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Objective: The human gut microbiota has been demonstrated to be associated with a number of host phe-
notypes, including obesity and a number of obesity-associated phenotypes. This study is aimed at further
understanding and describing the relationship between the gut microbiota and obesity-associated mea-
surements obtained from human participants. Subjects/Methods: Here, we utilize genetically informative
study designs, including a four-corners design (extremes of genetic risk for BMI and of observed BMI;
N = 50) and the BMI monozygotic (MZ) discordant twin pair design (N = 30), in order to help delineate the
role of host genetics and the gut microbiota in the development of obesity. Results: Our results highlight a
negative association between BMI and alpha diversity of the gut microbiota. The low genetic risk/high BMI
group of individuals had a lower gut microbiota alpha diversity when compared to the other three groups.
Although the difference in alpha diversity between the lean and heavy groups of the BMI-discordant MZ
twin design did not achieve significance, this difference was observed to be in the expected direction, with
the heavier participants having a lower average alpha diversity. We have also identified nine OTUs observed
to be associated with either a leaner or heavier phenotype, with enrichment for OTUs classified to the Ru-
minococcaceae and Oxalobacteraceae taxonomic families. Conclusion: Our study presents evidence of a
relationship between BMI and alpha diversity of the gut microbiota. In addition to these findings, a number
of OTUs were found to be significantly associated with host BMI. These findings may highlight separate
subtypes of obesity, one driven by genetic factors, the other more heavily influenced by environmental
factors.
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Microbial organisms are now understood to be important
residents within the human host. This finding is strength-
ened through amultitude of studies implicating commensal
microbes in many host biological processes such as nutri-
ent metabolism (Donohoe et al., 2011; Koeth et al., 2013),
developmental processes (Borre et al., 2014; Diaz Heijtz
et al., 2011), and predispositions to certain disease states
(Turnbaugh et al., 2006). One of the areas garnering par-
ticular interest is the association of the human microbiota,
mainly that of the gastrointestinal tract, in the develop-
ment of obesity, and obesity-associated phenotypes (Back-
hed et al., 2004; Ley et al., 2006; Villanueva-Millan et al.,

2015). Recent work has demonstrated the ability of the gut
microbiota of obese animals to induce obesity in non-obese
animals (Turnbaugh et al., 2006). It is worth noting that
along with the induction of obesity, comorbidities such as
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changes in neuroinflammation and subsequent cognitive
disruptions have also been induced through the transfer of
the gutmicrobiota of obesemice to non-obesemice (Bruce-
Keller et al., 2015).

These findings suggest a causal effect of gut microbiota
on the development of obesity, but they do not rule out
simultaneous but reverse causal effects of obesity on the
gut microbiome. Obesity is associated with changes in the
inflammatory profile in humans that may affect gut micro-
biota, as well as with eating behaviors and physical activ-
ity patterns that may also impact the microbiome (Mon-
teiro & Azevedo, 2010; Rodriguez-Hernandez et al., 2013).
Therefore, associations between obesity and the composi-
tion of gut microbiota may also reflect reverse causal ef-
fects. A specific composition of the gut microbiota may
increase the risk for obesity, whereas obesity, either di-
rectly or through the lifestyle behaviors of which obe-
sity is a marker or a codeterminant, may also actively
change the composition of the gut microbiota (Richmond
et al., 2014).

In order to understand the complex nature of the
interactions occurring between the gut microbiota and
the human host, it is necessary to have proper models to
do so. Studies performed in animals have provided one
necessary approach to study microbiota dynamics in a
genetically controlled environment. We do not yet know
the extent to which results derived from mice can be
extrapolated to humans. There are large differences in the
anatomy of the murine and human gastrointestinal (GI)
tract, and up to an 85% difference is found in the bacterial
genera observed within the mouse GI tract relative to
that of a human (Ley et al., 2005; Nguyen et al., 2015).
Experimental manipulation of the human gut microbiome
is feasible (Smits et al., 2013), but difficult to do on the scale
possible in animal models. A potential approach to exam-
ine causal effects of the gut microbiome in observational
studies in humans is to exploit the fact that individual
differences in the gut microbiota composition are partly
caused by heritable variation (Goodrich et al., 2014; Lim
et al., 2016). If we assume that the heritability of obesity
reflects, in part, the heritable effects on the gut microbiota,
genetically informative designs can be used to test the
predictions from causal hypotheses in both directions
(Noon et al., 1997; van Dongen et al., 2015). Here, we make
use of two genetically informative designs: (1) unrelated
individuals selected to be in four corners defined by low
or high genetic risk for BMI and by observed high or
low BMI, and (2) genetically identical monozygotic (MZ)
twins discordant for current BMI. Genetic risk was defined
on the basis of a multi-SNP genetic risk profile from the
recent meta-analysis of the GIANT consortium (Locke
et al., 2015).

