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Abstract

Establishing causal relationships in observational studies is an important step in research and policy decisionmaking. The association between
an exposure and an outcome can be confounded by multiple factors, often making it hard to draw causal conclusions. The co-twin control
design (CTCD) is a powerful approach that allows for the investigation of causal effects while controlling for genetic and shared environmental
confounding factors. This article introduces the CTCD and offers an overview of analysis methods for binary and continuous outcome and
exposure variables. Tools for data simulation are provided, along with practical guidance and accompanying scripts for implementing the
CTCD in R, SPSS, and Stata. While the CTCD offers valuable insights into causal inference, it depends on several assumptions that are
important when interpreting CTCD results. By presenting a broad overview of the CTCD, this article aims to equip researchers with actionable
recommendations and a comprehensive understanding of the design’s strengths and limitations.
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Establishing and quantifying the causal effect of an exposure on an
outcome trait is a major goal in many fields of research. Causal
inference plays a pivotal role inside and outside science. It advances
our understanding of the complex relationships between exposures
and outcomes, informs public health interventions, and shapes
policy decisions. Exposures and outcomes can both refer to a wide
array of variables, including external environmental impact,
comprehensive lifetime exposure records, individual traits, and
disorders or diseases. In observational studies, unraveling causal
relationships is challenging. The association between an exposure
and an outcome can be confounded by multiple factors, leading to
spurious associations and potentially incorrect causal inference.
Confounders, if identified a priori and are observable (measurable),
can be included in the analysis of causal relations. However, it is hard
to rule out unobserved, possibly latent, confounders. Genetic
confounding, for instance, arises when genes influence the exposure
and the outcome independent of a causal relationship (horizontal
pleiotropy; Solovieff et al., 2013). If the genes involved in the
confounding are unknown, which is often the case in studies of
genetically complex traits, the confounding is latent. Failing to
account for confounding variables can result in erroneous causal

inference (Sjölander & Greenland, 2013). This highlights the need
for robust methods that can help account for confounding factors in
observational studies.

Family-based designs, including the co-twin control design
(CTCD) or discordant twin-pair design, were developed to
investigate causal relations in the presence of latent confounding.
The CTCD utilizes data of discordant monozygotic (MZ) twin pairs
to examine the association between an exposure and an outcome
variable (Gesell, 1942). One of the earliest experiments to implement
a CTCD was conducted in 1927 when a pair of identical twins were
taught to climb stairs at different time intervals. Twin A underwent a
6-week training period at 46 weeks old and managed to climb the
stairs in 26 seconds. Twin B, on the other hand, climbed the stairs in
45 seconds without any training. Subsequently, Twin B received
training for 2 weeks and improved her time to 10 seconds, despite
having amuch shorter training duration compared to her co-twin. By
the time they reached 56 weeks and 3 years, their performance on the
staircase was similar. This study’s findings established an association
between learning and maturity (Gesell & Thompson, 1943).

In observational data, the CTCD is applied to discordant MZ
twin data when one twin has been exposed to a condition or
variable of interest and the other has not. For example, one twin is a
smoker and the other is not, or one twin was the victim of a crime
and the other was not. Discordance can also be for disorders and
diseases such as MS (multiple sclerosis), cancer or psychiatric
conditions. Discordancy is not limited to binary exposures. MZ
twinsmay differ with respect to continuous exposures such as birth
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weight (e.g., Groen-Blokhuis et al., 2011) or body mass index
(e.g., van Dongen et al., 2015). Themajor advantage of the CTCD is
the inherent matching on genetic and shared environmental
confounders. Specifically, MZ twins are genetically identical, or
nearly identical, and have shared many environmental influences
including intrauterine exposures. In addition, MZ twins are
perfectly matched for age and sex. The inclusion of discordant
dizygotic (DZ) twins who are likewise matched for age and sex
(in the case of same-sex DZ twins), and shared environment also is
informative, as are designs with full siblings. However, DZ twins
and siblings are not perfectly matched for genetic factors, as they
share on average 50% of their alleles, and so are not genetically
identical. Thus, the CTCD applied toMZ twins corrects for genetic
and shared environmental confounding, and confounders directly
associated with age and sex. There are other family-based designs
that can be applied, including a sibling design, but only the analysis
of data from MZ twins, who are nearly genetically identical,
controls for genetic confounding (D’Onofrio, 2013). It is worth

noting that in rare cases MZ twins inherit very similar, but not
entirely identical, genotypes. In such cases, discordant MZ twins
can be valuable in identifying specific genetic mutations (post
zygotic) that may be causing the differences. For instance, a study
conducted by Kondo et al. (2002) successfully identified the
interferon regulatory factor 6 gene (IRF6) as the locus responsible
for the development of Van der Woude syndrome (VWS) in a pair
of MZ twins discordant for VWS.

