 0.049 1.797

Children (N = 547) 0.282 0.165 0.086 1.622

Smoking current vs. never Adults (N = 1,914) 0.330 0.056 2.24×10−07* 2.794

Smoking former vs. never Adults (N = 1,938) 0.197 0.058 0.001 0.909

β is the regression coefficient for each polygenic score (PGS) with standard error (SE) and p-value (P). PGS R2 is the phenotypic variance explained by the PGS.

PGS to predict current vs. never smoking and former vs. never smoking were created based on GWAS on smoking initiation (17).

*indicates p < 0.0012 in adults and <0.0016 in children.

(Table 4). The correlation between the whole blood MS and
PGS in adults was−0.03 (p= 0.182; Supplementary Figure 4A).
In the model combining MS and PGS to predict birth weight,
the PGS, and blood MS in adults both significantly explained
variation in birth weight (variance explained by MS in combined
model: 0.39%, p = 0.003; by PGS: 1.53%, p = 1.96 × 10−7 and
MS+PGS: 1.92%) (Table 5, Figure 1E).

In children, the best performing score was based on 958 CpGs
with a p-value lower than 1 × 10−7, explaining 0.14% of the

variance (p = 0.263) (Table 3). The PGS predicted birth weight
in children (variance explained by PGS = 1.39%, p = 9.67 ×

10−5) (Table 4). MSs did not add predictive value to PGS in the
combined model (Table 5, Figure 1F).

BMI
Blood MSs for BMI were based on the EWAS by Wahl
et al. (12) in blood DNA in adults. These account for a

Frontiers in Psychiatry | www.frontiersin.org 9 July 2021 | Volume 12 | Article 688464

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Odintsova et al. PGS and MS Trait Prediction

TABLE 5 | Results of the multi-omics prediction of birth weight, BMI, prenatal maternal smoking, and current and former smoking.

Trait Group—DNA

methylation

tissue

Methylation score Polygenic score Total R2 for

MS+PGS

(%)
CpGs included in

MS

βMS SEMS PMS MS R2

(%)

βPGS SEPGS PPGS PGS R2

(%)

Birth weight Adults—Whole

blood (N = 2,040)

p < 10−1 pruned 0.063 0.021 0.003 0.394 0.124 0.024 1.96 ×

10−07*

1.525 1.92

Children—Buccal

cells (N = 1,070)

p < 10−7 0.043 0.032 0.172 0.186 0.110 0.030 2.61 ×

10−04*

1.219 1.41

BMI Adults—Whole

blood (N = 2,410)

p < 10−7 0.253 0.026 5.5 ×

10−23*

6.40 0.235 0.022 7.02 ×

10−28*

5.54 11.95

Children—Buccal

cells (N = 1,072)

p < 10−1 pruned 0.017 0.019 0.347 0.030 0.157 0.042 1.7 ×

10−04*

2.451 2.48

Prenatal maternal

smoking

Adults—Whole

blood (N = 720)

p < 10−7 1.031 0.140 2.4 ×

10−13*

16.886 0.207 0.140 0.139 0.837 17.72

Children - Buccal

cells (N = 547)

p < 10−7
−0.291 0.187 0.120 1.529 0.283 0.168 0.091 1.093 2.62

Smoking current

vs. never

Adults—whole

blood (N = 1,914)

p < 10−7 pruned 2.251 0.113 1.3 ×

10−70*

54.41 0.165 0.080 0.042 0.16 54.57

Smoking former

vs. never

Adults—whole

blood (N = 1,938)

p < 10−7 pruned

from current vs.

never smoking

EWAS

1.216 0.089 1.5 ×

10−34*

15.52 0.159 0.064 0.018 0.51 16.03

β is the regression coefficient for each term with standard error (SE) and p-value (P). MS R2 is the phenotypic variance explained by the MS. PGS R2 is the phenotypic variance explained

by the PGS. The combined model included the PGS and the best performing MS. *indicates p < 0.0012 in adults and <0.0016 in children.