The aim of this study was to elucidate the gut microbiota
constituents and subsequent community structure that
differentiates heavier from leaner human individuals. This

is achieved through 16s rRNA analysis to identifymicrobial
community members within the gut microbiota. We hy-
pothesized that high genetic risk for increased BMI will be
associated with quantitative (smaller species diversity) and
qualitative effects (enrichment for different species) on the
gut microbiota. Using the four-corners design, we tested
whether this association is compatible with a causal effect
of the gut microbiota on BMI (Noon et al., 1997). In testing
the effect of BMI (high/low) and genetic risk (high/low) on
the composition of the gut microbiota, we anticipated two
outcomes. If the causal chain is high genetic risk → high
BMI → gut microbiota composition, we expect a main
effect of BMI (high/low) only (Figure 1). This expectation
is based on the assumption that the relationship between
genetic risk and composition is mediated by BMI. In con-
trast, if gut microbiota composition is a cause of high BMI,
we expect a main effect of BMI and genetic risk on gut mi-
crobiota composition (Figure 1). This expectation does not
depend on the absence (or presence) of a direct relation-
ship between genetic risk and composition. Furthermore,
the availability of MZ twin data allowed us to use the
co-twin control method to discriminate between a direct
causal effect of BMI on gut microbiota composition and an
association brought about by a ‘third factor’ such as shared
environment or shared genes that influence both BMI and
microbiota composition (Stubbe et al., 2007). If BMI is the
causal agent, a comparison of genetically identical twins se-
lected to be discordant for BMI should show a distinct com-
position of the gut microbiota in the lower and higher BMI
individuals.

Materials and Methods
Participants

The first group of individuals (N = 50) was selected from
a large population (N = 11,495) within the Netherlands
Twin Register (NTR) for which BMI and polygenic risk
score scores for BMI were available (Willemsen et al., 2010;
Table 1).

This allows for the use of a four-corner design where
the study participants are selected from the top and bottom
25% of the BMI distribution, and the top and bottom 20%
of the distribution of BMI polygenic risk scores produced
using genome-wide SNPs. The second group of individuals
(n = 30) were MZ twins (15 pairs) discordant for BMI
(mean BMI difference 4.2 ± 1.9 kg/m2 (range 1.0–8.2)
that have been previously described in detail elsewhere
(Doornweerd et al., 2016; Table 1). All study participants
were female in order to decrease the possibility of sexual
dimorphic confounding factors. Participants were excluded
if they were not within 18–75 years of age, had experienced
recent weight change, or had been currently diagnosed
with heart disease, liver or renal disease, diabetes mellitus,
malignancies, uncontrolled thyroid disease, or psychi-
atric or neurological disorders. In addition, participants
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TABLE 1
Descriptive Statistics for the Study Participants

MZ twins Four corners

Leaner twin Heavier twin High BMI/Low GR Low BMI/Low GR High BMI/High GR Low BMI/High GR

N 15 15 9 14 14 13
Age 29 (9.9) 29 (9.9) 39.84 (5.8) 36.70 (6.8) 39.40 (5.6) 35.07 (8.0)
BMI 24.25 (3.2) 28.22 (3.6) 31.20 (2.1) 20.87 (0.97) 34.08 (5.1) 20.63 (1.9)
Body fat (Kg) 22.03 (6.8) 30.51 (8.3) 35.79 (11.6) 17.20 (3.3) 39.27 (11.1) 17.25 (4.1)
Waist–hip ratio 0.80 (0.06) 0.84 (0.08) 0.88 (0.06) 0.78 (0.04) 0.89 (0.05) 0.78 (0.03)
Inverse Simpson 25.52 (11.3) 22.66 (11.4) 15.44 (5.3) 29.07 (8.4) 24.14 (5.6) 27.24 (6.9)

Note: Mean values are reported for all variables. Standard deviations are reported for each mean.