The CTCD has generated substantial interest and has led to
multiple methodological and review articles. Table 1 contains a
brief description of these articles and their scope. The aim of the
current article is to provide an overview of the CTCD with a focus
on its application to data from large twin registries and summarize
the methodological considerations. We discuss the analysis of
binary and continuous exposures and outcome variables. We add
to the existing literature summarized in Table 1 by presenting
simulation analyses that illustrate various scenarios encountered
in the CTCD, such as different sources of confounding factors

Table 1. Overview of articles focusing on the CTCD and their additional value

Author Year Title Focus

Christian & Kang 1972 Efficiency of human monozygotic twins in studies of
blood lipids

Extensive comparison of the paired and unpaired design, including the
efficiency of both the designs, and estimation of the experimental
error for studies involving twins versus unrelated subjects.

Martin et al. 1982 Co-twin control studies: Vitamin C and the common
cold

Provides an introduction of the CTCD and discussion of the
advantages as well as an application of the CTCD to study the effect
of vitamin C on cold symptoms.

Hu et al. 1998 Modelling ordinal responses from co-twin control
studies

Ordinal data in a CTCD by investigating the applicability of the
random-effects and GEE approaches.

Lichtenstein et al. 2002 The Swedish Twin Registry: A unique resource for
clinical, epidemiological and genetic studies

Step-by-step description of the discordant twin design.

Goldberg & Fisher 2005 Co-twin control methods The basic analytic methods that can be applied to CTCD with a
(dichotomous) discordant environmental risk factor and a continuous
or dichotomous outcome variable are given.

Madsen & Osler 2009 Commentary: Strengths and limitations of the
discordant twin-pair design in social epidemiology.
Where do we go from here?

Discussion of the strengths and limitations of the CTCD.

Vitaro et al. 2009 The discordant MZ-twin method: One step closer to the
holy grail of causality

Presents two analytical strategies based on the discordant MZ twin
method; the difference score strategy and mixed strategy.

McGue et al. 2010 Causal inference and observational research: The utility
of twins

Methods of causal inference are discussed, with a focus on the
discordant twin design.

van Dongen et al. 2012 The continuing value of twin studies in the omics era Review that considers the continuing value of twin studies in the
current era of molecular genetic studies.

Sjölander et al. 2012 Analysis of 1:1 matched cohort studies and twin
studies, with binary exposures and binary outcomes

An overview of methods for matched cohort and twin studies with
binary exposures and outcomes.

D’Onofrio 2013 Critical need for family-based, quasi-experimental
designs in integrating genetic and social science
research

Discusses major advantages, limitations, and assumptions of family-
based quasi-experimental designs for examining environmental risks.

Røysamb & Tambs 2016 The beauty, logic and limitations of twin studies Central theoretical foundations of the classic and extended twin
designs are discussed, including the CTCD.

Sahu & Prasuna 2016 Twin studies: A unique epidemiological tool A general overview of twin studies is given and the steps of the co-
twin control analyses with recommended software packages.

Segal 2019 Co-twin control studies: Natural events, experimental
interventions and rare happenings/twin research

Issues of the CTCD are discussed with reference to earlier studies.

McAdams et al. 2021 Twins and causal inference: Leveraging nature’s
experiment

Review discussing how monozygotic and dizygotic twin pairs can be
used to strengthen causal inference.

van Dijk et al. 2022 Using twins to assess what might have been: The co-
twin control design

Description of the CTCD, including statistical framework, value and
limitation, and example code for SAS and R.
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(e.g., no confounding, genetic confounding, shared environmental
confounding). Additionally, we offer a collection of scripts that can
be readily utilized with the popular statistical software packages
SPSS, R, and Stata.

