
 
 

 

Supplementary Figure 1 

Density of distances between CpG sites and the most strongly associated meQTL SNP. 

Density plot of the distances between the 139,566 CpGs harboring a cis-meQTL and the most strongly associated SNP. Most SNP–
CpG pairs are in close proximity (median distance = 10 kb), as indicated by the narrow peak around zero. 
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Supplementary Figure 2 

Relationship between methylation variation and meQTL-associated CpGs. 

The proportion of CpGs harboring an identified trans-meQTL increases with increasing variability in DNA methylation. The proportion of 
CpGs with evidence of a trans-meQTL is calculated per decile of variability in methylation (x axis). 
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Supplementary Figure 3 

Characterization of cis-meQTLs. 

(a) The number of cis-meQTLs found is strongly dependent on the variability in DNA methylation at a CpG site. Variances for 405,709 
CpGs interrogated in the analyses were calculated using the 3,841 samples for which 450K data were available. Next, the CpGs were 
divided into deciles and the number of effects was counted for each decile. The different stacked colors correspond to primary, 
secondary, etc., effects. (b) The proportion of variance explained remains limited, even for highly variable CpG sites. The x axis shows 
the variances calculated for the 405,709 CpGs interrogated. The y axis shows the proportion of that variance explained by our identified 
cis-meQTLs. The limited proportion of variance explained, even for highly variable probes, suggests that increased statistical power 
contributes to but does not fully explain the increased number of cis-meQTLs identified. (c) DNA methylation variability differs across 
genomic contexts. Each line represents the proportion of the 405,709 CpGs used present in each genomic region. This clearly shows 
that some CpGs on the array are over-represented in certain genomic contexts. For example, weakly variable CpGs (0–10%) are over-
represented in CpG islands. This may confound any enrichment analyses if variability in DNA methylation is influencing the likelihood of 
a given CpG harboring a meQTL. (d) DNA methylation variability seems to be the driving factor for identifying cis-meQTLs, even within 
genomic contexts. Each line again represents a distinct genomic context. (e) Reported enrichments of cis-meQTL effects for certain 
genomic contexts are strongly attenuated after accounting for the differential variability in DNA methylation between those genomic 
regions. Gray bars show uncorrected odds ratios. Blue bars show odds ratios corrected for methylation variability and the distance to 
the nearest SNP. 
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Supplementary Figure 4 

Characterization of cis-eQTMs in relation to the direction of the eQTM effect. 

Over-representation of positive (blue bars) and negative (red bars) e-CpGs in CpG islands and predicted chromatin states. The x axis 
shows this over-representation in terms of odds ratios and error bars (95% confidence intervals). e-CpGs with negative associations are 
over-represented in active regions (for example, active TSSs and enhancers), whereas e-CpGs with positive associations are often 
found in repressed regions (for example, quiescent regions). CGI, CpG island; TssA, active TSS; TssAFlnk, flanking active TSS; 

TxFlnk, transcribed at gene 5  or 3  end; Tx, strong transcription; TxWk, weak transcription; EnhG, genic enhancer; Enh, enhancer; 

ZNF/Rpts, ZNF genes and repeats; Het, heterochromatin; TssBiv, bivalent/poised TSS; BivFlnk, flanking bivalent TSS/enhancer; 
EnhBiv: bivalent enhancer. 
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Supplementary Figure 5 

Trans-meQTLs identified for a risk factor for inflammatory bowel disease, rs11190140, and the overlap with NKX2-3. 

(a) Depiction of the NKX2-3 gene and rs11190140, associated with inflammatory bowel disease. The plot shows increased expression 
of NKX2-3 for the T risk allele. (b) In addition to influencing NKX2-3 expression, rs11190140 also influences DNA methylation at 228 
CpGs in trans, decreasing methylation levels at 81.1% of the affected CpG sites (red). In addition, many of the CpG sites overlap with 
NKX2-1 and NKX2-5 motifs (there is no NKX2-3 motif or ChIP–seq data available). (c) Gene network of the genes associated with 15 of 
the 228 CpGs (6.6%) with a trans-meQTL: blue, cis-eQTL-affected gene; red, genes associated both in methylation and expression. 
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Supplementary Figure 6 

Trans-meQTLs identified for a risk factor for height, rs6763931, and the overlap with ZBTB38. 

