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Abstract

We examine some of the genetic features of neuroticism (N) taking as an animal model the
Maudsley Reactive (MR) and Maudsley Nonreactive (MNR) rat strains which were selectively
bred, respectively, for high and low open-field defecation (OFD) starting in the late 1950s. To
draw analogies with human genetic studies, we explore the genetic correlation of N with
irritable bowel syndrome (IBS).We review progress with the rat model and developments in the
field of human complex trait genetics, including genetic association studies that relate to current
understanding of the genetics of N. The widespread differences in the tone of the peripheral
sympathetic nervous system that have been found between the Maudsley strains, particularly
those observed in the colon, may underly the differences in OFD (MNR, higher sympathetic
tone and zero defecation). In humans, a large genome-wide association study (GWAS) reported
six genes contributing to IBS, four of which were implicated in mood and anxiety disorders or
were expressed in the brain, with three of the four also expressed in the nerve fibers and ganglia
of the gut. Heritability of N is estimated at around 50% in twin and family studies, and GWASs
identified hundreds of loci, enabling estimation of genome-wide correlations (rg) with other
traits. Significantly, the estimate for rg between risk of IBS, anxiety, N, and depression was >0.5
and suggested genetic pleiotropy without evidence for causal mechanisms. Findings on the
adrenergic pharmacology of the colon, coupled with new understanding of the role of the
locus ceruleus in modifying afferent information from this organ, generate hypotheses that
challenge traditional cause/effect notions about the relationship of the central nervous system to
peripheral events in response to stress, suggest specific targets for gene action in the Maudsley
model and emphasize the value of reciprocal evaluation of genetic architecture underlying N in
rodents and humans.

Modeling a human personality dimension from a behavior genetic perspective in 1960 was a
challenging endeavor as twin and family studies tended to be small, molecular approaches were
not yet possible, and at the phenotypic level trait dimensions in personality were incompletely
defined and their psychophysiological foundation only starting to emerge. In this review, we
discuss progress toward genetic modeling of neuroticism (N), a major trait to emerge in nearly
all descriptions and theories of personality, whether they are based on a lexical approach (Franic,
Borsboom, Dolan, & Boomsma, 2014) or developed more from a biological perspective such as
Eysenck’s three-factor model of personality (Eysenck, 1967) assessed by the Eysenck Personality
Questionnaire (EPQ), Gray’s reinforcement sensitivity theory (Gray & McNaughton, 2000), or
Cloninger’s four-dimensional personality model (Cloninger, Svakic, & Przybeck, 1993).

Eysenck’s formulation of personality in the 1950s contributed to the development of the
Maudsley strains as an animal model of N, which was sometimes referred to as emotionality at
the time.While the term “emotionality”was usedmore broadly in animalmodels, “neuroticism”
gained further adherence in human literature, particularly after its adoption by the Big Five
model of personality. In accordance with recent trends and the general idea that N reflects a type
of negative emotionality (Widiger & Oltmanns, 2017), we will use the term N with occasional
reference to emotionality in animal studies.

The selection of a rat model for exploration of the human personality dimension of N was
guided by pragmatic considerations: as an omnivorous mammal, this species possesses many
physiological and neurological systems in common with humans, especially those that influence
the autonomic nervous system; an enormous literature, dating back more than 100 years,
documents its physiology and behavior; it is a species whose husbandry is understood and for
which institutional resources have been developed. Creating a genetic model enabled other
researchers across different disciplines to focus relatively easily on the same biological variations
by breeding the strains in their own laboratories.

Undoubtedly, there is a wide range of techniques at our disposal to investigate the
involvement of genes in the various facets of human personality. Of particular interest is the N
trait, largely due to its robust link to anxiety, depression, and other psychiatric disorders
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(Widiger & Oltmanns, 2017). Reviews by de Castro Gomes et al.
(2013) and Sartori, Landgraf, and Singewald (2011) illustrate,
respectively, in rats and mice, the diversity of models available for
study of anxiety and stress-related behaviors. In some cases,
selection has been applied to behavioral variation in tests of
timidity (Fujita, Annen, & Kitaoka, 1994); in others, the discovery
of differences in a key test between existing inbred strains has led to
those strains being proposed as a relevant model. Tests involving
response to electric shock, such as active avoidance conditioning,
have also been used to differentiate strains and develop relevant
models (Fernandez-Teruel et al., 2021). With the development of
methods to manipulate single genes in mice, models have also been
created to focus on the role of specific genes in the behavior in
question.

