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Cortical accumulation of amyloid beta is one of the first events of Alzheimer’s disease pathophysiology, and has been suggested to

follow a consistent spatiotemporal ordering, starting in the posterior cingulate cortex, precuneus and medio-orbitofrontal cortex.

These regions overlap with those of the default mode network, a brain network also involved in memory functions. Aberrant de-

fault mode network functional connectivity and higher network sparsity have been reported in prodromal and clinical Alzheimer’s

disease. We investigated the association between amyloid burden and default mode network connectivity in the preclinical stage of

Alzheimer’s disease and its association with longitudinal memory decline. We included 173 participants, in which amyloid burden

was assessed both in CSF by the amyloid beta 42/40 ratio, capturing the soluble part of amyloid pathology, and in dynamic PET

scans calculating the non-displaceable binding potential in early-stage regions. The default mode network was identified with rest-

ing-state functional MRI. Then, we calculated functional connectivity in the default mode network, derived from independent com-

ponent analysis, and eigenvector centrality, a graph measure recursively defining important nodes on the base of their connection

with other important nodes. Memory was tested at baseline, 2- and 4-year follow-up. We demonstrated that higher amyloid bur-

den as measured by both CSF amyloid beta 42/40 ratio and non-displaceable binding potential in the posterior cingulate cortex

was associated with lower functional connectivity in the default mode network. The association between amyloid burden (CSF and

non-displaceable binding potential in the posterior cingulate cortex) and aberrant default mode network connectivity was con-

firmed at the voxel level with both functional connectivity and eigenvector centrality measures, and it was driven by voxel clusters

localized in the precuneus, cingulate, angular and left middle temporal gyri. Moreover, we demonstrated that functional connectiv-

ity in the default mode network predicts longitudinal memory decline synergistically with regional amyloid burden, as measured by

non-displaceable binding potential in the posterior cingulate cortex. Taken together, these results suggest that early amyloid beta

deposition is associated with aberrant default mode network connectivity in cognitively healthy individuals and that default mode

network connectivity markers can be used to identify subjects at risk of memory decline.
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Introduction
Cortical amyloid beta (Ab) accumulation seems to be the

first event of Alzheimer’s disease pathophysiological cas-

cade and can be detected indirectly in CSF1 or directly

through the visualization of Ab fibrils on PET scans.2,3 It

has been reported that CSF analysis is more sensitive than

global amyloid PET in early Alzheimer’s disease stages,4

capturing the soluble part of amyloid pathology, crucial

in the origin of synaptic pathology.5,6 Nevertheless, recent

evidence suggests that Ab deposition follows a consistent

spatio-temporal order across the brain, making regional

PET suitable for visualization of early Alzheimer’s disease

pathology.7,8 Early Ab-accumulating regions correspond

to the posterior cingulate (PCC), precuneus and medial

orbitofrontal (MOF) cortex.7–9 Such regions largely over-

lap with a functional brain network called the default

mode network (DMN).9–13 It has been proposed that

DMN disruptions might represent one of the early func-

tional consequences associated with the molecular patho-

logical processes underlying Alzheimer’s disease.3,10

Nonetheless, while aberrant DMN connectivity in

Alzheimer’s dementia has been reported,14 studies investi-

gating earlier stages of the Alzheimer’s disease continuum

show conflicting results.3,9,15–17

DMN areas show synchronous activity at resting-state

functional magnetic resonance imaging (rs-fMRI) when

an individual is awake but not involved in any specific

mental activity.18,19 This is indirectly measured with inde-

pendent component analysis (ICA) of blood oxygen level

dependent (BOLD) signal, where local BOLD variability

is interpreted as a proxy for variations in local neuronal

activity and rs-fMRI functional connections are measured

as synchronized BOLD signal variability between different

brain regions in the absence of a task.20 The degree of

co-activation of the network can be derived through
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dual-regression and defined as functional connectivity