FIGURE 1
(A). Given the causal model depicted in the top diagram, x is assumed to equal 0 and thus the two-way ANOVA employed is expected
to yield a main effect of BMI, but no effect of BMI polygenic risk. This model would reflect a paradigm in which genetic risk for BMI
influences BMI which subsequently influences the gut microbiota composition. (B). Under this causal model, the two-way ANOVA is
expected to yield a main effect of both BMI and BMI polygenic risk score. This expectation does not depend on the absence or presence
of a direct relationship between BMI genetic risk and gut microbiota composition (i.e., y may be 0 or greater than 0.)

were also excluded if they were pregnant, breast feeding,
currently taking psychoactive or glucose-lowering drugs,
or had reported drug/alcohol abuse. Due to the fact that
participants were initially selected for an MRI-associated
study, participants were also excluded based on MRI con-
traindication. Body fat measurements for all individuals
were obtained through the use of bio-electrical impedance.
The study was approved by the ethics committee of the VU
University Medical Centre and was performed in accor-
dance with the Helsinki Declaration. All subjects involved
provided written informed consent.

Sampling Methods

Fecal samples were collected from individuals and stored
at 4°C until delivered to the laboratory within 36 hours.
Anaerocult was used in order to preserve anaerobic species
present within a sample. The samples were homogenized,
aliquoted, and stored at -80°C until utilized for DNA
extraction.

Polygenic Risk Score for BMI

Polygenic risk scores (PRS) were calculated based on 77
of the 97 SNPs previously identified as having a role in

TWIN RESEARCH AND HUMAN GENETICS 205

https://doi.org/10.1017/thg.2018.26
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Jun 2018 at 13:01:37, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/thg.2018.26
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Casey T. Finnicum et al.

obesity (Locke et al., 2015). These 77 SNPs were the ones
that reached genome-wide significance level (5 x 10-8)
within individuals of European ancestry. The scores were
determined by summing the risk alleles weighted by their
respective effect sizes.

Sequencing Methods

DNA was extracted using the MO Bio PowerSoil Kit with
the addition of the heating steps from the Power Fecal Kit
(Mo Bio, Carlsbad, CA). Sequencing library preparation
and indexing was adapted from Kozich et al. (2013) to gen-
erate libraries for sequencing-by-synthesis on the Illumina
MiSeq platform. The V4 region of the 16srRNA gene was
chosen for amplification and sequencing. Sequence data
was generated on the MiSeq platform, using a 2 x 251
paired-end sequencing run with 20% Phix to increase base
diversity during the run. Use of a mock community aided
as a positive control, and a non-template negative control
was also sequenced.

Filtering of MiSeq Reads

MiSeq reads were filtered based upon the work published
by Kozich et al. (2013) describing a method for analysis of
dual-indexed amplicon sequences resulting from the Illu-
mina MiSeq platform. The MiSeq sequencing run resulted
in demultiplexed paired-end FASTQ files for each sample,
which were then analyzed using the Mothur software pack-
age version 1.36.1 (Schloss et al., 2009). The forward and
reverse reads were overlapped, producing contigs for each
sample. The joining of reads resulted in 6,188,475 reads. Se-
quences were filtered to remove sequences with ambiguous
bases, as well as sequences shorter than 275 bp. The SILVA
v123 database was trimmed to cover the V4 region of the
16s rRNA gene, and unique sequences were subsequently
aligned to the customized SILVA v123 database (Pruesse
et al., 2007). After alignment and filtering, the reads were
preclustered to join sequences that are within two nu-
cleotides of one another. UCHIMEwas used to identify and
remove possible chimeric reads from the data (Edgar et al.,
2011). After chimera removal, the sequences were classified
using the naïve Bayesian classifier trained on the Ribosomal
database project (RDP) training set (Cole et al., 2009). Non-
bacterial lineages were removed; these included eukaryotes,
archaea, chloroplasts, mitochondria, as well as unknown
lineages. Within the samples sequenced was a mock com-
munity of 20 known bacterial sequences. This mock com-
munity was used to calculate the error rate of the sequenc-
ing run after read filtering. The reads from this mock com-
munity were compared to the known sequences, and the
error rate was determined to be 0.0053%. The mock com-
munity was removed from further processing. After the
quality control process, 4,838,970 sequences remained,
45,057 of which were unique sequences. Unique sequences
were then clustered into operational taxonomic units
(OTUs) with a 0.03 cut-off using the average-neighbor clus-