One advantage of the Maudsley model, shared with some other
strains (Fernandez-Teruel et al., 2021; Fujita et al., 1994), is the
existence of a large database, comparing the strains on diverse
biobehavioral traits. An important disadvantage, when considering
use of most, if not all, rat models is their lack of availability from
commercial sources.

In rodent studies, emotionality is often indexed by open-field
activity and open-field defecation (OFD), and gene-mapping
studies confirmed the genetic correlation (Blizard & Bailey, 1979)
between the two (Turri, Datta, DeFries, Henderson, & Flint, 2001).
Broadhurst (1960) opted for an index based on OFD, which
putatively reflected both central nervous system (CNS) and
peripheral physiological function and successfully established the
Maudsley Reactive (MR) and Nonreactive (MNR) rat strains,
which showed a clear separation after only a few generations of
selection (Figure 1). Here, we first describe the development of
these strains followed by distinctions between them that are
relevant to current work. We then move to discuss human genetic
studies of N and the genetic associations of N with irritable bowel
syndrome (IBS). We finish by highlighting how recent studies may
provide a context for new applications of the Maudsley strains.

1. Development of the strains; propagation of stocks

Broadhurst (1960) developed the Maudsley strains at the Animal
Psychology Laboratory of the University of London’s Institute of
Psychiatry in Beckenham, Kent, following an earlier successful
genetic selection experiment by Calvin Hall, initiated in the 1930s
(described in Hall, 1951). Broadhurst selected for high and low
defecation in a brightly illuminated arena accompanied by white
noise as an acoustic stimulus by breedingmale and female rats with
the highest OFD scores (MR strain) and, conversely, those with the
lowest scores (MNR strain) for 15 generations. After discontinuing
selection at Generation 15, he retested the strains at Generation 20
and found the differences in OFD had been maintained
(Broadhurst, 1962). The strains have been inbred by brother/
sister mating to fix key loci in the homozygous state. It was
noteworthy that the primary deviation from the foundation
population mean OFD score was in the direction of decreased
defecation and that it was achieved within a few generations.
Analyses of data for the first five generations ofMNR rats could not
reject the hypothesis of involvement of a major gene in the OFD
response to selection (Liang, 1978, personal communication). The
strains were exported to the National Institutes of Health in
Bethesda, Maryland, and to the University of Northern Iowa
(Harrington, 1981). Responding to concern that OFD scores of
MNR rats of the North American stocks had increased
(Harrington, 1972), strain differences in OFD were found to

resemble those typical of English stocks when they were
maintained under similar conditions to those in use at the
Animal Psychology Laboratory in England (Harrington & Blizard
1983), a result consistent with the idea that the genetic variants
underlying OFD in the strains were fixed. Cryopreserved embryos
from sublines of the strains (MR/Har/Bliz and MNRA/Har/Bliz
and from theMR/N strain from the former NIH colony) are kept at
the University of Missouri Rat Resource Center in Columbia,
Missouri (https://www.rrrc.us), and can be rederived as necessary.

2. Validation of selection criterion

Broadhurst relied on Calvin Hall’s earlier attempts (Hall, 1934,
1951) to validate OFD as a measure of emotionality and provided
additional support of his own in unselected Wistar rats
(Broadhurst, 1957a, 1957b, 1958). In humans, gastrointestinal
(GI) discomfort (both diarrhea and constipation) accompanies
anxiety and stress. Broadhurst also chose to cite the excretory
reactions of humans in warfare (Stouffer et al., 1949) to support the
relevance of this physiological system to human stress response
(Broadhurst, 1960). Thus, OFD in rodents as a measure of
mammalian reactivity to stress is plausible both from the
perspective of experimental approaches in laboratory rats and
from observations in humans during everyday life and when under
extreme stress.

Cross-species relevance of elements of the open-field test
should be considered in evaluating its appropriateness for the
development of a model system. The very bright illumination in
the open-field test is a plausible stressor when considering the
photophobic nature of the rat but response to bright lights is not at
the forefront of discussions of human N. More generally, Archer
(1973, 1975) argued that, rather than representing a unitary
dimension (as conceptualized in humans), rat emotionality is
better conceived as a range of expressive behavioral patterns
displayed in a situation-specific manner. From this perspective,
selection on a single criterion such as OFD might not capture the
full range of emotionality in rats.