(FC).21 Brain FC has been proposed to reflect the extent

of neuronal metabolic activity.22 To elucidate further con-

nectivity within the DMN, graph theoretical methods

might be used.23 Specifically, eigenvector centrality (EC)

reflects layers in the hierarchy of a network, recursively

defining important nodes as those having more connec-

tions with other important nodes.24,25 EC might therefore

be useful in localizing prominent hubs within the DMN

through a hypothesis-free, data-driven method.25

Regions of the DMN have been involved in memory

retrieval,26 frequently impaired in Alzheimer’s disease

individuals.18 An extensive body of literature identified

memory as one of the earliest and most severely affected

cognitive domains in Alzheimer’s disease.27,28 In line with

this, we recently showed that amyloid pathology, meas-

ured with both CSF Ab 42/40 ratio and PET binding po-

tential, is associated with memory dysfunction in elderly

cognitively healthy individuals,29 an association that was

previously shown in later stages of Alzheimer’s

disease.30,31

With this in mind, we investigated whether early Ab
deposition, as defined both by CSF Ab 42/40 ratio and

PET [18F]flutemetamol non-displaceable binding potential

(BPND) in early-stage regions, is associated with abnormal

FC and EC within the DMN in a cohort of elderly cogni-

tively intact individuals.32 As areas of the DMN are

involved in memory circuits, and considering the associ-

ation that we previously found between Ab deposition

and memory decline, we investigated whether FC within

the DMN modifies the strength of this relation.

Materials and methods

Study participants

Study participants were selected from the European

Information Framework for Alzheimer’s Disease (EMIF-

AD)-PreclinAD study.32 Inclusion criteria were the follow-

ing: age between 60 and 100, normal cognition as

assessed by a delayed recall score >�1.5 SD of demo-

graphically adjusted normative data on the Consortium

to Establish a Registry for Alzheimer’s Disease 10 word

list,33 a Telephone Interview for Cognitive Status modi-

fied score �23,34 a 15-item Geriatric Depression Scale

score of <1135 and a Clinical Dementia Rating score of

0.36 Individuals were excluded if they presented any sig-

nificant medical, neurological or psychiatric condition po-

tentially affecting cognitive performance or MRI

contraindications. A total of 204 subjects were included

in the EMIF-AD PreclinAD study. A subset of 190 sub-

jects had both T1-weighted and rs-fMRI scans available.

Seventeen individuals were excluded due to lack of

sufficient good-quality images, resulting in a total of 173

individuals. We defined amyloid status using either visual

read of dynamic [18F]flutemetamol PET images or CSF

Ab42/40 ratio (ADx Neurosciences/Euroimmun assays)

<0.066 (based on Gaussian mixture modelling).

Neuropsychological assessment

Longitudinal neuropsychological data were retrieved

at two follow-up time points for subsets of 165 and

94 participants respectively (mean follow-up 1 duration

23 6 3 months; mean follow-up 2 duration 50 6 3 months;

mean difference between follow-up time points

26 6 2 months). Our sample comprised cognitively healthy

individuals, thus detecting incipient cognitive dysfunction

was not trivial. In light of this, we chose to focus on the

memory domain as lower memory was previously associ-

ated with higher Ab in this cohort.29 We generated base-

line and follow-up memory composite scores by using the

total immediate recall and delayed recall of the Dutch ver-

sion of the Rey Auditory Verbal Learning test

(RAVLT),37,38 the 3- and 20-minute recall of the Rey

Complex Figure (RCF),39,40 the total score from the Face

Name Associated Memory Examination (FNAME)-names

and occupations delayed recall.41,42 Composite scores

were only computed for participants with at least four

test scores. All test scores were z-transformed using the

baseline mean and standard deviation of the total sample

(NEMIF-AD PreclinAD ¼ 204), and combined into one com-

posite score. Memory slopes were calculated as the differ-

ence between follow-up and baseline composite scores,

divided by time between measurements.

Cerebrospinal fluid

Lumbar puncture was performed between 10 AM and

2 PM, after at least 2 h of fasting, using Sarstedt polypro-

pylene syringes and a Spinocan 25 Gauge needle. Up to

20 mL CSF was obtained from 109 (63%) study partici-

pants. CSF samples were centrifuged at 1300–2000 g at

4�C for 10 min and supernatants were stored in Sarstedt

aliquots of 0.5 mL at �80�C until analysis. A maximum

of 2 h was allowed between lumbar puncture and freez-

ing.43 Ab 42/40 ratio levels were analysed at the

Neurochemistry Laboratorium of the Amsterdam UMC

by personnel blinded to clinical information using ADx

Neurosciences/Euroimmun kits from the same batch,

according to the manufacturer instructions.44,45

MRI and PET acquisition

Whole-brain MRI and PET scans were acquired at

Amsterdam University Medical Center, location VUmc,

using a 3 T Philips Ingenuity Time-of-Flight PET/MRI

scanner (Philips Healthcare, Cleveland, USA) with an

8-channel head coil.