tering algorithm. Consensus taxonomies of the OTUs were
determined using classify.otu command within Mothur.
The OTU clustering ultimately resulted in 4,236 unique
OTUs. Of these 4,236 OTUs, 67.68% were unclassified at
the genus level and 36.66% of all OTUs were unclassified at
the family level. In order to achieve proper sampling depth
for all samples, the reads for each sample were subsampled
to the lowest read depth, which was 36,783 reads.

Statistical Analysis

In order to investigate the alpha diversity associated with
the sampled communities, inverse Simpson values were
generated. Inverse Simpson values are a function of both
the species richness (number of species present) and the rel-
ative abundances of species level organisms. Inverse Simp-
son values were generated using theMothur software pack-
age (Schloss et al., 2009). In order to compare the inverse
Simpson values for the four-corners individuals, a two-way
ANOVA was employed. A paired samples t-test was uti-
lized to determine whether there was a difference in mean
inverse Simpson values between the BMI discordant MZ
twins. Beta diversity calculations have been performed for
the individuals within the four-corners design. We gener-
ated Bray-Curtis (BC) dissimilarity measures between all
50 individuals and then tested whether the mean BC mea-
sures were significantly different between any of the groups.
First, we tested whether or not there was a significant differ-
ence in BC distances between the high/low BMI groups and
the high/low genetic risk groups by utilizing a t-test with
10,000 permutations. To expand upon this, we also split
the 50 four-corners individuals into their respective groups
(low BMI/low PRS, low BMI/high PRS, high BMI/low PRS,
high BMI/high PRS) and tested for any differences using
a one-way ANOVA with 10,000 permutations. In the same
manner we tested whether there was a significant difference
in BC distances between the group of leaner co-twins rela-
tive to the heavier co-twins. BMI was regressed on the in-
verse Simpson diversity values by utilizing the GEE pack-
age within R, accounting for the relatedness of theMZ twin
pairs. To more fully capture obesity, this regression was re-
peated for two additional traits, waist–hip ratio (WHR) and
body fat percentage.

To detect OTUs differentially enriched within leaner and
heavier individuals two classification strategies were used:
linear discriminant analysis (LDA), effect size (LEfSe) anal-
ysis, and the random forest approach. The LEfSe analysis
is aimed at determining a significantly different presence of
OTUs in various subgroups (e.g., low vs. high BMI) with
an alpha of 0.05 for both the Kruskal–Wallis and Wilcoxon
tests within LEfSe (Segata et al., 2011). The traditional
LEfSe analysis was modified to include 100,000 permuta-
tions, from which an empirical p value was derived. The
LDA threshold was set at 2.0.

Random forest classification was performed on the four-
corners individuals within the Mothur software. The OTUs
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TABLE 2
Effects of Genetic Risk, BMI, and Their Interaction
on the Mean Inverse Simpson Values

F p value

Genetic risk 3.108 .085
BMI 18.439 .00009
Genetic risk ∗ BMI 7.293 .009658

sampled per split were calculated based on the log2 of the
total number of features. Each classification utilized 20,000
trees. Other parameters included using tree pruning with a
pruning aggressiveness of 0.9. Treeswith an error rate above
0.4 were discarded. Any feature with a standard deviation
less than 0.1 were also discarded. Of note, the random forest
classifier allows for the identification of OTUs that do not
necessarily have a linear relationship with the phenotype of
interest.