3. Behavioral and neurochemical differences in strains

Two reviews summarized the many behavioral comparisons of the
strains that were conducted in England and suggested that the
results were consistent with the idea that MR rats have greater
stress reactivity (see later discussion of this characterization) than
MNR (see tabular presentation of these results in Broadhurst, 1975;
Eysenck & Broadhurst, 1964). Later behavioral research (reviewed
in Blizard & Adams, 2002) tested the strains in social contexts
including agonistic behavior. Resident MR males were observed
attacking intruders introduced into a home cage or a small colony
and attacking familiar colony mates more often than MNR males
across these settings. Differences in social behavior between the
strains may emerge in early life: when weanlings were tested for
emergence from their nest box while either a strange male or the
rat’s mother was confined at the center of their home cage, MRs of
both sexes were quicker to emerge and were more active near the
strange male compared to MNRs, whereas both strains uniformly
emerged and made contact when their mother was the stimulus
animal. This latter test was unique in presenting a social test
stimulus in a familiar setting.

Blizard (1981, 1989) and Blizard and Adams (2002) reviewed
later research of primarily North American stocks, focusing more
on the physiological and neurochemical basis of emotionality as
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represented in the central and peripheral sympathetic nervous
system. In part, these findings cohere with the idea that genetic
selection for OFD in the Maudsley model has affected both the
central noradrenergic system where MNRs exhibit greater
sustained cerulear response to chronic stress (Blizard, Freedman,
& Liang, 1983) and the peripheral noradrenergic system where
MNRs possess increased sympathetic tone in many organs
(Blizard, Altman, & Freedman, 1982; Liang & Blizard, 1978;
Slater, Blizard, & Pohorecky, 1977).

4. Interpretive issues underlying behavioral comparisons

The large number of behavioral comparisons of the strains referred
to above consisted, for the most part, of screening the two strains
on standard behavioral tests without exploration of the specific
mechanisms as to why strain differences occurred. For example,
MNR rats were found to perform escape avoidance conditioning
more efficiently than MR rats, and this was interpreted to imply
that the putatively greater fear/emotionality of MR rats impaired
their acquisition of the task. Nevertheless, protocols used for
avoidance conditioning vary widely: for example, shock intensity
imposed, nature of the conditioned stimulus, including its
duration, physical parameters inside the conditioning chamber,
etc., can interact with characteristics of the tested subjects to
enhance or obscure group differences. If the Maudsley strains
differed in pain thresholds, or in activity levels in the chambers
before conditioning trials commenced, would such differences
affect interpretation of any strain differences that emerged during
conditioning? This concern is especially cogent given the lack of
replication of the strain difference in active avoidance conditioning
by Harrington (1979) and others (for discussion, see Blizard and
Adams, 2002).

Pertinent questions can be asked of many of the other tests in
whichMR/MNR differences were found.More generally, the use of
electric shock in several of the relevant test situations introduced a
stimulus that is not ecologically relevant to the rat. To a large
extent, this concern is met by introducing social stressors as a
complement to or even as a substitute for some of the existing
traditional stress stimuli (Adams & Blizard, 1987; Blanchard et al.,
1994; Martinez, Calvo-Torrent, & Pico-Alfonso, 1998). Clearly,
there is face validity for evolutionarily meaningful social contexts
where defeat or low social status may correspond to lowering of

reproductive success (Adams & Boice, 1983; Blanchard,
McKittrick, & Blanchard, 2001).

Differences in stress reactivity were invoked earlier to account
for differences between the strains. Activation of the hypotha-
lamic-pitutitary-adrenal (HPA) axis is commonly used as an index
of stress, and the Maudsley strains have not been found to differ in
adrenocorticotropic hormone (ACTH)/corticosterone response to
painful stimuli (Blizard, Eldridge, & Jones, 2015). It would be
helpful to characterize the stress dimension more specifically when
considering behavioral outcomes so as to be able to predict the
direction of differences between groups before a test is
administered rather than in a post hoc manner.

Aside from the results of standardized behavioral testing, a
notable difference between the strains was observed during routine
handling; MNR rats were more tractable, had lower muscle tone,
and were flaccid, often hanging limply when held gently by the
shoulders and neck. In contrast, MRs tended to struggle and resist
handling (Blizard, personal communication, 1990).