High-resolution isotropic structural 3D T1-weighted

images were acquired using a sagittal turbo field echo se-

quence (1.00 mm3 isotropic voxels, repetition time ¼
7.9 ms, echo time ¼ 4.5 ms and flip angle ¼ 8�). Whole

brain rs-fMRI scans were acquired using a fast field
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echo-planar imaging (EPI) sequence (repetition time (TR)

¼ 1800 ms; echo time (TE) ¼ 35 ms; flip angle (FA) ¼
80�; matrix ¼ 64� 64; field of view (FOV) ¼ 221 mm;

voxel size ¼ 3.3 mm � 3.3 mm � 3.0 mm). In total, 33

axial AP-oriented slices were acquired in interleaved

order, resulting in a total of 202 volumes. During the rs-

fMRI scan, light and music were turned off and partici-

pants were instructed to keep their eyes closed, remain

awake, and not think to anything in particular. All MRI

scans were visually assessed by an experienced neuroradi-

ologist for incidental findings.

Dynamic [18F]flutemetamol amyloid-PET scans were

performed according to a dual-time window acquisition

protocol46 with 30 min scans acquired immediately after

manual tracer injection (dose: 191 6 20 MBq), followed

by a 60 min break, and then a second scan of 20 min

(i.e. 90–110 min post injection) (for further details see

Konijnenberg et al.32). A 3D T1-weighted gradient echo

pulse MR image was acquired prior to each PET scan

for attenuation correction.

MRI analysis

Grey matter (GM) volume, normalized for head size, was

estimated using SIENAX,47 part of FMRIB’s Software

Library (FSL Version 5.0.4; www.fmrib.ox.ac.uk/fsl

Accessed 15 September 2021).48

Preprocessing of rs-fMRI scans was also performed

using the FSL pipeline (FSL Version 5.0.4; www.fmrib.

ox.ac.uk/fsl Accessed 15 September 2021)48 and it con-

sisted of motion correction,49 removal of non-brain tis-

sue,50,51 spatial smoothing by using a Gaussian kernel of

5 mm full width at half maximum (FWHM) to reduce

noise, and high-pass temporal filtering to remove low-fre-

quency artefacts. After preprocessing, affine registration49

was used to register rs-fMRI images to 3D T1-weighted

images. Subsequently, the images were registered to

Montreal Neurological Institute (MNI) standard space

images using nonlinear registration (FNIRT) with a warp

resolution of 10 mm and resampling resolution of 4 mm.

ICA of rs-fMRI data was performed using FSL

MELODIC to decompose functional images into inde-

pendent, uncorrelated spatial and temporal compo-

nents,48,52 automatically estimating the number of

components, which was 38. We identified the DMN as

the component that showed the highest spatial correlation

with the previously defined rs-fMRI DMN map by Smith

et al.53 To identify individual differences in DMN FC

with spatial maps from the group-average ICA, dual re-

gression was performed54 (Fig. 1).

The dual regression method55 regresses an fMRI data-

set onto a set of spatial patterns indicating a possible

resting state network, resulting in a representative time

series per pattern, per subject. After that, the fMRI data

are regressed onto these representative time series, yield-

ing a voxelwise measure of temporal correspondence with

each pattern, for each subject. Both steps are generalized

linear models for data Y[N � T] of N voxels and T time

points and a set C[N � M] of M spatial patterns. The first

step solves the following equation:

Y½N�T� ¼ C½N�M� � S½M�T� þ E½N�T�

for the pattern-specific time series S (with residual e), and

the second step solves the formula

Y½N�T� ¼ D½N�M� � S½M�T� þ E½N�T�

for the voxelwise correspondence D to S, and can be

computed with a least squares method. The output of the

dual regression method, first introduced in 2009,54 has

been used to identify between-group resting state network

differences.55,56

Voxelwise functional network centrality can be defined

as the local proportional relevance to the whole-brain pat-

tern of synchronized activity.57 Eigenvector centrality

mapping (ECM) uses the coefficients of the dominant

eigenvector of the fMRI connectivity matrix and is highest

for voxels that have strong correlations with other central

voxels.58 ECM was performed using fastECM,24 an effi-

cient implementation of ECM using power iteration. ECM

computations used the standard-space fMRI data as

described above and were performed inside a mask where

75% of the participants had BOLD measurements during

the whole time series, to balance brain coverage and pres-

ervation of network topology. EC values inside the previ-

ously defined DMN mask were computed (Fig. 1).

