Genetics of cognition: an international collaborative twin study

Australia: Nick Martin¹, Gina Geffen⁴, Laurie Geffen⁴, Narelle Hansell^{1, 4}, Glen Smith⁶, Michelle Luciano¹, Margie Wright¹ The Netherlands: Dorret Boomsma², Elles Mulder², Caroline Van Baal², Danielle Posthuma², Jessica Hebly², Eco de Geus² Japan: Juko Ando³, Yutaka Ono³, Kai Hiraishi⁵, Toshikazu Hasegawa⁵, Shigenobu Kanba⁷, Akira Miyake⁸

Correlation

-0.36

-0.38

-0.28

-0.33

0.31

0.37

0.25

Country

Netherlands

Australia

Netherlands

Australia

Japan

Japan

Australia

¹Queensland Inst Medical Research, Brisbane, Australia; ²Dept Biological Psychology, Free Univ, Amsterdam, The Netherlands; ³Faculty of Letters, Keio Univ, Tokyo, Japan; ⁴Cognitive Psychophysiology Lab, Psychiatry, Univ Queensland, Brisbane, Australia; ⁵Dept of Life Sciences (Psychology), Univ of Tokyo, Japan; ⁴School of Psychology, Univ of Queensland, Brisbane, Australia;⁷Yamanashi Medical Univ, Tokyo, Japan; ⁸Dept of Psychology, Univ of Colorado, Boulder, USA

Aims

- 1) To characterize the etiology of variation in human cognitive abilities as indexed by psychometric IQ
- 2) To determine the association of IQ, processing speed and working memory
- 3) To establish the basis of this association in terms of shared genetic or shared environmental factors

Method

Genetic epidemiological approach using monozygotic (MZ: 100% genetically identical) and dizygotic twins (DZ) and their siblings (both groups 50% genetically identical)

Participants

Twin families from The Netherlands (771 Ss), Australia (1012 Ss), Japan (606 Ss)

Phenotypic assessment

	Netherlands	Australia	Japan
Psychometric IQ	WAIS: - verbal (5) - performance (4)	MAB - verbal (3) - performance (2) WAIS-R subtests Adult Reading Tests	WAIS - verbal (2) - performance (2) Ravens' matrices Japanese IQ Test
Processing speed	Reaction times: - simple & choice - inspection time	Reaction times: -choice -inspection time	Reaction times: - choice - inspection time
	EEG: - alpha peak (DR) - P3 latency (oddball) - LRP (Flanker task)	EEG: - alpha peak (DR)	
Working memory	 DR task *: performance measures and EEG (EEG slow wave, power, coherence, (de-) synchronisation) Sternberg digit span Japan: spatial and verbal storage and executive tests 		

LRP= Lateralized Readiness Potential

*DR task =delayed response task during memory and sensory condition

Results

12

10

0

2

2H/7

For nearly all phenotypes resemblances in MZ twins were higher than in DZ twins, indicating the importance of genetic factors

Example: EEG power spectra in an MZ and a DZ twin pair (alpha peak frequency)

Bivariate correlations of processing speed and working memory with IQ

Simple reaction time

Choice reaction time

Spatial memory span

Spatial executive

DR performance

Inspection time

Inspection time

	35 5 2.5 1 5 1 5 0 2 6 10 14 18 22 Hz
--	--

Proportion of variance explained by genetic and unique environmental factors

All correlations significant at .01 level (1-tailed); DR=delayed response

Conclusions

Domain

Speed

Working

Memory

Processing

The contribution of genotypic differences to IQ variance is large (80%)

Heritability of processing speed and working memory performance is lower (40-80%)

We found significant associations between IQ, processing speed and working memory indices

Bivariate genetic analyses indicate that both the association of IQ and processing speed, and of IQ and working memory is due to shared genes rather than shared