FIGURE 1 | Prediction by methylation and polygenic scores in previous studies and NTR. Bars are the phenotypic variance explained by the score (R2), x-axis shows

R2 in %. MS, methylation score. PGS, polygenic score. PGS+MS, polygenic and methylation scores in combined model (multi-omics predictor). “–” indicates that the

score is not available in the study. Prediction by PGS and MS separately in NTR cohorts is indicated by blue frames in (A–D). Multi-omics prediction in NTR is

presented in (E–F). Full references on previous studies in (A,B,D) can be found by first author in References. For more details on previous EWASs included in (A,B),

see Supplementary Table 1.
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moderate proportion of the variance in BMI in adults (1.5–
7.7%). The best performing score explained 7.7% of the
variance in BMI (p = 9.79 × 10−27) and was based on
412 Bonferroni significant CpG sites (Table 3, Figure 1B).
The pruned MSs explained less variation in BMI (1.5–4.8%
explained variance). The PGS for BMI explained 6.7% of
the variance in adults (p = 3.43 × 10−6; Table 4). The
correlation between whole blood MS and PGS was 0.1 in adults
(p = 1.31 × 10−6; Supplementary Figure 4B). In a combined
regression model in adults the MS and PGS contributed
independently to the prediction of BMI (variance explained
by MS in combined model: 6.4%, p = 5.46 × 10−23, by
PGS: 5.5%, p = 7.02 × 10−28, and MS+PGS: 11.9%) (Table 5,
Figure 1E).

In children, the BMI MSs based on buccal methylation data
had a considerably lower predictive performance, and none
of the scores significantly predicted BMI: the best score in
children explained 0.04% of the variance (p = 0.276), and was
based on 183 pruned CpG sites with a p-value lower than 1 ×

10−1. The PGS explained 3% of the BMI variance (p = 2.2 ×

10−5). MSs did not outperform PGSs in the combined model
(Table 5, Figure 1F). Furthermore, removal of children for whom
information on BMI was collected more than 3 years before or
after DNA collection did not lead to an increase in explained
variance (Supplementary Table 4).

Prenatal Maternal Smoking
In adults, the MSs were based on the EWAS in cord blood
from 4,994 newborns (19, 51) and significantly predicted prenatal
maternal smoking exposure (Table 3, Figure 1C). The score
based on weights of 607 unpruned CpGs at p < 1 × 10−7

accounted for largest variance of 17.3% of prenatal maternal
exposure (p = 1.28 × 10−13). The pruned MSs performed
worse (5.9–7% explained variance). The PGS for maternal
smoking around birth did not significantly predict prenatal
maternal smoking (variance explained by PGS 1.8%, p = 0.05)
(Table 4). The correlation between the best performing MS
and PGS was 0.06 (p = 0.003; Supplementary Figure 4C).
The variance explained by MS and PGS in the combined
model was slightly lower than predicted by MS alone (variance
explained by MS in combined model: 16.9%, p = 2.4 ×

10−13, by PGS: 0.84%, p = 0.139 and by MS+PGS: 17.7%)
(Table 5, Figure 1E). Maternal smoking scores in buccal
methylation data from children, based on the same cord blood
discovery EWAS, were not significantly predictive (Table 5,
Figure 1F).

Smoking
The smoking MS in adults were based on the EWAS for
never vs. current smokers (18, 51) and were strongly predictive
for smoking status. The pruned MSs had a considerably
better predictive performance (28–57.5 vs. 21–44% explained
variance). The best performing MSs was based on 24 pruned
CpGs at p < 1 × 10−7, and explained 57.5% of variance
for current smoking (p = 1.25 × 10−73) and 16.3% of the
variance for former smoking (p = 5.44 × 10−36) (Table 3,
Figure 1D). The PGS for smoking initiation explained 2.8%

of the variance in current smoking (p = 2.24 × 10−7)
and 0.9% of the variance of former smoking (p = 0.001)
(Table 4). The correlation between the PGS of smoking initiation
and the best performing MS was 0.14 (p = 7.71 × 10−13;
Supplementary Figure 4D). In the combined prediction model,
the MSs outperformed PGSs in the prediction of smoking status,
and the PGSs were no longer significant (variance explained
by MS in combined model for current vs. never smoking:
54.4%, p = 1.3 × 10−70, by PGS: 0.16%, p = 0.042, and by
MS+PGS: 54.6%), indicating that the PGS and MS for smoking
do not independently add to prediction of this trait (Table 5,
Figure 1E).

DISCUSSION

We examined if a combined model that includes methylation
scores (MS) and polygenic scores (PGS) captures more variance
in body size, i.e., birth weight and BMI, and in two exposures,
i.e., prenatal maternal smoking exposure and smoking in
adulthood, in comparison to the PGS alone. Our results
showed that MSs in adults, from blood DNA, predicted BMI,
prenatal maternal smoking, and smoking status independent
of PGSs, and outperformed PGSs for BMI, prenatal maternal
smoking, and smoking status, but not for birth weight. In
children, MSs from buccal-cell DNA did not show predictive
value in children, but here the tissue in the discovery studies
derived from EWASs of cord blood and whole blood DNA
methylation profiles.

