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Empirical Application of IV-CLPM: Smoking and Alcohol Use 

In this empirical example, we analyzed data from the Netherlands Twin Register (NTR; 

Ligthart et al., 2019) to examine the causal influences between smoking status and alcohol 

consumption (drinks per week) using both the CLPM and the IV-CLPM models. In the latter 

model, we used relevant genetic variants as the IV for either trait. In the current analyses, we 

included genotyped European-ancestry adult individuals with two waves of survey data: adult 

NTR (ANTR) Survey 8 (collected in 2009) and ANTR Survey 10 (collected in 2012). These two 

surveys are hereafter referred to as waves 1 and 2, respectively. To avoid the clustering of study 

participants within families, we selected one individual per family for the current analyses. Thus, 

we analyzed data from 4,895 individuals, consisting of 1,745 males and 3,150 females (self-

reported gender, matched with biological sex inferred from the genotype).  

 

Genotyping 

NTR DNA samples included in the current project were genotyped on 3 SNP microarray 

platforms, namely Affymetrix 6.0 (N= 1984), Affymetrix Axiom (N= 311), and Illumina GSA 

NTR array (N= 2600). Genotype calling was done following the manufacturer’s protocols and 

white papers. For each platform, DNA samples were QCed using PLINK (Purcell et al., 2007) 

based on the following: 

i. A mismatch between self-reported and biological sex inferred from genotype. 

ii. Heterozygosity (F-values between -0.10 and 0.10 considered acceptable). 

iii. A mismatch between identity-by-descent (IBD) estimated in Plink and the degree of 

relatedness expected from the known pedigree. 

iv. Sample call rate, with each sample required to have at least 90% of the total SNPs 

genotyped, plus at least 80% of the SNPs on each chromosome (chr 1-22 and X) 

successfully genotyped.  

SNP QC was based on the following filters (applied separately to each platform): call rate 

>95%, Hardy-Weinberg Exact (HWE) test p-value > 0.0001, minor allele frequency (MAF) > 

0.01, and Mendelian error rate <1%. In addition, based on several plate control samples in 

Affymetrix 6 (n=4 typed 38-84 times) and Axiom (n=2 typed 33-37 times), SNPs were removed 

if the genotypes differed more than 1% between these multiple measurements. 
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As the genotyped data were to be imputed against the European (EUR) super-population 

of the 1000 Genomes Project Phase-3 (KGP3; Auton et al., 2015), the HRC 1.1 (Haplotype 

Reference Consortium, 2016; Ega version), and the GoNL (Genome of the Netherlands 

Consortium, 2014) reference panels, the genotyped SNPs were aligned to the positive strand of 

Genome Reference Consortium Human Build 37 (GRCh37) as follows. A combined reference 

map was first generated based on the SNPs overlapping in the three reference panels, with MAF 

being less than 0.20 apart across the three reference panels. Then, across the three reference 

panels, the (𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑀𝐴𝐹 + 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑀𝐴𝐹)/2 allele frequency (Fr) was calculated for 

each SNP. This Fr value was then used to select the SNPs in the NTR if the MAF in the NTR 

was within +/-0.10 of Fr. Finally, we removed palindromic SNPs with an allele frequency of 

0.40-0.60. 

After this alignment of the genotypic data to an external reference panel, the three 

genotyping platforms are also inherently aligned with each other. Therefore, at this point, the 

data of the three platforms were merged into a single dataset, and based on the overlapping 

SNPs, IBD was rechecked against the known family structure (now across platforms). Invalid 

NTR samples (controls), withdrawn consents, and overlapping samples across the three arrays 

were removed.  

After these QC steps, the current analytic sample (N = 4,895) comprised 1,984 

individuals with 534,405 SNPs on Axiom, 311 individuals with 537,992 SNPs on Affymetrix 6.0 

and 2,600 individuals with 481898 SNPs on Illumina GSA.  

 

Imputation  

Before imputation, for each of the three genotype platforms, the SNP name and reference 

allele were aligned for the three reference panels, and data were converted to VCF format with 

PLINK. The data were then imputed against the KGP v5, GONL, HRCega, and HRCega+GONL 

reference panels. Since GPDR restricts us from using imputation servers, the HRC panel of the 

Ega Sanger website was used. This panel misses the Sardinia, Gecco, and GONL cohorts. We re-

added the GONL cohort, selecting only samples present on all chromosomes for both references, 

renaming SNP names to HRC, and filtering SNPs with minor allele count (MAC) >5 following 

the procedures described in Haplotype Reference Consortium (2016). After imputation with the 

Beagle 5.4 software (Browning et al., 2018), the resulting VCF data of the three platforms were 
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merged into single chromosome sets 1-22 plus X using BCFtools (Li, 2011) for each reference 

panel. With QCtool version 2.20 (https://www.well.ox.ac.uk/~gav/qctool_v2/), these data were 

then converted to BGEN format, as well as best guess genotypes using PLINK1.9 (Chang et al., 

2015).  