ICA and EC methods have been chosen as they

give voxelwise reports and they are robust against

multiple sources of variability in resting-state fMRI

analyses.20,25

PET analysis

PET scans were reconstructed by applying the LOR-

RAMLA dedicated Philips reconstruction algorithm for the

brain. The first emission scans were reconstructed into 18

frames with increasing time length (6� 5, 3� 10, 4� 60,

2� 150, 2� 300, 1� 600 s), while the second scan was

reconstructed into 4 frames of 300 s each. Obtained PET

images were preprocessed with Vinci Software version 2.56

(http://vinci.sf.mpg.de/ Accessed 15 September 2021). using

its multimodality setting of Vinci for co-registration of dy-

namic scans with individual’s T1-weighted MRI sequences.

Regions of interest (ROIs) were automatically delineated

based on the T1-weighted MRI images using PVElab.59,60

Parametric non-displaceable binding potential (BPND) was

calculated by using the receptor parametric mapping

(RPM) implementation of the Simplified Reference Tissue

Model (SRTM) in PPET.46,61,62 Cerebellar GM was chosen

as the reference region. For analyses, distribution volume

ratio (DVR) was calculated as a measure of receptor avail-

ability for radioligand (BPND þ 1) and ROIs identified

using Desikan–Killiani atlas.63
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Statistical analyses

Each 3D subject-specific DMN connectivity map, result-

ing from dual regression, was averaged inside the mask

of their corresponding DMN. FC values in each subject’s

DMN had been log-transformed to correct for a skew-

ness in their distribution. Resulting output were mean FC

and voxelwise FC within the DMN per subject, which

were then used for statistical analyses.

Aß was used as a continuous measure and was defined

as CSF Aß 42/40 ratio or PET BPND in early-stage

Alzheimer’s disease regions, i.e. the PCC, precuneus, and

MOF cortex. Ab, log FC and normalized GM volume

values were transformed to z-scores.

Four models tested the relationship between Aß burden

and average FC in the DMN; one for each quantitative

measure of Aß. We used generalized estimating equations

(GEE), using family ID (indication of twin pairs) as a

random factor, to correct for correlated observations in

monozygotic twins,64 and including age, sex and normal-

ized GM volume as covariates.

To gain additional information on the effect of Ab on

DMN FC and EC, a voxelwise GEE analysis was

performed in the DMN mask voxels, correcting for the

familial clustering of twin pairs, as well as confounders,

such as age, sex and normalized GM volume. Of the

clusters of voxels with P-value < 0.05, we selected the

clusters with a minimum cluster extent of 10 voxels. To

elucidate the role of FC in relation to memory decline,

we tested whether FC in the DMN at baseline was pre-

dictive of longitudinal memory decline using GEE, cor-

recting for age at the time of examination, sex, years of

education, and using family ID as a random factor.

Furthermore, given the known relationship between Ab
deposition and memory decline,65,66 we also built a

three-way interaction model which also included Ab bur-

den. All the statistical analyses were conducted in R ver-

sion 3.6.0 (R Foundation for Statistical Computing,

Vienna, Austria).

Data availability

Data requests can be submitted via the EMIF-AD

Catalogue (see http://www.emif.eu/emif-ad-2/ Accessed 15

September 2021).

rs-fMRI data
subject 1

subject 173

. . .

1. Independent Component Analysis (ICA)

Normalized rs-fMRI data Group ICA components
subject 1

subject 173

. . .

Pre-processing

• motion correction
• brain extraction
• standard-space
   tranformation

IC 38

IC 1

. . .
spatial correlation against 
the DMN defined by Smith 

et al. (2009) and visual 
inspection

Identification
of the DMN

Spatial Regression

Subject-specific
time courses

subject 1

subject 173
. . .

subject 1

subject 173

. . .