(a) Depiction of the ZBTB38 gene and rs6763931, associated with height. The plot shows increased expression of ZBTB38 for the T 
risk allele. (b) In addition to influencing ZBTB38 expression, rs6763931 also influences DNA methylation at 267 CpGs in trans, 
decreasing methylation levels at 99.2% of the affected CpG sites (red). In addition, depletion of overlap with H3K27me3 is observed 
(7.4-fold depletion, P = 3.8 × 10

–28
), shown in the outer chart. (c) Gene network of the genes associated with 60 of the 779 CpGs 

(7.7%) with a trans-meQTL: blue, cis-eQTL effected gene; red, genes associated both in methylation and expression. 
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Supplementary Figure 7 

Trans-meQTLs identified for a risk factor related to lung carcinoma, rs7216064, and overlap with BPTF. 

(a) Depiction of the BPTF gene and rs7216064, associated with lung carcinoma. (b) rs7216064 influences DNA methylation at 64 CpGs 
in trans, decreasing methylation levels at 82.8% of the affected CpG sites (red). In addition, many of the CpG sites (81.3%) overlap with 
CTCF-binding sites (16.8-fold enrichment, P = 5.1 × 10

–25
), shown in the outer chart. 
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Supplementary note 

Supplementary Results 

Trans-meQTL stability 

To ascertain stability our trans-meQTLs, we performed a replication analysis in a the set of 1,748 

lymphocyte samples18: of the 18,764 overlapping trans-meQTLs between the datasets that could be 

tested, 94.9% had a consistent allelic direction (Figure 1E). 12,098 trans-meQTLs were nominally 

significant (unadjusted P < 0.05), of which 99.87% had a consistent allelic direction. This indicates that 

the identified trans-meQTLs are robust and not caused by differences in cell-type composition 

(Supplementary Table 4).  

To further exclude the possibility of confounding by cellular heterogeneity, we performed our trans-

meQTL mapping on uncorrected methylation data and data corrected for known cell type proportions 

(Neutrophil, Lymphocyte, Monocyte, Eosinophil and Basophil percentage). These analyses led to 

significantly less trans-meQTLs (17,704 and 19,625, respectively) (SupplementaryTable 5,6), suggesting 

cellular heterogeneity does not confound our results. Of the 17,704 trans-meQTLs that are identified in 

the uncorrected data 82% are shared with the final trans-meQTL mapping, all in the same allelic 

direction. For the 19,625 trans-meQTLs we identified after correcting for cell-type information, 80% of 

the trans-meQTLs are shared with the final trans-meQTL analysis, again all in the same allelic direction. 

Furthermore, trans-meQTL mapping only using SNPs known to influence cell proportions1,2 in blood 

revealed that most of these SNPs have no or very few trans-meQTLs, whereas widespread trans-meQTL 

effects were to be expected if our analysis had not properly controlled for blood cell composition 

(SupplementaryTable 7). 153 of these 261 SNPs affect a single CpG site in trans only, thus contrasting 

the reviewer's prediction. The SNP (rs9932319, reported to be affecting kir+ NK cells) that is affecting 
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methylation in trans most (altering 486 CpG sites) maps in close proximity to the CTCF transcription 

factor. Since the trans-meQTL CpG sites are strongly enriched for CTCF binding, we conclude that these 

trans-meQTLs are true positives and not false-positive findings due to differences in cell-type 

proportions. 

Lastly, we linked our GWAS SNPs to the SNPs known to influence cell proportions and found that only 

0.6% of the GWAS SNPs are in high LD with SNPs known to influence cell proportions. 
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