Regression analysis was performed by utilizing the gen-
eralized estimating equations (GEE) to account for the MZ
twin pairs present. BMI,WHR, and body fatmass (kg) were
regressed on the separate OTU abundances, while account-
ing for family structure. Because of the presence of out-
liers in the OTU data, points were removed that fell out-
side of four standard deviations from themean for that spe-
cificOTU. The regression on themultiple OTU abundances
was corrected for multiple testing via a false discovery rate
correction.

For the purposes of the LEfSe, random forest and regres-
sion analyses, OTUswere discarded if they were not present
within at least 40% of all individuals (32 people). This re-
sulted in a total of 279 OTUs remaining, including an OTU
that combines all excluded OTUs.

Results
Alpha Diversity Comparisons

The two-way ANOVA, including main effects of PRS and
BMI and their interaction on the mean inverse Simpson in-
dex values, showed a significantmain effect of BMI, that is, a
difference in alpha diversity between individuals with obe-
sity and leaner participants (p = .00009), with a decreased
alpha diversitywithin the gutmicrobiota of individualswith
obesity. The main effect of genetic risk was not significant
(Table 2).

There was an unanticipated significant interaction be-
tween genetic risk and BMI (p= .0096). Plotting the inverse
Simpson values clearly showed the high BMI/low genetic
risk individuals had a decreased alpha diversity (Figure 2).

Inverse Simpson values were also generated for the BMI
discordant twin pairs. The gut microbiota of the heavier
twin had a lower average inverse Simpson value relative to
the mean values of the leaner twins. However, this differ-
ence failed to reach significance (p = .298; Supplementary
S1).

Regressing BMI, Body Fat, and Waist-to-Hip Ratio on
Inverse Simpson Values

In order to investigate the relationship between alpha di-
versity and a number of different obesity-associated mea-
sures including BMI, kilograms of body fat, and WHR, we
regressed these outcomes on the inverse Simpson values in
the subjects from both the four-corners and BMI discor-
dant twins (n = 80). The data from the two study designs
were combined in order to increase the sample sizes for the
regression analyses. Significant negative relationships were
observed between BMI and alpha diversity as well as body
fat and alpha diversity (Table 3). WHR measures were not
significantly associated with alpha diversity.

Regressing OTU Abundances on Polygenic Risk Scores

Using the four-corners design, each of the 279 OTUs were
regressed on the genetic risk scores to identify OTUs asso-
ciated with individuals with varying degrees of genetic risk
for obesity. After multiple testing correction, there were no
significant associations between the polygenic risk scores
and any of the OTUs.

Beta Diversity Measurements

Comparison of the BC distances between the four-corners
participants showed that there was no significant difference
between any of the four groups. Similarly, there was no sta-
tistical difference between the BC distances of high BMI in-
dividuals versus low BMI individuals or for the high genetic
risk group versus low genetic risk group. Testing for a dif-
ference between the leaner co-twin groups relative to the
group of heavier co-twins also failed to reach statistical sig-
nificance (Supplementary S7).

Regressing BMI, Body Fat, and Waist-to-Hip Ratio on
OTU Abundances

Anumber of OTUswere identified as being significantly as-
sociated with the three measured obesity associated traits
(Supplementary S2). There were 9 OTUs that were associ-
ated with BMI in the host individual. Regressing body fat
and WHRs on the individual OTU abundances identified
four and seven significant OTUs respectively. There were
varying degrees of overlap between the significant OTUs
identified in the three separate analysis.

LEfSe Identification of Differential OTUs

Through the use of LEfSe, OTUs differentially enriched
within leaner versus heavier individuals were analyzed.
First, the individuals within the four-corners design were
analyzed for differentially enriched features. This yieldedno
OTUs significantly enriched in any of the four corners. Sec-
ond, individuals within the four-corners groups were com-
pared using high/low BMI as the class and high/low genetic
risk as the subclass, resulting in seven OTUs enriched in
the low BMI participants and three OTUs enriched in the
high BMI participants (Figure 3). We followed this up by
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FIGURE 2
(Colour online) Box plot of the mean inverse Simpson values from the four-corners design.