Co-Twin Control Analyses Design

The CTCD, as applied to MZ and DZ twin pairs, typically involves
three steps, as outlined by Lichtenstein et al. (2002). The first step
focuses on a total sample. We assume that the sample is
representative of the general population, which is likely to be
the case in population-based twin registries. The second step
focuses on DZ twins, while the third step concentrates on MZ
twins. We outline these steps in more detail below.

Step 1: Test for the Association at the Population Level
Between Exposure and Outcome

In this first step, the exposed individuals are compared to all
nonexposed individuals (i.e., controls) to examine the association
between the exposure and the outcome. Thus, the relationship
between exposure and outcome is assessed in all participants in the
sample, without considering twin status. Cases can come from
nontwins (if included in the sample), discordant twin pairs, or
pairs that are concordant for exposure. When analyzing data from
twin registries, the total sample includes data from related
individuals; thus it is necessary to correct for familial clustering,
since the assumption of independent observations is otherwise
violated.

Subsequent steps focus exclusively on DZ and MZ twin pairs.
These steps aim to investigate the presence of familial and genetic
confounding in the association between the exposure and outcome
variables.

Step 2: Matched Analysis in Same-Sex Dizygotic Twin Pairs

In the second step, a within-pair analysis is conducted in DZ
exposure-discordant twin pairs. Often, only same-sex DZ twins are
considered. However, opposite-sex twins can be included, and in
cases where the research hypothesis specifically relates to sex as a
potential cause of the association under investigation, considering
opposite-sex twins is an optimal design. For example, Cui et al.
(2005) conducted a study on birth defects in a sample of 4768
opposite-sex twins, aiming to examine potential sex differences.
The findings revealed that among the opposite-sex twin pairs,
males exhibited a 29% higher risk of birth defects compared to their
twin sisters.

DZ twins and nontwin siblings share on average 50% of their
segregating alleles, whereas MZ twins share 100% of their alleles.
Both MZ and DZ twins share certain environmental factors, such
as shared family experiences, and early intrauterine exposures,
such as maternal smoking during pregnancy. A within-DZ twin
pairs analysis controls for shared environmental factors that were
not accounted for in the population-level analyses.

Step 3: Matched Co-Twin Analysis in the Monozygotic
Twin Pairs

The analysis of step 2 is repeated for the exposure-discordant MZ
twin pairs. Given the aim of controlling for confounders, the
analyses of exposure-discordant MZ twins is the most powerful,
given the matching for sex, age, genetic influences, and shared
environmental influences. Note that in studies that target rare
diseases or involve large-scale omics, measurements in biological

samples, such as epigenetic profiles in blood, often only this third
step is conducted. In such cases, researchers actively seek pairs of
MZ twins where one twin is affected by the disease, trait or
exposure of interest, while the other twin remains unaffected or
only the most extreme discordant twin pairs are selected. For
example, a study by Dempster et al. (2014) revealed distinct DNA
methylation differences in 18 pairs of MZ twins discordant for
adolescent depression. Another example is the study by van
Dongen et al. (2015) where only twin pairs’ BMI were selected
(N = 120 pairs) who were extremely discordant for BMI. The result
supported causal effects of obesity, as the heavier twin had a more
unfavorable blood biomarker profile than their leaner co-twin.

Evaluating Results Across the Three Steps

As explained, the CTCD tests the relationship between exposure
and outcome in individuals who differ in their exposures in the
population sample (step 1), within DZ twin pairs who are
discordant for the exposure (step 2), and within discordant MZ
twin pairs (step 3). To support a causal hypothesis, we inspect the
strength of these relationships. The associations within the
population (step 1, see above) may be confounded by genetic or
environmental factors. Associations within DZ twin pairs
discordant for exposure (step 2) control for shared environmental
effects, and associations within MZ twin pairs discordant for
exposure (step 3) control for both shared environmental and
genetic effects.

Figure 1 illustrates four scenarios resulting from these three
steps. In scenario 1A, where exposure causally affects the outcome,
we expect to observe associations at the population level and within
discordant twin pairs. For example, if victimization of a crime
causes depression, the victims and nonvictims in the population
will differ in depression status, and a similar difference will be
observed within discordant twin pairs. However, this pattern is
necessary, but not sufficient, evidence of causality since nonshared
environmental factors are not accounted for by the CTCD design.