 

Principal Components Analysis 

Twenty KGP3 principal components (PCs) for the genotype data were calculated using 

the SmartPCA tool in the EIGENSTRAT software (Price et al., 2006). For the principal 

components analysis (PCA), we selected the genotyped SNPs that passed QC present in one of 

the three platforms from the KGP3 imputed data (as the overlap between platforms is too small 

to take only genotyped SNPs). These SNPs were then filtered to have MAF >0.05, HWE p 

>0.001, call rate >0.98, Mendelian error rate < 1%, and imputation info >=90%. These SNPs 

were subsequently pruned with PLINK (option –indep 50 5 2), and SNPs in long-range LD 

blocks were removed (Price et al., 2008). This left 110,558 SNPs for analysis. From the 1KGP3 

reference panel, all samples with the same SNPs were selected and then merged with the NTR 

data. Subsequently, PCs were calculated in the KGP3 subset and then projected upon the NTR 

data with the SmartPCA software. 

 

Polygenic Scoring 

In this study, we used the results from large-scale European-ancestry GWAS meta-

analyses of “smoking initiation” and “drinks per week” (Saunders et al., 2022), excluding the 

NTR from the GWAS meta-analysis, to derive polygenic scores associated with the smoking 

status and drinks per week, respectively, in the NTR.  

For polygenic scoring, we used the NTR data imputed to the HRC+GONL reference 

panel. Before scoring, a post-imputation SNP QC selection was employed. This included the 

following SNP filters: MAF >0.01, HWE p >0.00001, Mendel error rate < 1%, and genotype call 

rate over 98%. This selection was made on the merged best-guess three-platform data. 

Furthermore, the imputation info for the three platforms needed to be above 0.10, and the allele 

frequency between platforms after imputation could not differ more than 2%. This left 7,551,860 

SNPs for analysis. Since the GWAS summary statistics are based on KGP3 instead of HRC, we 

made an NTR reference map to rename SNP IDs back to their respective KGP3 IDs. 

https://www.well.ox.ac.uk/~gav/qctool_v2/
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The PGSs were calculated using LDpred v0.9 (Vilhjálmsson et al., 2015). For estimating 

the target LD (linkage disequilibrium) structure, we (1) used a selection of unrelated individuals 

in the NTR sample and (2) selected a set of well-imputed variants in the NTR sample. The 

parameter ld_radius was set by dividing the number of variants in common (from the output 

of the coordination step) by 12000. Note that for the coordination step, we provided the median 

sample size as the input value for N. For the LDpred step, we applied the following thresholds 

for the fraction of variants with non-zero effects (in addition to the default infinitesimal model): 

--PS=0.5,0.3,0.2,0.1,0.05,0.01.  

To determine the LDPred threshold that yielded the PGS with the highest predictive 

power for our outcome variable of interest, we estimated incremental R-squared using a two-step 

process. We first fitted a null regression model with a standard set of covariates comprising age, 

sex, SNP microarray platform, and the first ten genetic PCs (without including a PGS). Then, we 

fitted a full model with a particular PGS as an additional independent variable. The difference in 

the R-squared estimates of the two models provided the variance in the outcome variable 

explained by the PGS (controlling for the covariates). For the ordinal variable of smoking status, 

we fitted ordinal logistic regression models (using the polr function in the MASS package 

(Venables & Ripley, 2002) in R (R Core Team, 2021), and estimated the associated R-squared 

on the liability scale (Lee et al., 2012). For either outcome variable (smoking status and drinks 

per week), the PGS with the highest incremental R-squared was retained for further analyses. 

Accordingly, the PGSs used in the IV-CLPM model were based on a threshold of 0.3 for 

smoking status and 0.1 for drinks per week. Both PGSs were residualized for the SNP 

microarray platform and the first ten genetic PCs, and the residuals were then standardized to 

have a mean of zero and S.D. of one. 

 

.  
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