

Can we mimic the Flynn effect...

... by modeling phenotype environment transmission in the genetic simplex model?

Janneke de Kort & Conor Dolan

Table 2.Influence Ph->E & increase $E(\zeta_{E^{+1}})$ on S.D. units IQ

FSIQ ML estimate (s.e.)

Increase Full

0.25

0.29

0.33

0.39

0.75

0.86

1.00

1.18

IQ in S.D. units

0.385 (0.13)

0.070 (0.03)

E(ζ_{E*t})

3.26

3.26

3.26

3.26

9.78

9.78

9.78

9.78

Table 1.Ph->E estimates in Full IQ

 $E(\zeta_{E^{*1}}) =$

w_{CE}*14.72

w_{GE}=.25

w_{GE}=.25

w_{GE}=.25

w_{CE}=.25

w_{ce}=.75

w_{CE}=.75

w_{cE}=.75

w_{GE}=.75

Parameter

 $\alpha_1 = \alpha_2 = \alpha_3$

 $\beta_1 = \beta_2 = \beta_3$

α=w_{αβ}*.385

β=w_{αβ}*.07

w_{αβ} =.25

 $w_{\alpha\beta} = .50$

w_{αβ} =.75

 $w_{\alpha\beta} = 1$

w_{αβ} =.25

w_{a8} =.50

w_{αβ} =.75

w_{a8} = 1

- INTRODUCTION - Average intelligence scores increase over generations (i.e. the Flynn effect). Dickens & Flynn explain this phenomenon by combining increasing environmental means over time with phenotypic environmental feedback processes, giving rise to genotype-environment covariance (GE-cov). However within longitudinal twin models, GE-cov is often assumed to be absent. Here we formulize GE-cov as phenotype to environment transmission (i.e. individuals choose environments matching their intelligence). We evaluate whether the extended genetic simplex model (see **basic idea & model specifications**) can mimic the Flynn effect .

Ph -> E extension

- BASIC IDEA -

Quantify GE-cov as transmission from phenotype to environment (Ph->E) in genetic simplex. Ph->E leads to correlation of genetic influences at time t with environmental influences at time t+1, via mediation of the phenotype at time t. Ph->E can occur within twin (α) and between twins (β). Conceptualizations are compatible with niche picking and siblings effect.

- MODEL SPECIFICATION -

 $\begin{aligned} y_{it} &= b_{0t} + A_{it} + E^*_{it} + z_{it} \\ z_{it} &= a_{it} + c_{it} + e_{it} \\ A_{it} &= \beta_{At,t-1} A_{it-1} + \zeta_{Ait} \\ E^*_{it} &= \beta_{Et,t-1} E^*_{it-1} + \zeta_{Eit} \end{aligned}$

- GE COV EXTENSION -

$$\begin{split} & \mathsf{E}^*{}_{1t} = \beta_{\mathsf{E} t, t-1} \, \mathsf{E}^*{}_{1t-1} + \alpha_t \, y_{1t-1} + \beta_t \, y^*{}_{2t-1} + \zeta_{\mathsf{E}^* 1t} \\ & \mathsf{E}^*{}_{2t} = \beta_{\mathsf{E} t, t-1} \, \mathsf{E}^*{}_{2t-1} + \alpha_t \, y_{2t-1} + \beta_t \, y^*{}_{1t-1} + \zeta_{\mathsf{E}^* 2t} \end{split}$$

- ENVIRONMENTAL MEANS -

$$\begin{split} \mathbf{m}(\mathbf{E}^*_{1t}) &= \mathbf{b}_{\mathsf{E}t,t-1}\mathbf{m}(\mathbf{E}^*_{1t-1}) + \alpha_t \mathbf{m}(\mathbf{y}^*_{1t-1}) + \beta_t \mathbf{m}(\mathbf{y}^*_{2t-1}) + \mathbf{m}(\zeta_{\mathsf{E}^*1t}) \\ \mathbf{m}(\mathbf{E}^*_{2t}) &= \mathbf{b}_{\mathsf{E}t,t-1}\mathbf{m}(\mathbf{E}^*_{2t-1}) + \alpha_t \mathbf{m}(\mathbf{y}^*_{2t-1}) + \beta_t \mathbf{m}(\mathbf{y}^*_{1t-1}) + \mathbf{m}(\zeta_{\mathsf{E}^*2t}) \end{split}$$

- **RESULTS** - The standard ACE simplex and the AE* model with Ph-> E transmission were compatible in their model fit, which shows the utility of the AE* model. During the development of intelligence both types of Ph->E transmission seem present (**Table 1**), which is compatible with Dickens and Flynn's feedback processes. Additionally, when the mean environment is fixed, phenotypic means change as a function of the Ph->E parameters, α and β (**Table 2**). This demonstrates that influences of environmental means are boosted by Ph->E transmission. This pattern supports the important role given to Ph->E transmission (i.e. GE-cov) when explaining the Flynn effect.

Model in full IQ

- DISCUSSION - The extended AE* simplex seems adequate to model phenotypic transmission in longitudinal data. We observed that Ph->E transmission can amplify the influence of increasing environmental means on the average score of intelligence. As such the extended AE* model helps to explain the Flynn-effect. As our observations are in line with Dickens and Flynn explanation of the Flynn effect, the extended AE* model might be considered as a tool to test Dickens and Flynn's model of the Flynn effect in empirical data.

- **METHODS** - We analyzed full scale IQ measured at four occasions in 261 MZ and 301 DZ twins pairs (age 5-12) (data made available by the NTR). We compared the fit of the ACE simplex and the AE* simplex including Ph->E transmission. The parameters of the AE* simplex model where used to evaluate the influence of increasing environmental means on the phenotypic means. We varied weights given to Ph->E transmission parameters found ($\alpha \& \beta$) and weights given to environmental means $E(\zeta_{E^{eq}})$ and $E(\zeta_{E^{eq}})$ and evaluated the increase in phenotypic means.

Based on:

C.V.Dolan, J.M. de Kort, K-J. Kan, Toos C.E.M. van Beijsterveldt, M. Bartels, & D.I. Boomsma. (2014). Can GE-covariance originating in phenotype to environment transmission account for the Flynn effect? *Intelligence* (in review).

Contacts:

Janneke M. De Kort: j.m.de.kort@vu.nl Conor V. Dolan: c.v.dolan@vu.nl Department of Biological Psychology, VU University, van der Boechorststraat 1, 1081 BT, Amsterdam, the Netherlands

Observed: Time specific error: Additive Genetic: Environment: