Genetic comorbidity between major depression and cardiometabolic traits, stratified by age at onset of major depression

Saskia P. Hagenaars1,2 | Jonathan R. I. Coleman1,2 | Shing Wan Choi1 | Hélène Gaspar1,2 | Mark J. Adams3 | David M. Howard1,3 | Karen Hodgson1,2 | Matthew Traylor4 | Tracy M. Air5 | Till F. M. Andlauer6,7 | Volker Arolt8 | Bernhard T. Baune8,9,10 | Elisabeth B. Binder6,11 | Douglas H. R. Blackwood12 | Dorret I. Boomsma13 | Archie Campbell12 | Micah Cears9 | Darina Czamara6 | Udo Dannlowski8 | Katharina Domschke15,16 | Eco J. C. de Geus13 | Steven P. Hamilton17 | Caroline Hayward12,18 | Ian B. Hickie19 | Jouke Jan Hottenga13 | Marcus Ising14 | Ian Jones20 | Lisa Jones21 | Zoltan Kutalik22,23 | Susanne Lucae14 | Nicholas G. Martin24 | Yuri Milanesci25 | Bertram Mueller-Myhsok6,26,27 | Michael J. Owen20 | Sandosh Padmanabhan12,28 | Brenda W. J. H. Penninx25 | Giorgio Pistis29 | David J. Porteous12 | Martin Preissig29 | Stephan Ripke30,31,32 | Stanley I. Shyn33 | Patrick F. Sullivan34,35,36 | John B. Whitfield24 | Naomi R. Wray37,38 | Andrew M. McIntosh3,12,39 | Ian J. Deary39,40 | Gerome Breen1,2 | Cathryn M. Lewis1,2

1Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
2NIHR Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
3Division of Psychiatry, University of Edinburgh, Edinburgh, UK
4Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
5Discipline of Medicine, University of Adelaide, Adelaide, Australia
6Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
7Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
8Department of Psychiatry, University of Münster, Münster, Germany
9Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Australia
10Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
11Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
12Generation Scotland, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
13Netherlands Twin Register, Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit, Amsterdam, The Netherlands
14Max Planck Institute of Psychiatry, Munich, Germany
15Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
16Center for NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany

Members of Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium and MEGASTROKE consortium are given in Appendix.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2020 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics published by Wiley Periodicals LLC.
Abstract
It is imperative to understand the specific and shared etiologies of major depression and cardio-metabolic disease, as both traits are frequently comorbid and each represents a major burden to society. This study examined whether there is a genetic association between major depression and cardio-metabolic traits and if this association is stratified by age at onset for major depression. Polygenic risk scores analysis and linkage disequilibrium score regression was performed to examine whether differences in shared genetic etiology exist between depression case control status ($N_{cases} = 40,940$, $N_{controls} = 67,532$), earlier ($N = 15,844$), and later onset depression ($N = 15,800$) with body mass index, coronary artery disease, stroke, and type 2 diabetes in 11 data sets from the Psychiatric Genomics Consortium, Generation Scotland, and UK Biobank. All cardio-metabolic polygenic risk scores were associated with depression status. Significant genetic correlations were found between depression and body mass index, coronary artery disease, and type 2 diabetes. Highest polygenic risk for body mass index, coronary artery disease, and type 2 diabetes was associated with both early and later onset depression, while higher polygenic risk for stroke was associated with later onset depression only. Significant genetic correlations were found between body mass index and later onset depression, and between coronary artery disease and both early and late onset depression. The phenotypic associations between major depression and cardio-metabolic traits may partly reflect their overlapping genetic etiology irrespective of the age depression first presents.
1 | INTRODUCTION

Major depressive disorder (MDD) and cardio-metabolic traits are both major causes of morbidity and mortality in high-income countries. Epidemiological studies have shown a well-established association between them (B. W. J. H. Penninx, 2017): MDD increases the risk of cardio-metabolic disease onset and mortality, but cardio-metabolic disease itself can also increase risk of developing MDD. Specifically, a meta-analysis of 124,509 individuals across 21 studies showed that depression is associated with an 80% increased risk for developing coronary artery disease (Nicholson, Kuper, & Hemingway, 2006). Mezuk et al (Mezuk, Eaton, Albrecht, & Golden, 2008) showed that MDD predicted a 60% increased risk of type 2 diabetes, while type 2 diabetes predicted a 15% increased risk in MDD. MDD is associated with an increased risk of developing stroke (HR 1.45) (Pan, Sun, Okereke, Rexrode, & Hu, 2011), but meta-analyses have also shown that ~30% of stroke survivors suffered from MDD (Ayerbe, Ayis, Wolfe, & Rudd, 2013; Hackett & Pickles, 2014). Risk factors for cardio-metabolic disease, such as obesity, are also linked to depression. Milaneschi et al. (Milaneschi, Simmons, van Rossum, & Penninx, 2018) showed a bidirectional association between depression and obesity, where obesity increases risk for depression and depression increases risk for subsequent obesity. A more detailed review of the comorbidity between depression and cardio-metabolic traits is given in B. W. Penninx, Milaneschi, Lamers, and Vogelzangs (2013).

Multiple mechanisms have been proposed to explain the association between MDD and cardio-metabolic diseases, for example biological dysregulation, or an unhealthy lifestyle (B. W. J. H. Penninx, 2017). However, it remains unclear to what extend these mechanisms influence the association, as most studies examining the mechanisms were based on epidemiological observational study designs. The association between MDD and cardio-metabolic disease could also be due to shared genetic factors. Twin studies have shown that genetic factors contribute ~40% of the variation in liability to both MDD (Sullivan, Neale, & Kendler, 2000) and coronary artery disease (Polderman et al., 2015; Schunkert et al., 2011), 72% to type 2 diabetes (Willemsen et al., 2015), and 40–70% to BMI (Locke et al., 2015). No twin heritability estimates are available for stroke, as such studies have very limited numbers of twins. The most recent published GWAS for major depression, including 246,363 cases and 561,190 controls, identified 102 loci that were significantly associated with major depression, highlighting the highly polygenic nature of major depression (Howard et al., 2019). The heritability for major depression based on single nucleotide polymorphisms (h^2_{SNP}) was estimated to be 8.9% on the liability scale, based on a lifetime risk of 0.15. Similarly, recent efforts to identify common variants associated with cardio-metabolic disease have shown these traits to be highly polygenic (Malik et al., 2018; Nikpay et al., 2015; Scott et al., 2017; Yengo et al., 2018).

Several studies have shown genetic overlap between MDD and cardio-metabolic traits, in particular with coronary artery disease (Wray et al., 2018). Findings for other cardio-metabolic traits have been inconsistent. Previous studies have identified genetic overlap between MDD and BMI using polygenetic risk scores (PRS) (Milaneschi et al., 2017), but not based on genetic correlations (Wong et al., 2018). However, more recent GWAS studies now have the power to detect a genetic correlation between MDD and BMI (Wray et al., 2018). Studies using twin data also showed that the phenotypic association between MDD and type 2 diabetes was partly due to genetic effects (Kan et al., 2016). This finding has been replicated using a polygenic risk score approach (Wong et al., 2019), but not using genetic correlations (Clarke et al., 2016; Wong et al., 2019). The Brainstorm Consortium did not find a significant genetic correlation between MDD and stroke (Anttila et al., 2018), while Wassenhuijl-Smoller et al (Wassenhuijl-Smoller et al., 2018) showed that higher polygenic risk for MDD was associated with increased risk for stroke, in particular small vessel disease.

The inconsistency in results is likely due to differences in methodological approaches or in summary statistics, but could also be due to the heterogeneity of MDD. MDD onset can occur at any stage of life, but the factors associated with MDD are often age specific or age restricted (Power et al., 2017). Increased genetic risk for major depression is associated with earlier age at onset (AAO) compared with later AAO (Wray et al., 2018). Earlier AAO MDD has a higher heritability and is associated with increased risk for MDD in relatives. On the other hand, vascular disease and its risk factors are linked to a later AAO for MDD (G. S. Alexopoulos et al., 1997; Naismith, Norrie, Mowszowski, & Hickie, 2012; Taylor, Aizenstein, & Alexopoulos, 2013). A large study of Swedish twins showed that a later AAO for MDD in one twin was associated with a higher risk for vascular disease in the other twin (Kendler, Fiske, Gardner, & Gatz, 2009). To date, no molecular genetic studies have examined the association between late onset MDD and cardio-metabolic traits and in the current study we have more power to replicate and further investigate this association leveraging both summary statistics and common genetic variant information.

The main aim of the present study is to examine the genetic association between MDD and cardio-metabolic traits using PRS and genetic correlations. Secondly, we will examine the association stratified by AAO for MDD to test whether a higher genetic predisposition for cardio-metabolic traits is associated with a later AAO for MDD.

2 | METHODS AND MATERIALS

2.1 | Samples

This study was performed using data from the Psychiatric Genomics Consortium (PGC) MDD working group (PGC-MDD), Generation...
any self-reported diagnosis of mental illness, did not take any anti-depressant medications, had not previously been hospitalized with a mood disorder, and did not meet previously defined criteria for a mood disorder (D. J. Smith et al., 2013). For the current study, this led to 29,475 cases and 51,243 controls.

2.1.1 | PGC

Full details of the studies that form the PGC-MDD have previously been published (Wray et al., 2018). In summary, a subset of 11 studies from the full PGC-MDD analysis were included in the current study, based on the availability of AAO for MDD. All cases were required to have a lifetime diagnosis of MDD based on international consensus criteria (DSM-IV, ICD-9, or ICD-10) (American Psychiatric Association, 1994; World Health Organization, 1978, 1992). This was ascertained using structured diagnostic instruments from direct interview by trained interviewers or clinician administered checklists. In most studies (10/11), controls were randomly selected from the general population and were screened for absence of lifetime MDD. This led to a total of 9,518 cases and 11,557 controls with genotype data and AAO information.

2.1.2 | GS:SFHS

GS:SFHS is a family-based study consisting of 23,690 participants recruited from the population via general medical practices across Scotland. Sample characteristics and recruitment protocols have been described elsewhere (B. H. Smith et al., 2013; Smith et al., 2006). In summary, MDD diagnosis was based on the structured clinical interview for DSM-IV disorders (SCID) (First, Spitzer, Gibbon, & Williams, 1997). Participants who answered positively to two mental health screening questions were invited to complete the full SCID to ascertain MDD diagnosis. Cases were further refined through NHS linkage. Controls were defined as participants who answered negatively to the two screening questions or participants who did complete the SCID but did not meet criteria for MDD. This resulted in 1947 cases and 4,858 controls, based on unrelated individuals.

2.1.3 | UK Biobank

UK Biobank is a large resource for identifying determinants of diseases in middle aged and older healthy individuals (www.ukbiobank.ac.uk) (Sudlow et al., 2015). A total 502,655 community-dwelling participants aged between 37 and 73 years were recruited between 2006 and 2010 in the United Kingdom, and underwent extensive testing including mental health assessments. MDD status in UK Biobank was derived from the online mental health questionnaire as previously described (Coleman et al., 2020; Davis et al., 2018). Briefly, MDD cases were defined as individuals meeting lifetime criteria for MDD based on questions from the Composite International Diagnostic Interview. Individuals reporting previous self-reported diagnosis of schizophrenia (or other psychosis) or bipolar disorder were excluded as MDD cases. Controls were defined as individuals who did not have any self-reported diagnosis of mental illness, did not take any anti-depressant medications, had not previously been hospitalized with a mood disorder, and did not meet previously defined criteria for a mood disorder (D. J. Smith et al., 2013). For the current study, this led to 29,475 cases and 51,243 controls.

2.2 | AAO

AAO was defined as follows, based on previous work by Power et al (Power et al., 2017) developed to account for the substantial by-study heterogeneity in the measure. Heterogeneity in AAO within the PGC MDD cohorts has been extensively investigated. Responses depend on the specific setting in which AAO is asked, and may reflect age at first symptoms, first visit to general practitioner or first diagnosis) (Power et al., 2017). Using cut offs for AAO (e.g., onset under 30) does not capture the variance in this measure, and we therefore followed Power et al. (Power et al., 2017) to use the within study distribution to define early and later onset depression. This approach assumes that all cases were recruited from the same age at onset distribution with differences due to study-specific parameters. Cases reporting AAO older than the recorded age at interview were excluded from each study. Within each study, cases were ordered by AAO and divided into equal octiles (O1–O8). The first three octiles (O1–O3) were combined into the early AAO group, the last three octiles (O6–O8) into the late AAO group. Splitting into equal octiles can result in individuals with the same AAO being arbitrarily placed in different octiles. To address this, cases in O4 with the same AAO as the maximum AAO in O3 were assigned to the early AAO group. Similarly, cases in O5 with the same AAO as the minimum AAO in O6 were assigned to the late AAO group. This led to a total of 15,844 MDD cases with early AAO and 15,800 MDD cases with late AAO, and 67,532 controls.

2.3 | Genotyping and quality control

Genotyping procedures have been described in the original analysis for each study (Bycroft et al., 2018; Nagy et al., 2017; Wray et al., 2018). All analysis were based on individuals from European ancestry only. PGC cohorts were genotyped following their local protocols. Individual genotype data for all PGC cohorts was processed using the PGC "Ricopili" pipeline for standardized quality control, imputation and analysis (https://github.com/Nealelab/ricopili) (Lam et al., 2019). Further details on the default parameters used for the current study can be found in the Supplementary material. For GS:SFHS, genotyping and imputation procedures have previously been published by Nagy et al (Nagy et al., 2017), a brief summary can be found in the Supplementary Material. Monogenic variants and variants with low imputation quality (INFO <0.4) were removed. Two highly-overlapping custom genotyping arrays (UK BILEVE Axiom array and UK Biobank Axiom array, ~800,000 markers) were used to genotype all UK Biobank participants (N = 487,410) (Bycroft et al., 2018). Detailed QC procedures are described in the Supplementary Material.
2.4 | Statistical analysis

2.4.1 | PRS

Six PRS were calculated based on GWAS summary statistics for body mass index (BMI), coronary artery disease (CAD) (Nikpay et al., 2015), stroke and two stroke subtypes (Malik et al., 2018), and type 2 diabetes (T2D) (Scott et al., 2017) based on external GWAS p-value < 0.5. In order to lower the multiple testing burden a p-value threshold of 0.5 was chosen, as often representative of the predictive ability, since R^2 values often plateau across the range of p-values = .05–1. Table 1 provides further detail on the GWAS summary statistics.

PRS were calculated in all genotyped participants in each study using PRSice v2 (https://github.com/choishingwan/PRSice) (Euesden, Lewis, & O’Reilly, 2015). Prior to creating the scores, clumping was used to obtain SNPs in linkage disequilibrium with an $r^2 < 0.25$ within a 250 kb window. Due to the large number of overlapping samples between published BMI GWAS (Locke et al., 2015) and the PGC studies, a new GWAS was performed in the UK Biobank. The analysis used BGENIE v1.2 (Bycroft et al., 2018) on 291,684 individuals in UK Biobank that did not complete the Mental Health Questionnaire and were therefore independent of prediction samples, as MDD case control status was defined from the Mental Health Questionnaire. The Manhattan and QQ plot of the BMI GWAS can be found in the Supplementary Figure 2.

Logistic regression was used to test the associations between the six PRS and four different MDD case–control sets (all MDD cases vs. control subjects, early AAO cases vs. control subjects, late AAO cases vs. control subjects, and late AAO cases vs. early AAO cases). These analyses test our two hypotheses; (a) testing the association of genetic risk for cardiometabolic traits with MDD, and whether this association differs by AAO by comparing controls and MDD cases (all MDD cases vs. control subjects, early AAO cases vs. control subjects, late AAO cases vs. control subjects, and late AAO cases vs. control subjects), and (b) testing the association of genetic risk for cardiometabolic traits with MDD AAO itself, by comparing late AAO cases vs. early AAO cases only. Analyses were performed separately for each study, adjusting for relevant covariates in each study (PGC & GS:SFHS: 5 genetic principal components for population stratification; UK Biobank: 6 genetic principal components for population stratification, assessment center, and genotyping batch). All PRS were standardized with each study across samples. Meta-analyses of the results across studies for each PRS–MDD subtype combination were then conducted to synthesize the findings for maximum statistical power and to check for heterogeneity. Fixed-effects models were used in which the standardized regression coefficients were weighted by the inverse of their squared SE. We tested for the presence of between-study heterogeneity using Cochran’s Q. We corrected for multiple testing across all 24 meta-analysis models (4 phenotypes x 6 PRS) using the Benjamini Hochberg false discovery rate method (Benjamini & Hochberg, 1995), using a critical p-value of .0026, which means that all p-values equal to or below the critical p-value are considered significant.

2.4.2 | GWAS meta-analysis and genetic correlations

Genome wide association analyses for three AAO-stratified MDD case–control subsets were performed within each study, with adjustments for population stratification. Study-specific covariates—for example, site or familial relationships—were also fitted as required (see Supplementary Material). The GWAS for GS:SFHS included all individuals (compared with unrelated individuals in the PRS analysis) to maximize power. Quality control of the study-level summary statistics was performed using the EasyQC software (Winkler et al., 2014), which implemented the exclusion of SNPs with imputation quality <0.8 and minor allele count <25. p-value based meta-analyses, with genomic control, were then performed for each of the three outcome measures, using the METAL package (Weller, Li, & Abecasis, 2010). SNPs with a combined sample size of less than 1,000 participants were excluded.

Genetic correlations between the cardio-metabolic traits and the four MDD summary statistics were calculated using Linkage Disequilibrium score regression (LDSC) (B. K. Bulik-Sullivan et al., 2015) using the default HapMap LD reference. To maximize power (and given genetic correlation analyses in LDSC are robust to sample overlap), the largest available summary statistics were used. These included the previously described summary statistics for coronary artery disease (Nikpay et al., 2015), stroke (Malik et al., 2018), and type 2 diabetes (Scott et al., 2017), as well as summary statistics for major depression from the PGC-MDD and 23andMe GWAS, including UK Biobank (Wray et al., 2018), and the most recent BMI GWAS, including both UK

TABLE 1 Information about GWAS summary statistics, based on European individuals only, to create polygenic risk scores in PGC-MDD, GS: SFHS, and UK Biobank

<table>
<thead>
<tr>
<th>Trait</th>
<th>Origin</th>
<th>N cases/N controls</th>
<th>SNPs with p-value $<5 \times 10^{-8}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body mass index</td>
<td>UK Biobank</td>
<td>291,683 individuals</td>
<td>27,164</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>CARDIoGRAM</td>
<td>60,801 cases—123,504 controls</td>
<td>2,213</td>
</tr>
<tr>
<td>Stroke: All</td>
<td>MEGASTROKE</td>
<td>40,585 cases—406,111 controls</td>
<td>371</td>
</tr>
<tr>
<td>Stroke: Ischaemic</td>
<td>MEGASTROKE</td>
<td>34,217 cases—406,111 controls</td>
<td>307</td>
</tr>
<tr>
<td>Stroke: Small vessel</td>
<td>MEGASTROKE</td>
<td>5,386 cases—406,111 controls</td>
<td>0</td>
</tr>
<tr>
<td>Type 2 diabetes</td>
<td>DIAGRAM</td>
<td>26,676 cases—132,532 controls</td>
<td>1,788</td>
</tr>
</tbody>
</table>
Biobank and the GIANT consortium (Yengo et al., 2018). All results were corrected for multiple testing using the Benjamini Hochberg false discovery rate method (critical p-value = .0064). Differences between genetic correlations were assessed using block-jackknife (Supplementary Material) (B. Bulik-Sullivan et al., 2015; Quenouille, 1956; Tukey, 1958).

3 | RESULTS

3.1 | Summary of AAO

The total sample consisted of 40,940 cases, including 15,844 cases classified as early AAO, 15,800 cases as late AAO, 6296 general cases not included in AAO-specific analysis, and 67,532 controls. The mean AAO (SD) across samples was 32.36 (15.22) years. The mean AAO per study ranged from 21.22 to 37.23 years, with the German PGC-MDD samples, GS:SFHS and UK Biobank having a higher mean AAO (Table S1). Figure 1 shows the distribution of AAO and the stratification in the early and late AAO groups in each of the studies. Figure S1 shows the cumulative distribution of AAO in each study.

3.2 | Polygenic risk analysis of cardio-metabolic disease

The meta-analyses across studies showed that PRS for BMI, coronary artery disease, all stroke, ischaemic stroke, small vessel disease, and type 2 diabetes were significantly associated with MDD case control...
status (Figure 2, Table S2). Study specific results can be found in Table S3. When stratifying by AAO and comparing with controls, higher PRS for BMI was more strongly associated with late AAO \((OR = 1.07, 95\% CI = 1.06\ldots1.09, p = 4.10 \times 10^{-15}) \) than early AAO \((OR = 1.05, 95\% CI = 1.03\ldots1.07, p = 2.60 \times 10^{-7}) \), however, the difference between them was not significant (Figure 2). No significant difference was found between BMI PRS and late versus early AAO within MDD cases \((OR = 1.02, 95\% CI = 1.00\ldots1.05, p = .04) \). Higher PRS for CAD was associated with both late \((OR = 1.05, 95\% CI = 1.03\ldots1.07, p = 8.66 \times 10^{-7}) \) and early AAO \((OR = 1.05, 95\% CI = 1.03\ldots1.07, p = 1.50 \times 10^{-7}) \) compared with controls, while no significant difference was found between late and early AAO in MDD cases only \((OR = 1.00, 95\% CI = 0.97\ldots1.02, p = .776) \). Higher PRS for type 2 diabetes was associated with both late \((OR = 1.03, 95\% CI = 1.01\ldots1.05, p = .0006) \) and early AAO \((OR = 1.03, 95\% CI = 1.01\ldots1.05, p = .0004) \) AAO compared with controls, the association between late and early AAO in MDD cases only was nonsignificant \((OR = 1.00, 95\% CI = 0.97\ldots1.02, p = .82) \).

3.3 | Genetic correlations with cardio-metabolic traits

Genetic correlations were calculated between MDD and cardio-metabolic traits based on the largest available GWAS (Figure 3, Table S4). Significant genetic correlations were identified between MDD and BMI \((r_g = 0.13, SE = 0.02, p = 3.43 \times 10^{-11}) \), coronary artery disease \((r_g = 0.12, SE = 0.03, p = 8.47 \times 10^{-6}) \), and type 2 diabetes \((r_g = 0.11, SE = 0.03, p = .0001) \). The genetic correlation between ischaemic stroke and MDD was 0.10 \((SE = 0.04, p = .026) \), however this correlation did not survive the correction for multiple testing \((p < .0064) \). No significant genetic correlations were identified for all stroke and small vessel disease.

In order to calculate genetic correlations between the AAO stratified MDD traits and cardio-metabolic traits, we ran GWAS on the AAO stratified traits. Figure S3–S5 shows the Manhattan and QQ plots for these traits. Table S4 provides further detail on the heritability estimates of the stratified MDD traits. One genome-wide significant variant was identified in the GWAS for early AAO versus controls \((rs2789313 \text{ on chromosome 10, } Z\text{-score} = 5.56, p = 2.74 \times 10^{-8}) \). This variant is located in the MALRD1 gene, which is involved in hepatic bile acid metabolism and lipid homeostasis (Vergnes, Lee, Chin, Auwerx, & Reue, 2013). This gene has not previously been associated with depression. Figure S3 shows a locus zoom plot of the region on chromosome 10 including rs2789313. Tables S5–S7 provide summary statistics on all suggestive \((p < 1 \times 10^{-5}) \) variants for the stratified GWAS.

The results for the stratified AAO traits showed a significant genetic correlation between BMI and late AAO versus controls \((r_g = 0.19, SE = 0.04, p = 2.42 \times 10^{-5}) \), no significant genetic correlations were identified for either early AAO versus controls \((r_g = 0.05, SE = 0.03, p = .059) \) or late versus early AAO \((r_g = 0.11, SE = 0.05, p = .11) \).
A stronger genetic correlation was found between late AAO and CAD ($r_g = 0.19, \ SE = 0.06, \ p = .002$) compared with early AAO and CAD ($r_g = 0.11, \ SE = 0.04, \ p = .006$), however, the difference between the two genetic correlations was nonsignificant (block jackknife test for comparison of $r_g \ p = .227$). No significant genetic correlations were found between any of the AAO stratified MDD outcomes and all stroke, ischaemic stroke, small vessel disease, or type 2 diabetes (Figure 3, Table S4).

DISCUSSION

This study explored whether the association between MDD and cardio-metabolic traits is partly due to genetic factors. Using data from publicly available GWAS and from the PGC, UK Biobank, and Generation Scotland, we showed significant genetic overlap between MDD and BMI, coronary artery disease, and type 2 diabetes from PRS and genetic correlations.

Coronary artery disease and type 2 diabetes showed similar patterns of association. Both were associated with MDD in general and with late and early AAO, however, the association with late versus early AAO was null. This indicates that both traits are associated with MDD irrespective of the AAO, and not associated with AAO itself. The current study is based on an extension of the strategies applied by Power et al. (Power et al., 2017), who showed significant associations between polygenic risk for coronary artery disease and MDD, as well as with early and late onset MDD compared with controls. The results in the current study are based on a larger sample and more recent effect estimates for coronary artery disease, and have therefore greater power to detect an effect. A recent study by Khandaker et al. (2019) did not find a significant association between depression and coronary artery disease polygenic risk in UK Biobank. The effect sizes were similar to our study, but the depression phenotype was based on the definition as described by D. J. Smith, Nicholl, et al. (2013), and has lower heritability than the Mental Health Questionnaire phenotype used here (Cai et al., 2020; D. J. Smith, Nicholl, et al., 2013). This difference in results is likely due to power: based on the heritability, sample size, and disease prevalence, our study has 60% power to detect an association between depression and coronary artery disease, compared with 18% in Khandaker et al. (2019) (Dudbridge, 2013).

This is the first study to show genetic overlap between MDD and type 2 diabetes using both PRS and genetic correlations. Twin studies have previously shown genetic overlap between MDD and type 2 diabetes, but evidence from genetic studies has been weaker. The current study, however, does show evidence for a shared genetic etiology between MDD and type 2 diabetes based on both PRS and genetic correlations (Clarke et al., 2016; Kan et al., 2016; Wong et al., 2019).

The polygenic risk score analysis showed that individuals with a stronger genetic liability for stroke (and its subtypes) were more likely to suffer from MDD. Clinical and neuroimaging studies have shown that stroke could predispose the development of MDD by disrupting frontostriatal circuits in the brain involved in mood regulation (George S. Alexopoulos, 2017; Herrmann, Le Masurier, & Ebmeier, 2008; van Sloten et al., 2015), specifically in older individuals with MDD or those...
with a later AAO for MDD. We did not find a significant association between genetic risk for stroke and AAO. This could be due to a lack of power, as the stroke outcomes had low heritability estimates (observed $h^2 \sim 1\%$, Table S4B) and the sample size of the stratified MDD outcomes is smaller than the overall MDD case-control comparison.

When stratifying by AAO, higher polygenic risk for BMI was more strongly associated with late AAO than early AAO compared with controls, while a significant genetic correlation was only found between late AAO versus control and BMI. A causal association using Mendelian randomization has previously been identified between BMI and depression, showing a 1.12 fold increase in depression for each SD increase in BMI (Wray et al., 2018). Similarly, Vogelzangs et al. (Vogelzangs et al., 2010) have shown that over a 5 year period both overall and abdominal obesity were associated with an increased risk for MDD onset in men. Although the differences observed in this study are not significant following multiple testing correction, in the context of previous findings, they tentatively suggest that the etiological processes underlying later onset MDD are linked to vascular pathology and its risk factors such as obesity.

LD score regression produced fewer significant associations than the polygenic risk score analysis. Genetic correlations using LD score regression are based on summary statistics only and could therefore be less powerful than a polygenic risk score approach based on raw genotype data. However, the direction of effect was the same across both analysis approaches and significant genetic correlations were corroborated by significant polygenic risk score associations.

The current study has a number of limitations. The measures for AAO for MDD rely on self-report and are assessed differently across cohorts. We addressed this by stratifying AAO into octiles relative to the mean in each study, therefore assuming that each study recruited AAO from the same distribution with differences between studies due to differences in ascertainment measure. It should be noted that the mean AAO for late onset cases was 47.85 years, which is below what is generally considered to be late onset or geriatric depression (onset >60 years). More pronounced overlap might exist between late onset MDD and cardio-metabolic traits when focusing on cases with a later AAO, however this study only had a small number of these included. However, this study does show that the effect of genetic risk for somatic conditions on depression is not limited to late onset or geriatric depression. By standardizing the PRS in all models we have possibly introduced bias into our results. When the sample prevalence of a trait is not equal to the population prevalence, the mean of the PRS will not represent the mean of the PRS in the population, and thus introducing bias which could lead to inflated effect estimates.

Future studies could focus on the effects of medication or disease status for the cardio-metabolic traits, as the current study was unable to adjust for this due to lack of information on these variables. Pathway analysis might provide further insight into the biology underlying the association between cardio-metabolic traits and MDD. In order to further dissect the comorbidity between MDD and cardio-metabolic disease, it is imperative to have cleaner phenotypes, in particular with regard to AAO. Biobanks with electronic health records might aid in providing improved phenotyping, but this still does not provide the same information as one gets from clinical research studies.

In summary, this study showed genetic overlap between MDD and cardio-metabolic traits based on PRS and genetic correlations. These associations were largely irrespective of AAO for MDD, in particular for coronary artery disease and type 2 diabetes. The association with BMI showed some evidence for a stronger link with later onset MDD, however this finding needs to be replicated. Cardio-metabolic traits and its risk factors are to open to preventative strategies, therefore further understanding of the shared genetic etiology between cardio-metabolic traits and MDD could play an important role in the prevention or management of MDD.

AUTHOR CONTRIBUTIONS
Saskia P. Hagenaars, Cathryn M. Lewis designed the study, analyzed data, and interpreted the results. Jonathan R. I. Coleman, Shing Wan Choi, Hélèna Gaspar, Mark J. Adams, David Howard, Karen Hodgson, Matthew Taylor contributed to data quality control and analysis pipelines. All other authors contributed study materials. All authors critically revised the manuscript and approved the final version.

ACKNOWLEDGMENTS
S. P. H. is funded by the Medical Research Council (MR/S0151132). CML is funded by the Medical Research Council (N015746/1). This study presents independent research supported by the National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London. The views expressed are those of the author(s) and are not necessarily those of the NHS, the NIHR or the Department of Health and Social Care. We thank participants and scientists involved in making the UK Biobank resource available (http://www.ukbiobank.ac.uk/). UK Biobank data used in this study were obtained under approved application 16577. We are deeply indebted to the investigators who comprise the PGC, and to the hundreds of thousands of subjects who have shared their life experiences with PGC investigators. The PGC has received major funding from the US National Institute of Mental Health and the US National Institute of Drug Abuse (U01 MH109528 and U01 MH1095320). Statistical analyses were carried out on the NL Genetic Cluster Computer (http://www.geneticcluster.org/) hosted by SURFsara, and the King’s Health Partners High Performance Compute Cluster funded with capital equipment grants from the GSTT Charity (TR130505) and Maudsley Charity (980). We would like to thank the research participants and employees of 23andMe for making this work possible. Generation Scotland received core support from the Chief Scientist Office of the Scottish Government Health Directorates [CZD/16/6] and the Scottish Funding Council [HR03006]. Genotyping of the GS:SFHS samples was carried out by the Genetics Core Laboratory at the Wellcome Trust Clinical Research Facility, Edinburgh, Scotland and was funded by the Medical Research Council UK and the Wellcome Trust (Wellcome Trust Strategic Award “Stratifying Resilience and Depression Longitudinally” [STRADL] Reference 104036/Z/14/Z). Ethics approval for the Generation Scotland
was given by the NHS Tayside committee on research ethics (reference 15/ES/0040), and all participants provided written informed consent for the use of their data. The MEGASTROKE project received funding from sources specified at http://www.megastroke.org/acknowledgments.html. CM Lewis is a member of Myriad Neuroscience SAB. PF Sullivan is on the scientific advisory board for Pfizer, Inc., and the advisory committee for Lundbeck. All other authors reported no biomedical financial interest or potential conflicts of interest. The table below lists the funding that supported the primary studies analyzed in this article. In addition, PGC investigators received personal funding from the following sources. NR Wray award 1078901, 1087889, and 1113400, NHMRC, Australia. DI Boomsma award PAH/6635, KNAW Academy Professor Award, Netherlands. PF Sullivan award D0886501, Vetenskapsrådet, Sweden. AM McIntosh award 602450, European Union, UK; award BADIPS, NC3Rs, UK, C Hayward, Core funding, Medical Research Council, UK.

<table>
<thead>
<tr>
<th>Study</th>
<th>Lead investigator</th>
<th>Award number</th>
<th>Funder</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGC</td>
<td>PF Sullivan</td>
<td>U01 MH109528</td>
<td>NIMH USA</td>
<td></td>
</tr>
<tr>
<td>PGC</td>
<td>A Agrawal</td>
<td>U01 MH109532</td>
<td>NIDA USA</td>
<td></td>
</tr>
<tr>
<td>PGC</td>
<td>D Posthuma</td>
<td>480-05-003</td>
<td>Netherlands scientific organization</td>
<td>Netherlands</td>
</tr>
<tr>
<td>PGC</td>
<td>D Posthuma</td>
<td>–</td>
<td>Dutch Brain Foundation and the VU University Amsterdam</td>
<td>Netherlands</td>
</tr>
<tr>
<td>CoFaMS - Adelaide</td>
<td>BT Baune</td>
<td>APP1060524</td>
<td>NHMRC Australia</td>
<td></td>
</tr>
<tr>
<td>Generation Scotland</td>
<td>AM McIntosh</td>
<td>104036/Z/14/Z</td>
<td>Wellcome Trust UK</td>
<td></td>
</tr>
<tr>
<td>Münster MDD cohort</td>
<td>BT Baune</td>
<td>N Health-F2-2008-222963</td>
<td>European Union Germany</td>
<td></td>
</tr>
<tr>
<td>Münster MDD cohort</td>
<td>TG Schulze</td>
<td>01ZX1314K</td>
<td>BMBF IntegraMed Germany</td>
<td></td>
</tr>
<tr>
<td>Münster MDD cohort</td>
<td>TG Schulze</td>
<td>SCHU 1603/5-1</td>
<td>German Research Foundation (DFG)</td>
<td>Germany</td>
</tr>
<tr>
<td>Münster MDD cohort</td>
<td>U Dannlowski</td>
<td>FOR2107 DA1151/5-1; SFB- TRR58, Project C09</td>
<td>German Research Foundation (DFG)</td>
<td>Germany</td>
</tr>
<tr>
<td>Münster MDD cohort</td>
<td>U Dannlowski</td>
<td>Dan3/012/17</td>
<td>Interdisciplinary Center for Clinical Research, Medical Faculty of University of Münster</td>
<td>Germany</td>
</tr>
<tr>
<td>Münster MDD cohort</td>
<td>V Arolt</td>
<td>N Health-F2-2008-222,963</td>
<td>European Union Germany</td>
<td></td>
</tr>
<tr>
<td>NESDA</td>
<td>BWJH Penninx</td>
<td>ZonMW Geestkracht grant</td>
<td>N.W.O. Netherlands</td>
<td></td>
</tr>
<tr>
<td>NESDA</td>
<td>BJWH Penninx</td>
<td>1RC2 MH089995; 1RC2 MH089995</td>
<td>NIH USA</td>
<td></td>
</tr>
<tr>
<td>NTR</td>
<td>DI Boomsma</td>
<td>1RC2 MH089995; 1RC2 MH089995</td>
<td>NIH Netherlands</td>
<td></td>
</tr>
<tr>
<td>PsyColaus</td>
<td>M Preisig</td>
<td>3200BO-105993, 3200BO-118308, 33CSCO-122661, 33CS30-139468, 33CS30-148401</td>
<td>Swiss National Science Foundation Switzerland</td>
<td></td>
</tr>
<tr>
<td>QIMR</td>
<td>NG Martin</td>
<td>941177, 971232, 3399450 and 443011</td>
<td>National Health and Medical Research Council Australia</td>
<td></td>
</tr>
<tr>
<td>QIMR</td>
<td>AC Heath</td>
<td>AA07535, AA07728, andAA10249</td>
<td>NIAAA USA</td>
<td></td>
</tr>
<tr>
<td>RADIANT</td>
<td>C Lewis, GBreen</td>
<td>G0701420</td>
<td>MRC UK</td>
<td></td>
</tr>
<tr>
<td>RADIANT</td>
<td>GBreen</td>
<td>G0901245</td>
<td>MRC UK</td>
<td></td>
</tr>
<tr>
<td>RADIANT</td>
<td>GBreen</td>
<td>U01 MH109528</td>
<td>NIMH UK</td>
<td></td>
</tr>
<tr>
<td>STAR*D</td>
<td>SP Hamilton</td>
<td>R01 MH-072802</td>
<td>NIMH USA</td>
<td></td>
</tr>
<tr>
<td>UK Biobank</td>
<td>GBreen</td>
<td>–</td>
<td>NIHR UK</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

APPENDIX

Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium

1, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, AU.
2, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, AU.
3, Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, US.
4, Department of Psychiatry and Psychotherapy, Universitätsmedizin Berlin Campus Charité Mitte, Berlin, DE.
5, Medical and Population Genetics, Broad Institute, Cambridge, MA, US.
6, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, DE.
7, Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, SE.
8, Department of Biomedicine, Aarhus University, Aarhus, DK.
9, Dept of Biological Psychology & EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, NL.
10, Division of Psychiatry, University of Edinburgh, Edinburgh, GB.
11, Centre for Integrated Register-based Research, Aarhus University, Aarhus, DK.
12, National Centre for Register-Based Research, Aarhus University, Aarhus, DK.
13, IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, DK.
14, Discipline of Psychiatry, University of Adelaide, Adelaide, SA, AU.
15, Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, DE.
16, Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, DE.
17, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, US.
18, Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, DK.
19, Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, NL.
20, Virginia Institute for Psychiatric and Behavior Genetics, Richmond, VA, US.
21, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, US.
22, Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, SE.
23, Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, DK.
24, iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, DK.
25, Human Genetics, Wellcome Trust Sanger Institute, Cambridge, GB.
26, Statistical genomics and systems genetics, European Bioinformatics Institute (EMBL-EBI), Cambridge, GB.
27, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, CH.
28, Social, Genetic and Developmental Psychiatry Centre, King's College London, London, GB.
29, Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, AU.
30, Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, AU.
31, Psychological Medicine, Cardiff University, Cardiff, GB.
32, Center for Genomic and Computational Biology, Duke University, Durham, NC, US.
33, Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, US.
34, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, GB.
35, Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, DE.
36, Epidemiology, Erasmus MC, Rotterdam, Zuid-Holland, NL.
37, Psychiatry, Dokuz Eylul University School Of Medicine, Izmir, TR.
38, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, US.
39, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Boston, MA, US.
40, Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, US.
41, Neuroscience and Mental Health, Cardiff University, Cardiff, GB.
42, Bioinformatics, University of British Columbia, Vancouver, BC, CA.
43, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, US.
44, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, US.
45, Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden-Württemberg, DE.
46, Department of Psychiatry (UPK), University of Basel, Basel, CH.
47, Department of Biomedicine, University of Basel, Basel, CH.
48, Centre for Human Genetics, University of Marburg, Marburg, DE.
49, Department of Psychiatry, Trinity College Dublin, Dublin, IE.
50, Psychiatry & Behavioral Sciences, Johns Hopkins University, Baltimore, MD, US.
51, Bioinformatics Research Centre, Aarhus University, Aarhus, DK.
52, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, GB.
53, Danish Headache Centre, Department of Neurology, Rigshospitalet, Glostrup, DK.
54, Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Capital Region of Denmark, Copenhagen, DK.
55, IPSYCH, The Lundbeck Foundation Initiative for Psychiatric Research, Copenhagen, DK.
56, Brain and Mind Centre, University of Sydney, Sydney, NSW, AU.
57, Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine and Ernst Moritz Arndt University Greifswald, Greifswald, Mecklenburg-Vorpommern, DE.
58. Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, CH.
59. Max Planck Institute of Psychiatry, Munich, DE.
60. MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, GB.
61. Department of Psychological Medicine, University of Worcester, Worcester, GB.
62. Division of Research, Kaiser Permanente Northern California, Oakland, CA, US.
63. Psychiatry & The Behavioral Sciences, University of Southern California, Los Angeles, CA, US.
64. Department of Biomedical Informatics, Harvard Medical School, Boston, MA, US.
65. Department of Medicine, Brigham and Women’s Hospital, Boston, MA, US.
66. Informatics Program, Boston Children’s Hospital, Boston, MA, US.
67. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, GB.
68. Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital and University of Lausanne, Lausanne, VD, CH.
69. Swiss Institute of Bioinformatics, Lausanne, VD, CH.
70. Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, GB.
71. Mental Health, NHS 24, Glasgow, GB.
72. Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, DE.
73. Statistics, University of Oxford, Oxford, GB.
74. Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, US.
75. School of Psychology and Counseling, Queensland University of Technology, Brisbane, QLD, AU.
76. Child and Youth Mental Health Service, Children's Health Queensland Hospital and Health Service, South Brisbane, QLD, AU.
77. Child Health Research Centre, University of Queensland, Brisbane, QLD, AU.
78. Estonian Genome Center, University of Tartu, Tartu, EE.
79. Medical Genetics, University of British Columbia, Vancouver, BC, CA.
80. Statistics, University of British Columbia, Vancouver, BC, CA.
81. DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, DE.
82. Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, DE.
83. Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, AU.
84. Humus, Reykjavik, IS.
85. Virginia Institute for Psychiatric & Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, US.
86. Clinical Genetics, Vrije Universiteit Medical Center, Amsterdam, NL.
87. Complex Trait Genetics, Vrije Universiteit Amsterdam, Amsterdam, NL.
88. Solid Biosciences, Boston, MA, US.
89. Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, US.
90. Department of Biochemistry and Molecular Biology II, Institute of Neurosciences, Biomedical Research Center (CIBM), University of Granada, Granada, ES.
91. Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, NL.
92. Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University Munich, Munich, DE.
93. Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, Ludwig Maximilian University Munich, Munich, DE.
94. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, US.
95. Behavioral Health Services, Kaiser Permanente Washington, Seattle, WA, US.
96. Faculty of Medicine, Department of Psychiatry, University of Iceland, Reykjavik, IS.
97. School of Medicine and Dentistry, James Cook University, Townsville, QLD, AU.
98. Institute of Health and Wellbeing, University of Glasgow, Glasgow, GB.
99. deCODE Genetics/Amgen, Reykjavik, IS.
100. College of Biomedical and Life Sciences, Cardiff University, Cardiff, GB.
101. Institute of Epidemiology and Social Medicine, University of Münster, Münster, Nordrhein-Westfalen, DE.
102. Institute for Community Medicine, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, DE.
103. Department of Psychiatry, University of California, San Diego, San Diego, CA, US.
104. KG Jebsen Centre for Psychosis Research, Norway Division of Mental Health and Addiction, Oslo University Hospital, Oslo, NO.
105. Medical Genetics Section, CGEM, IGMM, University of Edinburgh, Edinburgh, GB.
106. Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, GB.
107. Internal Medicine, Erasmus MC, Rotterdam, Zuid-Holland, NL.
108. Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases Discovery & Translational Medicine Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, CH.
109. Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, DE.
110. Department of Psychiatry, Leiden University Medical Center, Leiden, NL.
111. Virginia Institute for Psychiatric & Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, US.