Temporal Regression

Subject-specific 
FC maps

2. Dual Regression to calculate subject-specific FC in the DMN

DMN spatial maps are regressed 
into each subject’s normalized 

functional data generating 
subject-specific time-series for 

the DMN spatial map

subject-specific DMN time series 
are regressed into each subject’s 

normalized functional data 
generating subject-specific

FC maps in the DMN

3. Graph Analyses to calculate subject-specific EC in the DMN

Normalized rs-fMRI data
subject 1

subject 173

. . .

Subject-specific
connectivity matrix

Subject-specific
voxelwise EC map

Subject-specific
EC map in the DMN

DMN
component

Figure 1. Overview of rs-fMRI data analyses. DMN, default-mode network; EC, eigenvector centrality; FC, functional connectivity; ICA,

independent component analysis.
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Results

Study sample

Demographics, clinical and imaging characteristics

of the study participants are summarized in Table 1.

The mean age of the population was 70.3 6 7.4 years

and the mini-mental state examination (MMSE) average

was 29.0 6 1.2, supporting that the population was cog-

nitively unimpaired. CSF data were analysed for

109 out of the 173 study participants, while PET BPND

could be estimated in a subset of 167 individuals. The

amyloid burden was generally low, as expected in this

cognitively normal cohort (amyloid positive, 17%).

In line with the literature, amyloid positive individuals

were generally older (P-value ¼ 0.001) and had a

slightly lower performance at neuropsychological tests

(Table 1).

The results of follow-up memory tests are summarized in

Table 2. On a group level, performance on RAVLT imme-

diate and delayed recall decreased on follow-up. A learning

effect was instead registered for the 3 min and 20 min RCF

tests, and for the FNAME delayed recall subscores.

The relationship between amyloid

burden and DMN connectivity

An inverse relationship was found between Aß burden

and FC in the DMN when Aß was defined by CSF

Aß 42/40 ratio (ß¼ 0.17, P-value ¼ 0.020) and by PET

BPND in the PCC (ß ¼ �0.15, P-value ¼ 0.006), but

not with amyloid burden defined by PET BPND in the

MOF and in the precuneus (MOF: ß ¼ �0.09, P-value ¼
0.153; precuneus: ß ¼ �0.09, P-value ¼ 0.165)

(Table 3).

We then investigated at a voxelwise level how FC and

EC values within the DMN changed as a function of

amyloid burden as defined by the amyloid metrics that

showed a significant relationship between mean FC in the

DMN, i.e. Aß 42/40 ratio and PET BPND in the PCC.

Higher amyloid burden corresponded to lower FC and

EC in voxels within the DMN, after correcting for age,

sex, normalized GM volume and twin status (Table 4).

Voxel clusters that significantly associated with early-

stage Ab pathology were localized in the precuneus,

cingulate gyrus, and angular gyrus both for the FC and

EC measures, and also in the middle cingulate gyrus for

EC measures (Fig. 2).

The relationship between FC in the
DMN and longitudinal memory
decline

Next, we determined the impact that alterations in the

DMN FC have on longitudinal memory decline through

two-way and three-way interaction analyses. We found

that baseline FC in the DMN was predictive of longitu-

dinal memory decline independent of amyloid burden

(Table 5). Moreover, our three-way interaction analysis

showed a significant interaction between DMN FC and

Table 1 Description of the study participants at baseline.

Total group (n 5 173) Amyloid negative (83%) Amyloid positive (17%) P-value

Demographics and clinical characteristics

Age 70.3 6 7.4 69.3 74.1 0.010

Sex, n females (%) 100 (57.8%) 78 (55.3%) 19 (65.5%) 0.421

Education (years) 11.6 6 2.7 11.7 6 2.6 11.1 6 3.4 0.489

MMSE 29.0 6 1.2 29.1 6 1.1 28.6 6 1.5 0.117

Neuropsychological tests

RAVLT immediate recall (n¼ 164) 42.1 6 9.0 42.8 6 9.1 38.8 6 7.8 0.06

RAVLT delayed recall (n¼ 164) 8.4 6 2.8 8.5 6 2.9 7.8 6 2.2 0.112

RCF recall 3 min (n¼ 165) 18.8 6 5.3 19.5 6 5.3 15.6 6 4.1 <0.001

RCF recall 20 min (n¼ 163) 18.7 6 4.9 19.2 6 4.8 16.0 6 4.2 0.038

FNAME delayed recall subscore names (n¼ 150) 20.1 6 9.9 21.0 6 10.2 15.6 6 6.7 0.397