TABLE 3
Regression of BMI, Body Fat, and Waist–Hip Ratio
on the Mean Inverse Simpson Values

Measure Beta R2 p value

BMI -0.162 0.002 .004
Body fat (Kg) -0.28 0.000402 .015
Waist–hip ratio — — .156

LEfSe analysis performed between the BMI discordant MZ
twins to see whichOTUswere enriched within amodel that
controls for the host genetic profile. This analysis showed
two OTUs enriched in the heavier co-twins and 17 OTUs
enriched in the leaner co-twins, five of which were also
found enriched in the leaner groups of the four-corner de-
sign (Figure 3).

Random Forest Classification

To examine the BMI association inmore detail, random for-
est classifications were performed, again separately in the
leaner and heavier individuals within both the four-corners
individuals and the BMI discordant MZ twins based on the
observed OTUs. The classification process was able to ac-
curately classify 96% of the four-corners individuals into
low and high BMI as well as 93.3% of the discordant MZ
twins into the correct lean and obese category. Assuming

that the overall classification is decent, the random forest
classifier provides information on which OTUs yielded the
most predictive information. Applying the random forest
classification aimed at classifying high and low genetic risk
was only able to accurately classify 66% of the individuals.
The 50 first OTUs used by the random forest classifier can
be observed in the supplementarymaterial (Supplementary
S3).

Convergence Across Different Analytic Strategies

Table 4 summarizes how the various OTUs were similar
across the various analytic approaches used, substantiat-
ing their relevance for obesity. OTUs were included only if
they were either observed in a significant manner in multi-
ple LEfSe analyses, identified in a LEfSe analysis as well as
through regressing the BMI associated measures on OTU
abundances, or if they were significant in multiple regres-
sion analyses.

Discussion
Through 16s rRNA analysis, we examined the gut micro-
biota constituents and subsequent community structure
that differentiates heavier from leaner human individuals
using two genetically informative designs: (1) unrelated in-
dividuals selected to be in one of four corners defined by low
or high genetic risk for BMI based on a multi-SNP genetic
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FIGURE 3
Left: LEfSe analysis results indicating the OTUs differentially enriched in the high and low BMI groups of the four-corners design. Right:
LEfSe analysis results indicating the OTUs differentially enriched in the heavy and lean co-twins of the BMI discordant MZ twin design.

TABLE 4
Convergence Across Different Analytic Strategies

LefSe OTU regressions Random forest rank

OTUs Taxonomic classification Four corners MZ twins BMI Body fat Waist–hip ratio Four corners MZ twins

Otu00134 Clostridiales, Ruminococcaceae Low - - - X 3 38
Otu00172 Clostridiales, Ruminococcaceae Low Lean - - - 13 4
Otu00204 Burkholderiales, Oxalobacteraceae Low Lean X - X 5 44
Otu00220 Clostridiales, Ruminococcaceae Low - X X - 1 -
Otu00344 Bacteria, Unclassified - - X X X - 28
Otu00443 Bacteria, Firmicutes - Lean X - - - -
Otu00462 Clostridia, Clostridiales - Lean X X - 17 42
Otu00500 Firmicutes, Clostridia - - X X X 6 40
Otu00596 Clostridiales, Lachnospiraceae Low Lean - - - 54 60

risk profile and by observed high or lowBMI, and (2) genet-
ically identicalMZ twins discordant for current BMI. Alpha
diversity was significantly different between the leaner and
heavier individuals within the four-corner design, that is,
there was a main effect of BMI (high/low). However, there
was no main effect of PRS (high/low). As such, the results
are consistent with a causal effect of BMI on alpha diversity.
However, the presence of an unanticipated significant
interaction complicates this interpretation of the results. It
is important to note that the average difference in BMI in
the BMI discordant MZ twin pairs (mean BMI difference
4.2 ± 1.9 kg/m2 (range 1.0–8.2)), was much lower than the
average difference in BMI between the leaner and heavier

individuals in four corners design (BMI ≤ 22 kg/m2 and ≥
27kg/m2) and thus this could possibly explain the smaller
difference in alpha diversity observed between the co-twins.