1 Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
2 Centre for Brain Research, Indian Institute of Science, Bangalore, India.
3 Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK.
4 INSERM U1219 Bordeaux Population Health Research Center, Bordeaux, France.
5 University of Bordeaux, Bordeaux, France.
6 Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
7 Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan.
8 Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan.
9 Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
10 Laboratory of Experimental Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands.
11 deCODE genetics/AMGEN inc, Reykjavik, Iceland.
12 Center for Genomic Medicine, Massachusetts General Hospital (MGH), Boston, MA, USA.
13 J. Philip Kistler Stroke Research Center, Department of Neurology, MGH, Boston, MA, USA.
14 Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
15 Population Health Research Institute, McMaster University, Hamilton, Canada.
16 Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands.
17 Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, Netherlands.
18 Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
19 Department of Clinical Sciences, Lund University, Malmö, Sweden.
20 Univ. Lille, Inserm, Institut Pasteur de Lille, LabEx DISTALZ-UMR1167, Risk factors and molecular determinants of aging-related diseases, F-59000 Lille, France.
21 Centre Hosp. Univ Lille, Epidemiology and Public Health Department, F-59000 Lille, France.
22 AA Martins Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
23 Cardiovascular Health Research Unit, Departments of Biostatistics and Medicine, University of Washington, Seattle, WA, USA.
24 Division of Neurology, Faculty of Medicine, Brain Research Center, University of British Columbia, Vancouver, Canada.
25 School of Life Science, University of Lincoln, Lincoln, UK.
26 Department of Cerebrovascular Diseases, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milano, Italy.

27 Department of Neurology, Mayo Clinic Rochester, Rochester, MN, USA.

28 MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.

29 The National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, UK.

30 Neurovascular Research Laboratory, Vall d'Hebron Institut de Research, Neurology and Medicine Departments-Universitat Autònoma de Barcelona, Vall d'Hebrón Hospital, Barcelona, Spain.

31 Stroke Pharmacogenomics and Genetics, Fundación Docència i Recerca MutuaTerrassa, Terrassa, Spain.

32 Children's Research Institute, Children's National Medical Center, Washington, DC, USA.

33 Center for Translational Science, George Washington University, Washington, DC, USA.

34 Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA.

35 Harvard Medical School, Boston, MA, USA.

36 Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA.

37 Department of Neurology, University of Maryland School of Medicine and Baltimore VAMC, Baltimore, MD, USA.

38 Departments of Medicine, Pediatrics and Population Health Science, University of Mississippi Medical Center, Jackson, MS, USA.

39 Institute of Cardiovascular Research, Royal Holloway University of London, UK & Ashford and St Peters Hospital, Surrey UK.

40 Department of Psychiatry, The Hope Center Program on Protein Aggregation and Neurodegeneration (HPAN), Washington University, School of Medicine, St. Louis, MO, USA.

41 Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.

42 NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.

43 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.

44 British Heart Foundation, Cambridge Centre of Excellence, Department of Medicine, University of Cambridge, Cambridge, UK.

45 Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands.

46 Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands.

47 Boston University School of Public Health, Boston, MA, USA.

48 Framingham Heart Study, Framingham, MA, USA.

49 Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.

50 Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.

51 Department of Neurology and Stroke Center, Basel University Hospital, Switzerland.

52 Neurorehabilitation Unit, University and University Center for Medicine of Aging and Rehabilitation Basel, Felix Platter Hospital, Basel, Switzerland.

53 Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.

54 Program in Medical and Population Genetics, The Broad Institute of Harvard and MIT, Cambridge, MA, USA.

55 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

56 Neuroscience Institute, SF Medical Center, Trenton, NJ, USA.

57 Icelandic Heart Association Research Institute, Kopavogur, Iceland.

58 University of Iceland, Faculty of Medicine, Reykjavik, Iceland.

59 Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.

60 Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.

61 Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.

63 National Institute for Health and Welfare, Helsinki, Finland.

64 FIMM - Institute for Molecular Medicine Finland, Helsinki, Finland.

65 Department of Epidemiology, University of Washington, Seattle, WA, USA.

66 Public Health Stream, Hunter Medical Research Institute, New Lambton, Australia.

67 Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia.

68 School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA.

69 Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA.

70 Aflac Cancer and Blood Disorder Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.

71 Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, CA, USA.

72 Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.

73 Epidemiology, School of Public Health, University of Alabama at Birmingham, USA.

74 Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.

75 Neurovascular Research Group (NEUVAS), Neurology Department, Institut Hospital del Mar d'Investigació Médica, Universitat Autònoma de Barcelona, Barcelona, Spain.