FNAME delayed recall subscore occupation (n¼ 150) 33.2 6 8.9 33.9 6 8.8 29.8 6 9.1 0.163

MRI imaging characteristics

GM volume (cm3) 72693 6 8574 73260 6 7403 72262 6 4352 0.275

Log FC in the DMN 1.36 6 0.14 1.36 6 0.13 1.34 6 0.13 0.209

Amyloid status

CSF Aß 42/40 ratio (pg/ml) (n¼ 109) 0.10 6 0.03 0.11 6 0.02 0.05 6 0.02 <0.001

PET Global DVR (n¼ 167) 1.03 6 0.13 0.99 6 0.08 1.20 6 0.16 <0.001

PET DVR in the PCC (n¼ 167) 1.36 6 0.19 1.30 6 0.11 1.64 6 0.24 <0.001

PET DVR in the precuneus (n¼ 167) 1.21 6 0.16 1.17 6 0.09 1.44 6 0.22 <0.001

PET DVR in the MOF cortex (n¼ 167) 1.21 6 0.18 1.15 6 0.08 1.50 6 0.23 <0.001

Data are presented as mean 6 SD for continuous variables, or number (percentage) for dichotomous variables.

Aß, amyloid ß; DMN, default-mode network; DVR, distribution volume ratio; FC, functional connectivity, FNAME, face-name associated memory examination; GM, gray matter;

MMSE, mini-mental state examination; MOF, medio-orbitofrontal cortex; PCC, posterior cingulate cortex; RAVLT, Rey auditory verbal learning test; RCF, Rey complex figure.
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Aß as defined by PET BPND in PCC (but not as CSF Aß

42/40 ratio) in predicting longitudinal memory decline

(interaction term PET BPND in PCC*FC in DMN*age:

b ¼ �0.064, P-value ¼ 0.014) (Table 5).

Discussion
In this study, we investigated the relation between Ab de-

position and connectivity within the DMN in a cohort of

cognitively healthy elderly individuals. We found that

amyloid burden as defined by CSF Ab 42/40 ratio and

PET binding potential in the PCC is predictive of lower

FC in the DMN. Furthermore, we showed that altera-

tions of FC and EC measures as a function of Ab depos-

ition are strongest in voxel clusters localized in the

precuneus, cingulate gyrus, angular gyrus and left middle

temporal gyrus. Finally, we demonstrated that FC in the

DMN is predictive of longitudinal memory decline, and

its effect is synergistic with that of Ab as defined by PET

BPND in PCC.

This study demonstrates that early-stage Ab accumula-

tion as determined by regional PET amyloid deposition,

namely in the PCC, is associated with aberrant DMN

connectivity in a cognitively healthy population. We also

show voxelwise FC and EC alterations in the DMN of

early Ab accumulators, offering a more detailed topo-

graphical overview of Ab-dependent DMN changes. Our

results expanded the body of literature regarding the

association between Ab deposition and aberrant DMN

connectivity17,67–73—already described in populations

with Alzheimer’s dementia, mild cognitive impairment,74–

77 and subjective cognitive decline78—to cognitively

healthy individuals with generally low amyloid burden.

Moreover, we showed that localized Ab accumulation in

PCC has a synergistic effect with DMN connectivity in

predicting longitudinal memory decline.

The mechanism through which Ab deposition affects

DMN connectivity remains still unclear. Pascoal et al.

suggested that Ab toxic effect is mediated by a local

Table 4 Voxel clusters that showed a significant association between amyloid burden (defined as Ab 42/40 ratio and