Scenario 1B represents the case where the association between
exposure and outcome is entirely explained by genetic con-
founding. While an association is expected to be observed at the
population sample level, it is expected to be zero within the MZ
pairs, as the genetic factors that confound the association are
identical between the twins. The association within discordant DZ
twin pairs will be intermediate, with the exact effect size depending
on the size of the genetic covariance between the exposure and
outcome variable and the variance of the exposure variable.

Scenario 1C depicts shared environmental factors as the sole
confounder. Associations between exposure and outcome are
again expected to be observed at the population level, but absent
within both DZ and MZ twin pairs, as the shared environment is
equal in both types of pairs. Finally, scenario 1D suggests partial
confounding by genetic and environmental factors. Associations
would be reduced within DZ twin pairs and further reduced within
MZ pairs compared to the population-level effect. The presence of
an exposure effect within discordant MZ pairs supports at least a
partial causal effect.

Statistical Approaches

Multiple statistical approaches have been developed to estimate the
association between exposure and outcome in the three steps
outlined above. An overview of commonly applied analyses is
presented in Table 2. We note that Table 2 does not provide an
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exhaustive overview of all possible analyses but aims to summarize
some common approaches.

One point to emphasize is that in twin data analysis, the
inclusion of twin pairs in the analysis relies on their discordance
in both exposure level and outcome variables. If the outcome or
exposure variable is the same within a twin pair, it indicates a
lack of within-pair variation. Consequently, such twin pairs do
not contribute information. Thus, only twin pairs discordant for
the exposure and outcome variable contribute to the estimation
of the association between the exposure and outcome (Frisell
et al., 2012). While this phenomenon of exclusion is often
discussed in relation to binary variables, where many twin pairs
may share the same exposure or outcome values, it is not limited
to binary data. In the case of continuous variables, twins can be
concordant, that is, share the same values (e.g., have the same
height). Thus, in both continuous and binary data, twin
concordance on the exposure or outcome results in the
exclusion of twin pairs, and the true sample size in these
analyses is given by the number of discordant twin pairs for the
exposure as well as the outcome.

Outcome Variable: Binary

Analyses of binary outcomes often focus on odds ratio (OR)
estimates. An OR of 1 indicates no association, while ORs below

1 or above 1 indicate decreased or increased odds of the outcome
with increasing exposure, respectively (Moser & Coombs, 2004).

In population sample analyses, logistic regression models
adjusted for covariates are often employed to analyze binary
outcomes. If there is clustering in the data because of related
participants, a correction for clustering is necessary; for example,
by mixed models with random effects or a generalized estimating
equation approach (GEE). In discordant twin analyses with
continuous exposure and binary outcome variables, conditional
logistic regression analyses (CLR) are common, accounting for
stratification and matching (Graubard & Korn, 2011; Sjölander
et al., 2012). For example, Kendler and Gardner (2010) analyzed
data from 4910 female and male twins by CLR to investigate the
association between dependent stressful life events and major
depression (MD). They found a strong association between
dependent stressful life events and MD in both female and male
twins. The association was lower in DZ twins and lower still in MZ
twins, suggesting confounding by genetic factors.

When the exposure and outcome variables are binary, an
alternative approach for discordant twin analyses is provided by
McNemar’s test. This test is based on the 2 x 2 contingency table of
matched responses to determine whether there are statistically
significant differences in a dichotomous dependent variable
between two related groups (Adedokun & Burgess, 2012). For
instance, Romanov et al. (2003) employed McNemar’s test in a

Figure 1. Patterns of possible co-twin
control results: the magnitude of the
relationship between exposure and
outcome at the population level, and
within discordant dizygotic (DZ) and
monozygotic (MZ) twins under different
scenarios.
Note: Scenario A = no confounding,
B = solely genetic confounding,
C = solely shared environmental con-
founding, and D = partial genetic and
shared environmental confounding.
The Y-axis depicts the magnitude of
the association; for example, a regres-
sion coefficient.