The four-corner design allowed for the exploration of
differences in gutmicrobiota alpha diversity. If low alpha di-
versitywas a consequence of highBMI, it would be expected
that both highBMI groupswould have a decreased alpha di-
versity (i.e., the anticipated main effect of BMI). While this
main effect was observed, its interpretation is complicated
by the significant interaction between PRS and BMI. Specif-
ically, the individuals with a low genetic risk for BMI (low
PRS) and high BMI showed a lower alpha diversity when
compared to each of the other three groups. These findings
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may highlight separate subtypes of obesity, one driven by
genetic factors, the other more heavily influenced by en-
vironmental factors. The latter subtype of obesity may be
influenced by a separate external cause that either increases
BMI through an effect of decreased gutmicrobiota diversity,
or independently causes increases in BMI and decreases in
gut microbiota diversity. The latter leaves open that it may
not necessarily be the gutmicrobiota causing the obese state
itself. The observed decrease in alpha diversity of the gut
microbiota of low genetic risk/high BMI individuals is a
consequence of the actual cause of obesity such as dietary
intake or exercise activity.

Although previous studies have identified decreased al-
pha diversity associated with increased BMI as well as spe-
cific dietary patterns such as consumption of aWestern diet,
other studies have only identified a relatively weak asso-
ciation between gut microbiota alpha diversity and obese
status (Beaumont et al., 2016; Sze & Schloss, 2016; Turn-
baugh et al., 2009). For the obese status, it may be pos-
sible that the weak association with gut microbiota al-
pha diversity is due to the presence of the aforementioned
subphenotypes of obesity present within the participants
examined. In this case, the lack of decreased alpha diver-
sity within the individuals at a high genetic susceptibility
would hinder the ability to detect the effect in the larger
population.

In order to further understand the association between
gut microbiota alpha diversity and obesity, BMI, body fat
mass (kg), and WHR measurements were all regressed on
alpha diversity using all 80 individuals. BMI and body fat
mass showed significant negative associations with alpha
diversity whereas WHR did not show a significant associ-
ation. These findings are supported by a recent study that
observed a negative association between gut microbiota al-
pha diversity and a number of adiposity associated mea-
sures (Beaumont et al., 2016). Interestingly, this study also
did not observe a significant association between alpha di-
versity and WHR. Together, these findings point towards
a paradigm where gut microbiota composition is associ-
ated with general adiposity rather than fat distribution (i.e.,
gynoid vs. android obesity) as reflected in WHR. Gut mi-
crobiota involvement in development of adipose tissue has
been previously explored in animal studies, where it was ob-
served that the transfer of gut microbiota contents from a
conventionally raised mouse to a mouse raised in a germ-
free (GF) environment resulted in a 60% increase in body
fat while consuming significantly less food (Backhed et al.,
2004).

In addition to comparisons between obesity-associated
measures and alpha diversity, we explored whether there
were OTUs significantly associated with either a leaner
or heavier phenotype within the two separate study de-
signs. Regressing three separate obesity associated mea-
sures (BMI, body fat, WHR) on the OTU relative abun-
dances resulted in 14 OTUs significantly associated with