DVR in PCC) and FC and EC measures within the DMN

Voxels Brain area Beta Coordinate points P-value

x y z

FC in DMN

Ab 42/40 ratio 423 Left cingulate gyrus 0.004 21 23 27 <0.001

40 Right angular gyrus 0.004 31 15 26 <0.001

12 Right precuneus 0.003 37 21 25 0.001

BPND in PCC 194 Left precuneus �0.003 20 18 19 <0.001

116 Left angular gyrus �0.003 11 18 26 <0.001

46 Right angular gyrus �0.002 32 18 29 <0.001

15 Left precuneus �0.003 18 11 27 <0.001

EC in DMN

Ab 42/40 ratio 67 Left precuneus 0.004 17 16 26 <0.001

40 Right precuneus 0.003 30 14 28 <0.001

12 Right cingulate gyrus 0.003 22 24 26 0.001

11 Right cingulate gyrus 0.003 25 20 27 0.002

11 Left middle temporal gyrus 0.003 7 23 17 0.001

BPND in PCC 23 Right cingulate gyrus �0.003 25 21 26 <0.001

17 Left precuneus �0.002 16 15 26 0.001

15 Right angular gyrus �0.002 31 18 27 <0.001

Models are corrected for age, sex, normalized GM volume and twin status. P-values are FWE-corrected.

Aß, amyloid ß; BPND, non-displaceable binding potential; DMN, default-mode network; DVR, distribution volume ratio; FC, functional connectivity; FWE, family-wise error; PCC,

posterior cingulate cortex; FWE, family-wise error.

Table 2 Results of follow-up neuropsychological tests

Follow-up 1 Follow-up 2

Neuropsychological

tests

N Mean 6

SD

N Mean 6

SD

RAVLT immediate recall 165 39.7 6 9.1 93 43.6 6 11.1

RAVLT delayed recall 165 7.7 6 2.9 94 8.8 6 3.4

RCF recall 3 min 164 19.7 6 5.8 92 20.9 6 5.7

RCF recall 20 min 164 19.7 6 5.5 92 20.5 6 5.6

FNAME delayed recall

subscore names

154 21.5 6 11.0 89 26.2 6 10.8

FNAME delayed recall

subscore occupation

154 33.4 6 7.8 89 34.6 6 8.9

FNAME, face-name associated memory examination; RAVLT, Rey auditory verbal

learning test; RCF, Rey complex figure.

Table 3 Association of mean FC in the DMN and amyl-

oid burden

FC DMN

Regression coefficient (b)

P-value

CSF Ab 42/40 ratio 0.17 0.020

BPND in the PCC �0.15 0.006

BPND in precuneus �0.09 0.165

BPND in MOF cortex �0.09 0.153

All values were transformed to z-scores. All GEE analyses took into account family ID as a

random factor and were corrected for age, sex, and normalized GM volume.

Aß, amyloid ß; BPND, non-displaceable binding potential; DVR, distribution volume

ratio; MOF, medio-orbitofrontal cortex; PCC, posterior cingulate cortex; GEE, gener-

alized estimating equations.
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reduction in metabolism in vulnerable neurons. The

repercussions of such a phenomenon in the DMN can be

indirect, affecting regions that are functionally connected

with the DMN, or direct, if Ab deposition topographical-

ly overlaps with DMN areas.79 Metabolic stress might

thus be the result of the large fluctuations of neuronal

firing in these brain areas, which might be fueled by the

toxic effect of Ab and, on the other hand, could stimu-

late further Ab accumulation through a positive feedback

mechanism, eventually resulting in neuronal death.80–83

The results of our voxelwise analyses provide evidence in

support of the direct effect of Ab plaques on neuronal

metabolism, as FC and EC alterations in the DMN are

associated with higher Ab deposition in the PCC. This is

in line with other studies showing topographical overlap

within the DMN regions of Ab deposition, disrupted FC,

hypometabolism, and atrophy in more advanced disease

stages.10,70,84–86

Voxels that showed hypoconnectivity (as indicated by

FC), higher sparsity and lower relative importance (as

indicated by EC) of the DMN as a response to early-

stage Ab accumulation were localized in cingulate gyrus,

angular gyrus, precuneus and middle temporal gyrus.

Such regions demonstrate prominent atrophy in individu-

als further along the Alzheimer’s disease continuum.87 In

particular, the PCC is an important hub of the medial

temporal memory circuit, together with the hippocampus

and enthorinal cortex.88 Pathological and imaging studies

have reported Ab deposition, a lower number of synaptic

connections, hypometabolic activity and lower FC in the

Figure 2. Results of voxelwise analyses. Aß, amyloid ß; DMN, default-mode network; DVR, distribution volume ratio; EC, eigenvector

centrality; FC, functional connectivity; PCC, posterior cingulate cortex; PET, positron emission tomography.