76 Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, College of Pharmacy, Gainesville, FL, USA.
128 University Medicine Greifswald, Department of Neurology, Greifswald, Germany.
129 Department of Neurology, Jagiellonian University, Krakow, Poland.
130 Department of Neurology, Justus Liebig University, Giessen, Germany.
131 Department of Clinical Neurosciences/Neurology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
132 Sahlgrenska University Hospital, Gothenburg, Sweden.
133 Stroke Division, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, Australia.
134 Austin Health, Department of Neurology, Heidelberg, Australia.
135 Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands.
136 INSERM U1219, Bordeaux, France.
137 Department of Public Health, Bordeaux University Hospital, Bordeaux, France.
138 Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center Rotterdam, Netherlands.
139 Center for Medical Systems Biology, Leiden, Netherlands.
140 School of Medicine, Dentistry and Nursing at the University of Glasgow, Glasgow, UK.
141 Department of Epidemiology and Population Health, Albert Einstein College of Medicine, NY, USA.
142 Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.
143 A full list of members and affiliations appears in the Supplementary Note.
144 Department of Human Genetics, McGill University, Montreal, Canada.
145 Department of Pathophysiology, Institute of Biomedicine and Translation Medicine, University of Tartu, Tartu, Estonia.
146 Department of Cardiac Surgery, Tartu University Hospital, Tartu, Estonia.
147 Clinical Gene Networks AB, Stockholm, Sweden.
148 Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology Icahn School of Medicine at Mount Sinai, New York, NY, USA.
149 Department of Pathophysiology, Institute of Biomedicine and Translation Medicine, University of Tartu, Biomeedikum, Tartu, Estonia.
150 Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden.
151 Clinical Gene Networks AB, Stockholm, Sweden.
152 Sorbonne Universités, UPMC Univ. Paris 06, INSERM, UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris, France.
153 ICAN Institute for Cardiometabolism and Nutrition, Paris, France.
154 Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
155 Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA.
156 Seattle Epidemiologic Research and Information Center, VA Office of Research and Development, Seattle, WA, USA.
157 Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
158 Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway.
159 Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.
160 National Heart and Lung Institute, Imperial College London, London, UK.
161 Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.
162 Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.
163 Department of Cardiology, University Medical Center Groningen, University of Groningen, Netherlands.
164 MRC-PHE Centre for Environment and Health, School of Public Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK.
165 Department of Epidemiology and Biostatistics, Imperial College London, London, UK.
166 Department of Cardiology, Ealing Hospital NHS Trust, Southall, UK.
167 National Heart, Lung and Blood Research Institute, Division of Intramural Research, Population Sciences Branch, Framingham, MA, USA.
168 A full list of members and affiliations appears at the end of the manuscript.
169 Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
170 Oklahoma Center for Neuroscience, Oklahoma City, OK, USA.
171 Department of Pathology and Genetics, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
172 Department of Neurology, Helsinki University Hospital, Helsinki, Finland.
173 Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland.
174 Department of Neurology, University of Washington, Seattle, WA, USA.
175 Albrecht Kossel Institute, University Clinic of Rostock, Rostock, Germany.
176 Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
177 Department of Genetics, Perelman School of Medicine, University of Pennsylvania, PA, USA.
178 Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
179 Departments of Neurology and Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA.
180 Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
181 Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA.
182 Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
183 Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
184 German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
185 Boston University School of Medicine, Boston, MA, USA.
186 University of Kentucky College of Public Health, Lexington, KY, USA.
187 University of Newcastle and Hunter Medical Research Institute, New Lambton, Australia.
188 Univ. Montpellier, Inserm, U1061, Montpellier, France.
189 Centre for Research in Environmental Epidemiology, Barcelona, Spain.
190 Department of Neurology, Università degli Studi di Perugia, Umbria, Italy.
191 Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
192 Broad Institute, Cambridge, MA, USA.
193 Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France.
194 Bordeaux University Hospital, Department of Neurology, Memory Clinic, Bordeaux, France.
195 Neuovascular Research Laboratory, Vall d’Hebron Institut of Research, Neurology and Medicine Departments-Universitat Autònoma de Barcelona. Vall d’Hebrón Hospital, Barcelona, Spain.
196 University Medicine Greifswald, Department of Internal Medicine B, Greifswald, Germany.
197 DZHk, Greifswald, Germany.
198 Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK.
199 Hero DMC Heart Institute, Dayanand Medical College & Hospital, Ludhiana, India.
200 Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
201 Karolinska Institutet, Stockholm, Sweden.
202 Division of Emergency Medicine, and Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
203 Tohoku Medical Megabank Organization, Sendai, Japan.
204 Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
205 Department of Public Health and Caring Sciences / Geriatrics, Uppsala University, Uppsala, Sweden.
206 Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan.
207 Department of Internal Medicine and the Center for Clinical and Translational Science, The Ohio State University, Columbus, OH, USA.
208 Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Goteborg, Sweden.
209 Department of Basic and Clinical Neurosciences, King’s College London, London, UK.
210 Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, Japan.
211 Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan.
212 Landspitali National University Hospital, Departments of Neurology & Radiology, Reykjavik, Iceland.
213 Department of Neurology, Heidelberg University Hospital, Germany.
214 Department of Neurology, Erasmus University Medical Center.
215 Hospital Universitari Mutua Terrassa, Terrassa (Barcelona), Spain.
216 Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY, USA.
217 John Hunter Hospital, Hunter Medical Research Institute and University of Newcastle, Newcastle, NSW, Australia.
218 Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, UK.
219 Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
220 Genetic and Genomic Epidemiology Unit, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
221 The Wellcome Trust Centre for Human Genetics, Oxford, UK.
222 Beth Israel Deaconess Medical Center, Boston, MA, USA.
223 Wake Forest School of Medicine, Wake Forest, NC, USA.
224 Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
225 BioBank Japan, Laboratory of Clinical Sequencing, Department of Computational biology and medical Sciences, Graduate school of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
226 Neurovascular Research Laboratory, Vall d’Hebron Institut of Research, Neurology and Medicine Departments-Universitat Autònoma de Barcelona. Vall d’Hebrón Hospital, Barcelona, Spain.
227 Department of Biostatistics, University of Liverpool, Liverpool, UK.
228 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
229 Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuhérlberg, Germany.
230 Department of Medicine I, Ludwig-Maximilians-Universität, Munich, Germany.
231 DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
232 Department of Cerebrovascular Diseases, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milano, Italy.
233 Karolinska Institutet, MEB, Stockholm, Sweden.
234 University of Tartu, Estonian Genome Center, Tartu, Estonia.
235 Department of Clinical and Experimental Sciences, Neurology Clinic, University of Brescia, Italy.
236 Translational Genomics Unit, Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy.
237 Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain.
238 Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addictions, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain.
239 Department of Neurology, IMIM-Hospital del Mar, and Universitat Autònoma de Barcelona, Spain.
240 IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
241 National Institute for Health Research Comprehensive Biomedical Research Centre, Guy’s & St. Thomas’ NHS Foundation Trust and King’s College London, London, UK.
242 Division of Health and Social Care Research, King’s College London, London, UK.
243 FIMM-Institute for Molecular Medicine Finland, Helsinki, Finland.
244 THL-National Institute for Health and Welfare, Helsinki, Finland.
245 Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan.
246 BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, Glasgow, UK.
247 deCODE Genetics/Amgen, Inc., Reykjavik, Iceland.
248 Icelandic Heart Association, Reykjavik, Iceland.
249 Institute of Biomedicine, the Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden.
250 Department of Epidemiology, University of Maryland School of Medicine, Baltimore, MD, USA.
251 Institute of Cardiovascular and Medical Sciences, Faculty of Medicine, University of Glasgow, Glasgow, UK.
252 Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Germany.
253 Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan.
254 Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
255 University Medicine Greifswald, Institute for Community Medicine, SHIP-KEF, Greifswald, Germany.
256 Department of Neurology, Caen University Hospital, Caen, France.
257 University of Caen Normandy, Caen, France.
258 Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands.
259 Landspitali University Hospital, Reykjavik, Iceland.
260 Survey Research Center, University of Michigan, Ann Arbor, MI, USA.
261 University of Virginia Department of Neurology, Charlottesville, VA, USA.