Table 2. Possible statistical models for the population and discordant twin analyses for both binary and continuous variables

Outcome

Binary Continuous

Population analysis Exposure Binary Logistic regression Linear regression
Two-sample t test ANOVA

Continuous Logistic regression Linear regression
Discordant twin analyses Exposure Binary McNemar’s test

Conditional logistic regression
Fixed effects regression
Paired t test

Continuous Conditional logistic regression Fixed effects regression

Note: ANOVA, analysis of variance.
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study of 9947 Finnish adult twins and found that the effect of
multiple life events on depression was similar in both MZ and DZ
twins discordant for depression, indicating that the relationship
between experiencingmultiple life events and depression is not due
to genetic and shared environmental confounding.

Outcome Variable: Continuous

For continuous outcome variables, there are several modeling
options for population analyses. One common approach is to use
linear regression models, which may include measured covariates.
Correction for clustering may be necessary using mixed models
with random effects for clustering factors such as family and
zygosity of twins, or a generalized estimating equation (GEE)
approach.

In discordant twin analyses, a fixed-effect regression analysis
can be conducted. This involves regressing the within-pair
difference on the continuous outcome variable on the within-
pair difference on the exposure variable. An example of this
approach is demonstrated in the study byMiddeldorp et al. (2008),
which examined the associations of life events with anxious
depression and personality in data from 5782 MZ and DZ twins
participating in longitudinal survey studies in the Netherlands. The
findings did not provide evidence to support a causal hypothesis, as
there were no differences in anxious depression, neuroticism, and
extraversion scores between exposed and nonexposed unrelated
subjects and within discordant MZ and DZ twin pairs.

When both the exposure and outcome variables are continuous,
often studies create two groups based on the continuous exposure
variables to determine discordance between twins. For example,
Groen-Blokhuis et al. (2011) investigated the association between
low birth weight and attention problems. They classified twin pairs
as discordant for birth weight if the birth weight of the smaller twin
was at least 15% lower than the birth weight of the larger twin or if
there was a birth weight difference of at least 400 grams. Children
with lower birth weights had higher scores on hyperactivity and
attention problems compared to children with higher birth
weights. Similar findings were observed for unrelated pairs, as
well as MZ and DZ twin pairs, providing evidence for a causal
relationship between birth weight and attention problems.
However, we note that this method of classification results in a
loss of information. An alternative approach is to use the original
scores of the exposure variable in the analyses, without
dichotomizing it.

Statistical Approaches Simulation

A data simulation was conducted using R to demonstrate the
application of the CTCD for assessing causality and confounding.
Three datasets were generated: one for a population sample, one
for a dizygotic (DZ) twin sample, and one for a monozygotic (MZ)
twin sample, where the desired samples can be specified by the
user. Note that when either the exposure variable or the outcome
variable is binary, only the discordant twin pairs with respect to
both the exposure and outcome will be included in the analyses,
resulting in a reduced sample size for MZ and DZ pairs. The script
for the data simulation can be found in Supplementary File 1. The
simulation implemented the scenarios depicted in Figure 1 for each
group (population, DZ twins, andMZ twins). Normally distributed
continuous variables were generated for both the exposure (x) and
the outcome (y) variables by exact data simulation. Subsequently,
binary variables (dx and dy) were derived from the continuous
variables. All continuous values above zero were assigned a value of

1, indicating a positive outcome (‘case’), while the remaining values
were assigned a value of zero (‘control’). The simulation scenarios
can be customized to incorporate different strengths of association
and genetic and nongenetic variance components of x and y based
on specific simulation requirements.

In the current simulation, the variance components for x and y
were chosen based on an ACE model — that is, in this model the
variation in a phenotype is due to additive genetic effects (A), the
common environment (C), and the unique, random, environment
(E) — with a relatively small contribution of C. The simulated
exposure variable was based on traits such as victimization, with
variance components of a2 = .45, c2= 0.22, and e2 = 0.33 (e.g.,
Beaver et al., 2009), while the simulated outcome variable
represented a trait such as depression, with variance components
of a2= 0.40, c2= 0.10, and e2 = 0.50 (e.g., Huider et al., 2021;
Sullivan et al., 2000).

Twin correlations and cross-twin, cross-trait correlations,
either Pearson or tetrachoric correlations, are summarized in
Supplementary Table 1. Additionally, the correlation between the
difference scores of MZ and DZ twins for two traits is presented in
Supplementary Table 1.