The most successful MS predictor in our study is for smoking.
Blood DNA MS explained up to 57.5% of the variance in
current smoking status and 16.3% of the variance in former
smoking status. This was substantially better compared to
the performance of PGS. Tobacco exposure, both prenatal
and current, is a potential environmental exposure that
modifies DNA methylation. Several previous studies reported
successful application of blood DNA MS created based on
weights from an independent discovery EWAS, as we did
in the current study (11, 23, 26), based on calculation of
indexes (27, 28) or based on machine learning algorithms
(25). In line with previous studies, MSs performed better
for predicting current vs. never smoking than for former
vs. never smoking (25). Most studies of smoking were done
on blood DNA methylation. It has been suggested that
buccal cell DNA methylation predictors should perform even
better (25). Currently, our participants with buccal cell DNA
methylation data are too young (methylation data in buccal
cells was available for children around 9 years old) to have
initiated smoking.

The blood DNAMSs for prenatal maternal smoking, based on
cord blood-derived weights from newborns, significantly
explained 17.3% of variance in adults. Earlier reports
demonstrated that maternal smoking during pregnancy is
associated with alterations in offspring blood DNA methylation
in newborns (19, 55, 56), children and adolescents (57, 58), and
adults several decades after exposure (23, 59). However, the
effects of sustained maternal smoking during pregnancy fade
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away with time, and the predictive accuracy in blood samples
from adults is much lower than the accuracy obtained with cord
blood samples from newborns (56–58, 60).

We showed that MSs perform better than PGSs in adults for
both exposures capturing the effect of smoking, and add value to
prediction in combinedmodels. The effects of individual SNPs on
behavioral traits such as smoking is small, hence, larger GWAS
meta-analyses are required for smoking and maternal smoking
to obtain better PGSs. In contrast to PGSs, which capture an
individual’s genetic predisposition for smoking behavior, MSs
capture the effect of exposure to smoking on the methylome.
Smoking as an exposure is strongly associated with DNA
methylation, and EWAS meta-analyses of smoking and maternal
smoking have identified very large numbers of CpGs associated
with these traits, allowing for the calculation of fairly reliableMSs,
i.e., the EWAS meta-analysis identified over 2,000 significant loci
associated with smoking (18), while the currently largest GWAS
detected 566 loci associated with smoking initiation (17).

The BMI MS derived in blood samples from adults explained
up to 7.7% of the variation in BMI, thereby outperforming
the PGS, which explained 6.7% of the variance. Both scores
contributed independently to the prediction of BMI in the
combined model (12% of explained variance). The performance
of adult NTR MSs for BMI was in line with other studies that
reported around 10–11% variance explained byMS only in adults
(see Figure 1B) and larger variance explained by combined MS
and PGS predictors (21, 22). In children with buccal methylation
data, a considerably smaller proportion of 2.5% of variation in
BMI was explained by the MS and PGS in combined predictor.
The lower predictive performance of BMI MSs in children than
in adults was also observed in other studies (20, 21), and could
be explained by increase of environmental contribution to the
trait with age (61) as BMI tends to increase during most of
adult life (62). Shah et al. (21) reported that BMI MSs based on
an EWAS in adults from the Lothian Birth Cohorts explained
4.9% of variation in adults from the Lifelines DEEP study, but
did not account for any BMI variation in adolescents (mean
age 14 years) from the Brisbane Systems Genetic Study. Reed
et al. (20) observed 10% of BMI variance explained in women in
comparisonwith 1% in children age 7 years and 3% in adolescents
age 15 years by MSs calculated on the same set of CpGs from an
EWAS in adults.

Birthweight MSs were not strongly predictive in our study,
with 0.4 and 0.1% of explained variance in adults and children,
respectively, while PGS were significant with 1.5 and 1.4% of
explained variance in adults and children, respectively. The
PGS for birth weight in NTR was in between the variance
explained in previous studies (see Figure 1A): 0.4% in an
ALSPAC cohort of 823 newborns (20), 2% in multi-cohort study
of 42 thousand twins (53) and in Hyperglycemia and Adverse
Pregnancy Outcome (HAPO) study of 1,338 individuals (14),
2.9% in the Northern Finland Birth Cohort (NFBC) of 5,402
individuals and 4.9% in Generation R cohort of 2,357 individuals
(14). The discovery EWAS of birth weight (N= 8,825 newborns)
detected 914 Bonferroni significant CpGs in cord blood (15),
suggesting that birth weight does have a large epigenetic signal
in cord blood at birth. The cord-blood DNAMS base on weights

