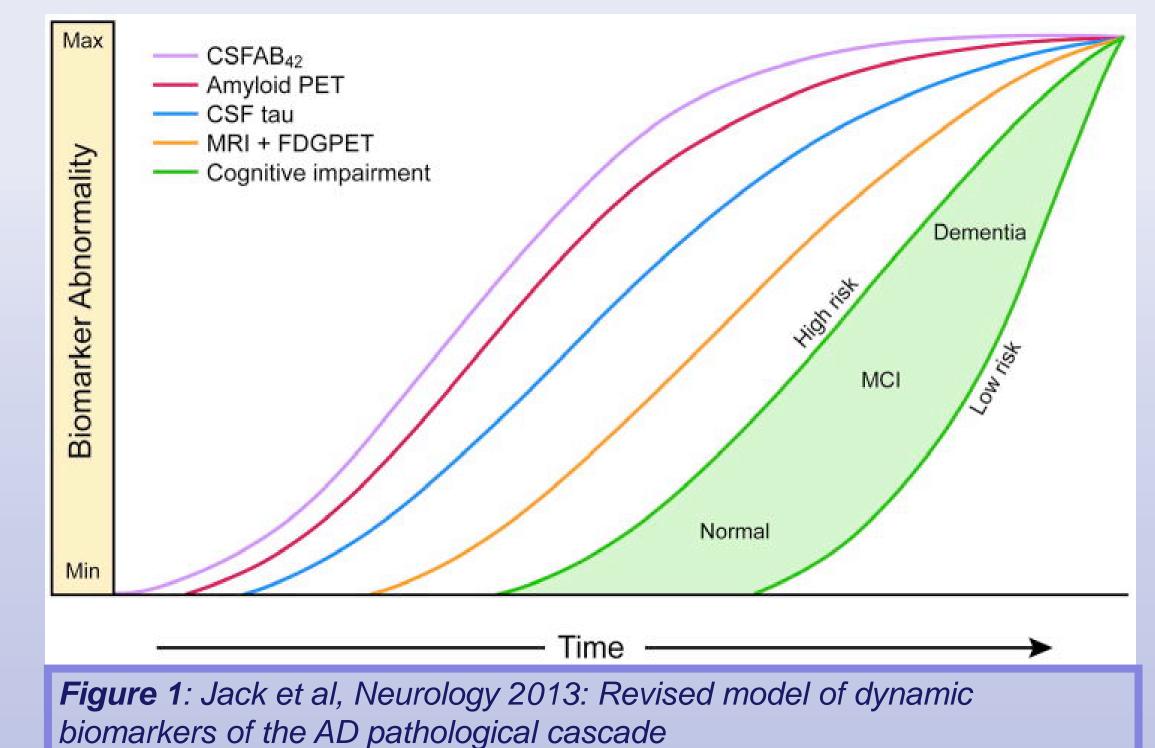
# Study Design: Amyloid Pathology In Cognitively Normal Elderly Twins



E Konijnenberg<sup>1</sup>; A den Braber<sup>1,2</sup>; M ten Kate<sup>1,3</sup>; DI Boomsma<sup>2</sup>; BNM van Berckel<sup>3</sup>; F Barkhof<sup>3</sup>; CJ Stam<sup>4</sup>; AC Moll<sup>5</sup>; PJ Nathan<sup>6</sup>; JR Streffer<sup>7</sup>; Ph Scheltens<sup>1</sup>; PJ Visser<sup>1,8</sup>

<sup>1</sup>Department of Neurology, Alzheimer Center, VU University Medical Center, Amsterdam; <sup>2</sup> Netherlands Twin Registry, Amsterdam; <sup>3</sup> Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam; <sup>4</sup> Department of Clinical Neurophysiology, VU University Medical Center, Amsterdam; <sup>5</sup> Department of Ophthalmology, VU University Medical Center, Amsterdam; <sup>6</sup> Cambridge Cognition Ltd, and Department of Psychiatry, University of Cambridge; <sup>7</sup> Janssen Pharmaceutica NV, Beerse, Belgium; <sup>8</sup> Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht

### Alzheimer Center VUmc




#### Introduction

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive neuronal loss and eventually death. Abnormal aggregation of beta amyloid (Aβ) is the first event in AD and is present in 20-40% of cognitively normal elderly (*Figure 1*). After Aβ aggregation neuronal injury develops. The concordance of monozygotic twins for a clinical diagnosis of AD-type dementia is 0.40-0.67. This suggests a major genetic role in the development of AD but also involvement of environmental factors.

#### **Objectives:**

- 1. To determine the **concordance** of Aβ and neuronal injury AD biomarkers and the combination of both in monozygotic twins
- 2. To analyze the appearance of AD biomarkers in **relation** to cognitive decline and/or diagnosis
- 3. To test whether discordance is associated with gene expression and **DNA methylation**



## Methods: Cognitive testing and imaging

Longitudinal observational cohort study of 100 monozygotic twin pairs aged 60-100 years from the Netherlands Twin Registry (NTR) (*Table 1*).

After 2 years cognitive testing and questionnaires

**Table 1**: Baseline measurements in 200 cognitively normal elderly

| Baseline<br>Home Visit   | Measurements                                                                                 | Baseline<br>Clinical Visit | Measurements                           |                                   |
|--------------------------|----------------------------------------------------------------------------------------------|----------------------------|----------------------------------------|-----------------------------------|
| Cognitive testing        | CANTAB: Paired associate learning, reaction time, rapid visual information processing        | MEG                        | Functional connectivity                |                                   |
|                          | RAVLT, F-NAME, Fluency, Rey figure                                                           | Duplex carotid arteries    | Intima-media thickness                 | Vascular stiffness, stenosis      |
|                          | Graded Naming Test, TMT A & B, DSST                                                          | Blood analysis             | Biochemistry, proteomics               | RNA, DNA-<br>methylation          |
|                          | Digit Span, Visual Association Test, NART                                                    | CSF analysis               | Biochemistry                           | Aβ, tau, p-tau                    |
| Questionnaires           | Sleep quality, functional & cognitive activity, quality of life, depression, iADL, nutrition | OCT                        | Retinal Nerve Fibre<br>Layer thickness | Vascular<br>abnormalities         |
| Physical examination     | Blood pressure, weight, length, waist, grip strength, medical history                        | MRI                        | Atrophy, vascular damage               | T1, FLAIR, ASL, rs-fMRI, DTI, SWI |
| Neurological examination | Neurological abnormalities                                                                   | Amyloid-PET                | Cerebral amyloid pathology             | Dynamic scanning                  |

#### Expected Results: Start December 2014

- Markers amyloid pathology: Aβ in CSF analysis and amyloid-PET scan.
- Markers for neuronal injury: tau & p-tau in CSF, neuropsychological and clinical markers, functional and structural brain connectivity measured by MEG and MRI, brain atrophy by MRI, vascular changes by MRI, retinal imaging and duplex of the carotid arteries

#### Conclusions

The degree of gene expression and DNA methylation markers will be compared between concordant and discordant twin pairs.