Analyses of Simulated Data in R, STATA, and SPSS

Statistical analyses were performed in R, STATA, and SPSS to
analyze the simulated data in the CTCD. All analysis scripts can be
found in the Github repository (https://github.com/bmagonggrijp/
CTCD-Implementation-and-Methodological-Considerations)
and in Supplementary File 1. The results from the analyses
conducted in R, STATA, and SPSS are consistent, as shown in
Supplementary Tables 2, 3, and 4 respectively. We again note that
the estimation of associations in the twin analyses relies on
discordant twin pairs contributing to the within-pair association’s
estimation. Consequently, not all twin pairs are included when, for
example, a conditional logistic regression is performed, and thus
the exact number of contributing twins should be carefully checked
and reported in publications. Among the software packages we
worked with, STATA and R provided this information in the
results. In SPSS, conducting a conditional logistic regression
requires specifying that only discordant twins should be selected
for analysis to obtain the correct within-pair estimate for fixed
effects and conditional logistic regression. The analyses of the
simulated data demonstrate that if these steps are performed
correctly, the three software packages produce exactly the same
regression coefficients, with slightly different confidence intervals
in SPSS compared to those in R and STATA.

Figure 2 presents the results of the different simulation analyses
for each scenario depicted in Figure 1. The analyses vary depending
on the type of variables involved (continuous or binary) and reveal
differences in the magnitude of the association within the same
scenario. In the top part of Figure 2, scenario A is depicted, where
no confounding is present. The simulation analyses of continuous
exposure and outcome variables show an expected pattern with
consistent association magnitudes across the population sample
and both DZ and MZ discordant twin analyses. However, when
examining binary variables, there is a slight deviation from the
expected pattern, due to the introduction of variability when
deriving binary variables from continuous variables during the
simulation process.

The second part of Figure 2 illustrates scenario B, where only
genetic confounding is present. In each analysis, for both
continuous and binary variables, an association is observed in

Twin Research and Human Genetics 253

https://doi.org/10.1017/thg.2023.35 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2023.35
https://doi.org/10.1017/thg.2023.35
https://doi.org/10.1017/thg.2023.35
https://github.com/bmagonggrijp/CTCD-Implementation-and-Methodological-Considerations
https://github.com/bmagonggrijp/CTCD-Implementation-and-Methodological-Considerations
https://doi.org/10.1017/thg.2023.35
https://doi.org/10.1017/thg.2023.35
https://doi.org/10.1017/thg.2023.35
https://doi.org/10.1017/thg.2023.35
https://doi.org/10.1017/thg.2023.35


the population sample, while there is no association in the MZ
discordant twins, and the DZ twins show an intermediate pattern.
The third part of Figure 2 shows the simulation of scenario C,
which involves confounding by shared environmental factors. As
expected, only the population sample shows an association, while
the association within the twins is either zero or not significantly
different from zero. The association in the population sample is
relatively small compared to the other scenarios because the
simulated exposure and outcome variables both had a relatively
low contribution of shared environmental factors (0.22 and 0.10,
respectively).

Finally, the fourth part of Figure 2 depicts a scenario where
there is partly genetic and shared environmental confounding.
Here again, the expected patterns emerge, with reduced association
magnitudes within DZ andMZ pairs compared to the effect within
the population sample. Thus, under the assumption of no
unshared environmental confounding, we draw correct conclu-
sions with respect to the presence or absence of genetic or shared
environmental confounding.

Discussion

The co-twin control design (CTCD) is a valuable tool for
investigating causal associations while controlling for confounding

by shared environmental and genetic factors. In this article, we
reviewed common analysis methods for CTCD with binary or
continuous outcome and exposure variables and provided practical
guidance and scripts for implementing the design in R, SPSS, and
Stata, and illustrating it using simulated data. The CTCD’s greatest
strength lies in its ability to control for unmeasured genetic and
shared environmental factors, providing evidence for a causal
association. However, the CTCD cannot completely rule out
alternative explanations for observed associations.

One assumption in the CTCD is the absence of confounding by
nonshared environmental factors. While MZ twins share genetic
and some environmental influences, they also have nonshared
experiences and exposures that make them unique. Consequently,
when the association of exposure with the outcome within the
population sample is similar to the within-DZ and within-MZ
pairs association this may reflect true causality, but it can also
reflect the effect of the nonshared experiences that led to
differences in exposure.