from adult BMI EWAS accounted for 2% of variance in birth
weight (20). According to our knowledge, the performance of
birthweight MS based on weights from newborn EWAS has not
been previously examined. The low predictive accuracy of the
MSs can be caused by the fact the birth weight scores in whole
blood and buccal cells were based on an EWAS in cord blood of
neonates. Across different tissues and ages, different CpG sites
may be associated with birth weight. Another explanation is,
that the association between birth weight and DNA methylation
fades away with age. Küpers et al. (15) took the 914 significant
neonatal blood CpG sites and examined their associations with
birth weight in blood samples of adults. No CpG site reached
Bonferroni significance in the adults. At present, there are
no published EWASs of birth weight based on buccal DNA
methylation and no large EWASs of birth weight on blood
samples from adults.

The lower predictive accuracy of the buccal cell DNA MSs
for all four phenotypes may have several reasons: (1) for
some traits there is evidence that DNA methylation signatures
increases with age, e.g., BMI, and thus can be not evident
at age of 9 years old; (2) unreliability in the phenotype,
e.g., prenatal maternal smoking reported participants on their
mother’s smoking behavior; (3) use of effect sizes from EWASs
in cord blood and whole blood methylation data to calculate
the scores in buccal cell DNA methylation data. The CpG
sites that are predictive for trait/exposure in blood may not be
the same CpG sites that are predictive in buccal cells, or the
strength of the association may differ across tissues. This last
explanation can be tested once more EWASs in buccal cells
become available.

The best performing score for each trait will depend on
the true number of CpGs associated with the trait and their
effect size, the correlation among CpGs, and the power of
the discovery EWAS analysis. If the discovery EWAS had full
power to detect all CpGs associated with the trait, and there
is no large heterogeneity in the effects across cohort, scores
created within the same tissue as the discovery EWAS with
CpGs based on the most stringent p-value threshold (i.e., <1
× 10−7) are expected to perform best. More likely, EWASs for
these traits did not yet detect all CpGs that are truly associated
and larger discovery samples are required to detect CpGs with
smaller effects. Therefore, we also examined the performance
of scores created based on more lenient p-value thresholds.
More lenient p-value thresholds will potentially add more CpGs
to the MS that are truly associated with the phenotype, but
which did not yet reach epigenome-wide significance in the
discovery EWAS meta-analysis, thereby improving the score.
At the same time, inclusion of more CpGs that are not truly
associated with the trait and less accurate weights at more
lenient thresholds, add more noise to the MS. Pruning was
performed to remove correlated CpGs that are redundant (and
potentially add noise to scores). The expectation is that if the
set of CpGs associated with a trait is correlated (and especially
if correlations are strong or abundant), pruning will improve
performance of theMS.We found this to be the case, for instance,
for blood DNA MS for smoking in adults. For simplicity, we
compared two options that have been previously applied in
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the literature: (1) no pruning at all and (2) a correlation cut-
off of 0.1 to select an approximate independent set of CpGs,
but we note that the optimal correlation cut-off for pruning
may also vary across traits. In adults, pruning reduced the
performance of some scores, namely BMI and prenatal maternal
smoking, while it improved the performance for birth weight
and smoking. Sophisticated methods for MS calculation that
model the exact correlation structure between CpGs, as are
available for PGS (52), are yet to be developed. In our study,
we have selected the best performing score for each trait based
on the currently available largest EWAS. With larger discovery
EWASs, the optimal selection approach for CpGs is also expected
to change.

Birth weight and BMI are physical characteristics, whereas
prenatal maternal smoking and own smoking are commonly
labeled as exposures and behavioral traits. Birth weight is
the least heritable of these traits, while mother’s behavior in
prenatal maternal smoking consists of an exposure whose genetic
contribution is genetically transmittable to offspring, who inherit
50% of mothers’ genes. All four complex traits are influenced
by genetic variants and environmental factors, although some
have argued that behavioral traits are more distal and less
directly under biological control than physical traits. Polygenic
signals from PGS and MS are composites of signals from
different sources that are a result of different combinations of
underlying biological processes. Notwithstanding the gap in our
understanding about biological processes between the polygenic
signals and phenotypes and exposure outcomes, the hypothesis-
free approaches from GWAS and EWAS allow for construction
of polygenic and methylation scores that have certain predictive
accuracy, as demonstrated in research and that have potential for
clinical use (10, 63).

The pathways between genome and complex physical and
behavioral traits may pass over many different cascades
of biological processes in interplay and interaction with
environmental factors. PGS andMS can capture different sources
of information, from GWASs and EWASs. PGS will capture
only genetic vulnerability for a trait, while MSs may capture,
in addition to genetic influences on the trait, environmental
and stochastic influences and the effect of the trait on
the MS.