5. Peripheral sympathetic nervous system and
emotionality

Research conducted on North American stocks of the Maudsley
rats showed that, under resting conditions, MNR rats had
substantially higher concentrations of norepinephrine (NE) in
peripheral organs than MR rats (e.g., Blizard, et al., 1982; Liang &
Blizard, 1978; Slater et al., 1977), and one interpretation of these
differences is that MNR rats’ organs are under tonic peripheral
sympathetic stimulation. A corollary of this finding is that, when
stressed, there is the potential for greater efflux of NE onto organs
of MNR rats. In the colon, such an event would have the potential
to relax smooth muscle and inhibit colonic motility and is
consistent with MNR rats’ behavior when placed in the open-field
test (defecation scores are effectively zero). Additional strain
differences in GI processing have been reported, which must be
considered in developing an appropriate understanding of how
genetic selection has impacted this system in the strains. For
example, following mild food deprivation, after being fed a small
meal in their home cage, MNR rats excrete more fecal boli thanMR
rats, the opposite of the strain difference that occurs in the open-
field test (Blizard, 1989, personal communication). Thus,
neurological or neurochemical systems favoring increased GI
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Figure 1. Redrawn from Broadhurst (1960). The effects of genetic selection combined with inbreeding on open-field defecation scores in the Maudsley Reactive and Nonreactive
rat strains. Selection was discontinued at Generation 15 and animals were retested in Generation 20. The phenotypic differences between the strains were maintained.
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and/or colonic motility under basal conditions may have also been
selected in MNR rats. Furthermore, the cited changes in the
peripheral sympathetic nervous system, brought about by genetic
selection, have the potential to account for strain differences in
emotionality without positing primary variations in the CNS.

Another incidental observation was that the eyes of the MNR
rats were much more prominent than those of MR rats, a larger
amount of the eyeball could be seen (Blizard, 1987, personal
communication). If this was the result of sympathetic overstimu-
lation of upper eyelid retractor muscles, as is typical in patients
suffering from Graves disease, it would be consistent with the
increased sympathetic tone in MNR rats noted above.

6. Central noradrenergic system and emotionality

MNR rats showed greater sustained tyrosine hydroxylase elevation
in the locus ceruleus (LC), following chronic stress than MR rats
(Blizard et al., 1983), and opened the possibility that an important
central noradrenergic nucleus might have been the focus of genetic
selection (Blizard, 1988). Intriguingly, an earlier attempt to explore
the neurological basis of anxiety (Gray & McNaughton, 2000)
emphasized the potential role of the dorsal noradrenergic bundle
(DANB) in the medial septal-hippocampal inhibition system in
anxiety. Stimulation of hippocampal theta rhythm from electrodes
implanted in the medial septum has a frequency-specific relation-
ship to current driving intensity, with a minimum at 7.7 Hz in
outbred male rats, which is lacking in putatively less emotional
female rats and MNR rats. MRs, on the other hand, resemble
unselected outbred rats with a minimum at 7.7 Hz. Administration
of antianxiety drugs and depletion of DANB noradrenaline
content by neurochemically specific toxins also abolished the
frequency-specific minimum at 7.7 Hz in unselected rats. The
DANB originates in the LC, so the discovery of differences in the
magnitude of strain-specific changes in response to chronic stress
in this locus in theMaudsleymodel is an intriguing correlation that
draws attention to the need for further examination of the central
noradrenergic system in these strains. The LC projects to many
areas of the forebrain and group differences in its biosynthetic
capacity may have important functional implications in its
terminal regions. Understanding of the LC and its role in
neurophysiological and behavioral response has changed consid-
erably since the findings described above were reported. At that
time, an idea promoted by Amaral and Sinnamon (1977), that
activation of the LC improved signal-to-noise ratio in its terminal
regions, was influential. On the other hand, this was a hypothesis
relevant to the neurophysiological dimension and was not
necessarily easy to translate into specific behavioral outcomes.
More recent approaches (Poe et al., 2020) emphasize the discrete
role of ascending projections from the LC, and none of these have
been related to the manifold behavioral differences between the
two strains. Later, we discuss recent work on the role of descending
projections of the LC on colonic function.