Second, the CTCD cannot distinguish between causation and
reverse causation (McGue et al., 2010). Causation refers to the
traditional understanding that variable X causes variable Y, while
reverse causation means that Y causes X. The CTCD is designed to
test for a possible causal association based on prior theory about
the cause and the consequence, which could be the case, for

Figure 2. Results from simulation analyses, depicting the relationship between exposure and outcome at the population level, and within discordant dizygotic (DZ) and
monozygotic (MZ) twins under different scenarios and types of variables.
Note: B, regression coefficient. Scenarios A = no confounding, B = solely genetic confounding, C = solely shared environmental confounding) and D = Causal effect with genetic
and shared environmental confounding.
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example, when a causal variable was measured before the outcome
variable. Analyzing data from longitudinal twin studies can help
rule out possible reverse causation. Within twin research, several
approaches have been developed to explore the direction of
causation, such as the direction of causation model (DCM;
Gillespie &Martin, 2005; Heath et al., 1993). The DCM is designed
to address the direction of causality when two variables have
different genetic architectures, such as an AE versus a CE model.

The CTCD, and other causal designs, may fail to detect a
within-pair association due to measurement error. According to
classical test score theory, the presence ofmeasurement error in the
exposure variable has a more pronounced impact on within-pair
associations compared to individual-level associations due to the
compounded effect of error inherent in calculating difference
scores (Ashenfelter & Krueger, 1994). To illustrate, consider the
interplay between σ, an estimate of the proportion of measurement
error in the exposure variable, and ρ, the twin correlation. At the
individual level, the regression coefficient of the outcome on the
exposure is attenuated by σ. However, at the within-pair level, the
attenuation is influenced by σ/(1−ρ) (Frissell et al., 2012; McGue
et al., 2010). Consequently, when measurement error accounts for,
for example, 5% of the exposure variable, the individual-level
estimate would be attenuated by 5%. However, the within-pair
estimate would be attenuated by 25% when the twin correlation on
exposure is .8 and by 12.5% when the twin correlation is .6.
Measurement error thus leads to a greater attenuation in the DZ
and MZ analyses compared to the association at the population
level. Moreover, as MZ twin correlations are typically higher than
DZ twin correlations, it is expected that the within-pair attenuation
will be greater for MZ than for DZ pairs. Frissell et al. (2012)
conducted a series of simulations in paired sibling data under a
logistic model with binary exposure and outcome, where the
association of x and y was causal and not confounded. Their
simulations demonstrated measurement error to lead to an
attenuation of the unpaired OR estimates and to an ever greater
attenuation of the within-siblingOR. That is, measurement error in
the exposure variable can result in the underestimation of causal
effects or the failure to observe significant within-pair associations,
even when a causal association is present between the exposure and
outcome (Duffy & Martin, 1994; Frissell et al., 2012; McGue
et al., 2010).

The CTCD may also fail to detect a within-pair association due
to a ‘spill-over’ effect. This effect occurs when the exposure being
investigated not only affects the exposed twin but also influences
the nonexposed twin within the pair. The likelihood of observing a
spill-over effect varies depending on the nature of the exposure. For
example, research has shown that certain exposures, such as
victimization of sexual abuse within a family, can impact not only
the victimized individual but also nonvictimized family members
(de Jong, 2022). In contrast, exposures like birth weight are highly
unlikely to exert an influence on the co-twin.

In this article we provided an overview of the CTCD with a
focus on its application to data from large twin registries. However,
this is not always feasible when, for example, studying rare
outcomes or exposures. In such cases, researchers may face
challenges in obtaining a sufficient sample size of discordant MZ
twin pairs. For such rare diseases and disorders, the ascertainment
into a research project may be through other routes, such as patient
registries.

In conclusion, the CTCD can be a powerful design for
investigating causal associations while controlling for genetic and
shared environmental confounding factors. This article aids future

researchers to employ the CTCD by presenting an overview and
discussion of its strengths and limitations. By providing a set of
scripts that can be readily used with the popular statistical software
packages SPSS, R, and STATA, and by providing tools to aid in
data simulation, we aimed to contribute to an understanding and
application of the design.
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