Pathway analyses indicate that protein products of genes
within birthweight-associated regions in GWAS are enriched
for diverse processes including insulin signaling, glucose
homeostasis, glycogen biosynthesis and chromatin remodeling
(14). Birthweight-associates CpGs are among sites that have
previously been linked to prenatal maternal smoking and
mother’s BMI before pregnancy (15). Genes annotated to BMI-
associated SNPs are mostly enriched among genes involved in
neurogenesis and more generally in the development of the
central nervous system (16). Cell type-specific gene expression
analysis identified enrichment of brain cell types in BMI (64).
These findings suggest that BMI could be considered as a
behavioral trait and not only metabolic one. Genes annotated to
BMI-associated CpGs play role in adipose tissue biology, insulin
resistance, inflammation, as well as metabolic, cardiovascular,
respiratory and neoplastic disease (12).

Smoking-initiation-associated genes are involved in
dopaminergic and glutamatergic neurotransmission among
several regions in the central nervous system related to addictive
behavior (17). Many CpGs overlap in both in newborns
exposed to prenatal maternal smoking and smoking adults
(including cg05575921 (AHRR) indicative to smoking exposure
in many studies) are implicated in numerous neurological
pathways, embryogenesis, and various developmental
pathways (51). Unique pathways observed in newborns include
xenobiotic-related pathways, cytochrome P450 and uridine-
glucoronosyltansferases involved in metabolism of nicotine
and other compounds of tobacco smoke (51), and pathways
associated to susceptibility to orofacial clefts (19). Unique
pathways observed in adults EWAS are enriched for variants
associated in GWAS with smoking-related disease, including
osteoporosis, colorectal cancers, and chronic obstructive
pulmonary disease.

The limitations of our study relate to measurement reliability
and the missing data for some phenotypes, which reduced
the study power. The largest number of missing data was for
prenatal maternal smoking in adults (47%, N = 1,133). Women
may underreport smoking during pregnancy (24), although
in NTR the prevalence of maternal SDP was 19.5 % for the
mothers of young twins, which is in line with the prevalence
reported in the general Dutch population (48). Birth weight
data were missing for many participants who joined the NTR
as adults (17%, N = 404). In children, there were varying time
differences between DNA methylation and BMI measurement.
Our sensitivity analysis showed that MS prediction accuracy was
not affected by this difference. In the prediction models, we
adjusted for age, sex, and cellular composition of samples, hence
the predictive performance of MSs reported in this paper is over
and above the effects of age, sex, and cellular composition. We
recognize that theMSs, and their ability to predict the phenotypes
that we study are likely to be impacted by other factors, such as
gestational age for birth weight and prenatal maternal smoking,
BMI and amount of cigarettes in smoking exposure and vice versa
smoking in BMI. Further explorations of potential confounders
and mediators will be valuable.

The combination of PGS and MS is a tool to address research
questions, such as mediation by DNA methylation of the effect
of certain exposures on a trait of interest, where a score based on
multiple CpGs may increase the power of such studies compared
to a single CpG site.

Lifestyle variables, such as smoking behavior, are often
assessed in epidemiologic studies by interviews or questionnaires,
and individuals may hide their smoking status or adults may
not know if their mother smoked during pregnancy. In such
cases, the use of epigenetic profiles can serve as biomarkers and
be applied an alternative of survey data (11). Further, the MSs
also have potential to be used in risk stratification and disease
risk prediction. For example, BMI MSs were shown to predict
type 2 diabetes beyond traditional risk factors including BMI and
waist–hip ratio (12).

In conclusion, this study illustrates the value of combining
PGS with MS for complex trait and exposure prediction. The
results of our study provide new insights into the predictive
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performance of PGS and MS for different traits, across different
tissues and ages. Because we analyzed buccal data in NTR
children and blood data in NTR adults, the current study could
not distinguish between age and tissue as cause for the differences
in predictive performance of the scores in the two groups. To
make a better distinction between differences caused by age or
tissue type, future studies that can create PGS and MS based on
both blood and buccal data in children and adults are warranted
and ideally both tissues are available for the same individuals.
Furthermore, the predictive performance of MSs in blood and
buccal methylation data may improve if MSs will be created
based on EWA studies performed in the same type of tissue
collected at the same age with larger sample size, with other
approaches rather than weighted score approach (e.g., machine
learning), and the prediction of traits may be further improved
by adding information from additional omics levels. Future
follow-up studies should investigate relationships between the
DNA sequence and DNA methylation in complex traits and
exposure outcomes.
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