one of these measures. There was a varying degree of over-
lap between the OTUs identified through the regression
analyses, with only two OTUs significantly associated with
all three obesity associated measurements. It may be possi-
ble that the subtle differences in the obesity-associatedmea-
sures may be the cause of the slightly different results. As
was previously noted, BMI and body fat may actually rep-
resent slightly different obesity-associated phenotypes re-
garding fat distribution in comparison to WHR (gynoid
vs. android obesity), which could explain the lack of over-
lap between these measures. When comparing the over-
lap of OTUs between BMI and body fat, there is actu-
ally a fair amount of overlap given that three of the four
OTUs identified in the body fat regression were also identi-
fied in the BMI regression. As BMI is a function of both
weight and height of an individual and not necessarily
purely body fat, it may be plausible that OTUs identified
via the BMI regression may also be associated with other
factors such as height or muscle mass, and not purely fat
content. Taking a closer look at the taxonomic classifi-
cation of the OTUs showed that 10 of the 14 significant
OTUs belong to the Firmicutes phylum, all of which are re-
lated in an inverse manner to BMI. Although it may ap-
pear tempting to utilize a phylotype-based approach and
test whether any of our study groups and/or BMI have
an association with the Firmicutes phylum, it should be
noted that the LEfSe analyses identified five OTUs en-
riched in heavy individuals, all of which corresponded to
the Firmicutes phylum. All of the OTUs identified in lean
individuals through the use of LEfSe analysis, with the
exception of three OTUs, two of which were only clas-
sified to the Bacteria domain, also belonged to the Fir-
micutes phylum. This clearly demonstrates that various
members of the Firmicutes phylum may have varying con-
tributions to the obese phenotype, with some OTUs asso-
ciated with a lean phenotype and others associated with a
heavier phenotype.

Utilization of these various analytical approaches ulti-
mately converged on nine OTUs that showed an associa-
tion to BMI or other obesity-associated measures in mul-
tiple analyses. These OTUs were able to be classified down
to various taxonomic ranks (e.g., order and family). OTUs
belonging to the Ruminococcaceae (OTU 220) and Ox-
alobacteraceae (OTU 204) families were found to be en-
riched within leaner individuals as well as generally neg-
atively associated with obesity measures. Members of the
Ruminococcaceae family have been observed in a similar
fashion in separate studies outlining the relationship be-
tween the gut microbiota and body fat composition (Beau-
mont et al., 2016). Although the Oxalobacteraceae family
has less of a documented association with obesity, previ-
ous studies of human and animal gut microbiota contents
have observed decreases of this family in response to ad-
ministration of antibiotics as well as enriched within indi-
viduals with no previous contact with the Western world
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(Raymond et al., 2016; Torok et al., 2011). Prenatalmaternal
and early-life antibiotic use have both been shown to im-
pact the development of obesity (Bailey et al., 2014; Mueller
et al., 2015). Understanding the relationship between Ox-
alobacteraceae microorganisms, antibiotic use, and subse-
quent host body composition could be of value for un-
derstanding how environmental influences may impact the
susceptibility to obesity.

One of the hypotheses put forth to explain how the gut
microbiota may impact the development of an obese phe-
notype revolves around the idea that the gut microbiota
composition of heavier individuals may have an increased
capacity to harvest energy from food consumed by the host
(Turnbaugh et al., 2006). This concept is supported by stud-
ies that have observed enrichment of genomic material en-
coding products involved in the breakdown of dietary sub-
strates within the gut microbiota of heavier mice and hu-
mans relative to their leaner counterparts (Turnbaugh et al.,
2009; Turnbaugh et al., 2006). Our current study does not
address the gut microbiota genomic functional repertoire,
thus representing a limitation of this study as well as an
avenue of future research. In addition to the increased en-
ergy absorption hypothesis, recent work has demonstrated
that individual microorganisms can manipulate appetite
within the human host. Salmonella typhimurium has been
shown to inhibit sickness-induced anorexia by way of the
gut-brain axis (Rao et al., 2017). Although this specific
example of microbial modulation of host appetite arises
within a state of host distress (S. typhimurium infection),
it presents the existence of a molecular mechanism result-
ing in microbial influence of host eating behavior. OTUs
significantly associated with lean and heavy phenotypes
such as those observed across the analyses within this study
would be logical candidates for future exploration into such
mechanisms.

Conclusions
Our study demonstrates the utility of genetically informa-
tive study designs aimed at investigating the human gut mi-
crobiome. Through the use of such designs, we successfully
highlighted a distinctly lower gutmicrobiota diversity in in-
dividuals with high BMI that were low in the genetic sus-
ceptibility to obesity. Additionally, we identified a number
of OTUs that have a significant association with obesity-
associated measures as well as being enriched in groups
of lean or heavy individuals independent of genetic fac-
tors. These findings provide further support for the rela-
tionship between the human gut microbiota and the obese
phenotype.
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