Table 5 GEE linear mixed models predicting longitudinal memory decline

Predictor Beta P-value Predictor Beta P-value

Two-way linear mixed model

Ab 42/40 ratio �0.760 0.360 BPND in PCC 2.506 <0.001

Ab 42/40 ratio*age 0.016 0.177 BPND in PCC*age �0.041 <0.001

FC DMN �1.556 0.021 FC DMN 0.187 0.846

FC DMN*age 0.0208 0.034 FC DMN*age �0.006 <0.001

Three-way interaction model

Ab 42/40 ratio �0.032 0.983 BPND in PCC 6.736 <0.001

FC DMN �1.483 0.028 FC DMN 2.082 0.060

Ab 42/40 ratio*age 0.005 0.825 BPND in PCC*age �0.102 <0.001

Ab 42/40 ratio*FC DMN 0.726 0.573 BPND in PCC*FC DMN 4.467 0.012

FC DMN*age 0.020 0.046 FC DMN*age �0.034 0.039

Ab 42/40 ratio*FC DMN*age �0.011 0.551 BPND in PCC*FC

DMN*age

�0.064 0.014

All models have been corrected for age at the time of examination, sex, and years of education and family ID was used as a random factor.

Aß, amyloid ß; DMN, default-mode network; DVR, distribution volume ratio; FC, functional connectivity; PCC, posterior cingulate cortex; GEE, generalized estimating equations.
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PCC of individuals with prodromal Alzheimer’s disease

and Alzheimer’s dementia.10,75,84,89,90 Our results confirm

the central role of the PCC in Alzheimer’s disease, further

extending the concept to the earliest phases of Ab accu-

mulation in cognitively healthy individuals,8 as we show

both early Ab deposition and aberrant connectivity in

this area.

Not only do our findings indicate that DMN areas are

vulnerable to Alzheimer’s pathology, but they also sug-

gest that DMN connectivity influences the rate of mem-

ory decline both independently and as a function of

amyloid burden as measured with PET BPND in PCC.

We did not find that DMN FC modified the association

between CSF Ab 42/40 ratio and memory, possibly due

to the different sensitivity of these measures.4 Taken to-

gether, these findings suggest that the effect of early Ab
accumulation on cognition might depend on neuronal

vulnerability, which can in turn be quantified through FC

and EC in the DMN. Our findings are in line with previ-

ous works in the literature, showing that amyloid-related

alterations of brain FC appear before or together with

cognitive alterations.91 This could raise some questions

regarding the definition of cognitively normal individuals

in previous studies, as suggested by Brier et al., but the

discussion of this issue is beyond the scope of this

study.92

The measures used for our analyses were defined

based on different, possibly complementary, modalities.

Specifically, amyloid burden was measured both through

CSF (Ab 42/40 ratio) and amyloid PET (BPND in the

PCC, precuneus, and MOF cortex) analyses. Similarly,

we assessed DMN connectivity with two different meas-

ures, i.e. FC derived from ICA and EC. The definition of

markers through multiple modalities (Ab), different ana-

lytic techniques (rs-fMRI metrics), and composite scores

(memory) and the inclusion of continuous biomarkers are

methodological strengths of our study. Nevertheless, some

methodological concerns should be addressed. Our sam-

ple is not totally representative of the general population,

as it is mostly composed of highly educated white

Caucasians, generally missing minorities. Moreover, our

effect sizes were modest, probably due to the composition

of our cohort, which was generally healthy and with a

low amyloid burden, and to the fact that DMN FC and

EC are indirect measures of brain hypometabolism. Still,

we believe that this work shows strong evidence in sup-

port of the role of the DMN in Ab-related changes, indi-

cating that aberrant DMN connectivity likely mirrors

early neurodegenerative processes.

In conclusion, we found that cognitively healthy

individuals show disrupted connectivity and higher net-

work disorganization and sparsity within the DMN as a

function of incipient Ab accumulation. Moreover, FC

within the DMN predicts longitudinal memory decline,

suggesting that DMN connectivity might explain different

trajectories of decline in individuals early along the

Alzheimer’s disease continuum, both independently of

amyloid deposition and synergistically with regional

amyloid deposition in the PCC. Taken together, these

findings suggest that DMN plays an important role in

early-stage Alzheimer’s disease pathology, and conse-

quently DMN connectivity is an interesting marker for

the diagnostic and prognostic assessment of individuals in

the earliest stages of Alzheimer’s disease.
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