7. Human colon function and rodent models

As noted, the differences in OFD between the Maudsley strains are
associated with variation in colonic function under resting
conditions and correlated with alterations in the peripheral
sympathetic nervous system. IBS in humans represents a variety of
functional GI disorders in which stress and personality factors have
often been implicated, and exploration of mechanisms underlying
these associations has revealed new insights into a biological

mechanism via which genetic selection for OFD may have been
achieved. Recently, Kurahashi’s laboratory (Kurahashi et al.,
2020a, 2020b) has provided evidence of the existence of two α1
adrenergic receptors (α1A and α1D) in mouse and human colon,
which have opposing effects on colonic muscle. Specifically, α1D
receptors located on smooth muscle cells (SMC) of mouse and
human colon resulted in contraction of colonic muscle when
exposed to 1 μm NE, while α1A receptors, located on PDGFRαþ
cells, inhibited SMC cells via the AR-SK signaling pathway when
exposed to 10 μmNE. Alpha1 receptors in rat colon could represent
the substrate uponwhich the altered levels of NE existing in colonic
tissues (Blizard et al., 1982) of the two strains could exert their
effect. Thus, the higher levels of NE in tissues of MNR rats released
onto α1A receptors in the colon during stress could diminish the
amplitude of colonic contractions and reduce or prevent OFD.
Conversely, in nonstress situations, such as the home cage, release
of lower or basal levels of NE could stimulate colonic contractility
via α1D receptors and result in the higher fecal output following a
meal in MNR rats (described earlier). The suggested role of α1
receptors in human and mouse colon is a novel finding discovered
by investigators chiefly interested in IBS. We hypothesize that
alterations in sympathetic tone, such as we have suggested to exist
in the Maudsley model, could interact with these receptors to
produce these functional disorders. Aside from presynaptic
influences, the possibility exists that genetic selection for OFD
may have also assorted different densities of colonic α1 receptors or
different colonic receptor types in the two strains.

Earlier, differences in the function of the LC between the
Maudsley strains were discussed in relation to their potential
impact on the CNS and their role in strain differences in behavior.
New insight into the role of descending projections of the LC on
autonomic function has recently been reported. Kong et al. (2023),
studying C57BL/6J mice, found that stimulation of a projection of
the LC to the rostral ventromedial medulla has an hyperalgesic
effect on nociceptive input from the descending colon and rectum.
Previous research had shown that stimulation of direct projections
from the LC to the dorsal horn had an opposite analgesic effect in
response to colorectal distention in rats (Liu, Tsuruoka, Maeda,
Hayashi, & Inoue, 2007). These results show that the LC plays an
important role in influencing afferent information from a key
organ (colon) in GI processing. More generally, the discovery of
important relationships between the LC and the colon provides an
important focus for exploration of the relationship between the
central and peripheral nervous systems in the Maudsley model.

8. IBS, personality, and genetics

In human genetic studies, there is a developing literature on the
relationship of IBS to personality in which the contribution of
genetics has been examined: Eijsbouts et al. (2021) conducted
genome-wide analyses of 40 548 people with IBS from the UK
Biobank and 12 852 from the Bellygenes initiative (a worldwide
study aiming to identify genes linked to IBS) and compared them
to 433 201 controls from the UK Biobank. They identified six
susceptibility loci, which were replicated in a 23andMe panel of
approximately four times as many cases and controls. Four of the
loci were also associated with mood and anxiety disorders or were
expressed in the nervous system. Specifically, there were significant
genome-wide correlations between risk of IBS, anxiety, N, and
depression of 0.5 or higher. In contrast, genetic correlations with
other psychiatric disorders were substantially lower. The pre-
dominant conception of the relationship between IBS and anxiety
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is that the latter “causes” abdominal symptoms. However,
Eijsbouts et al. conducted additional analyses to explore the role
of shared genetic risk versus other conceptual models. They
removed participants with anxiety from the IBS GWAS and
removed participants with IBS from the GWAS for anxiety. The
genetic correlation between IBS and anxiety remained and was
estimated at 0.31 (SE= 0.06). Bidirectional Mendelian randomi-
zation and other analyses also showed that anxiety or depression
and IBS are the results of shared etiologic pathways rather than one
causing the other. Applying the same logic to the Maudsley model,
it is possible that any influence of genetic selection on brain and
behavior reflects the effect of the same genes that altered the
peripheral sympathetic nervous system, not because one caused the
other, as implied by the choice of the selection criterion, but
because they are separate outcomes of the same neural pathways
acting in the brain and the periphery.

Future research on IBS focused on specific mechanisms,
regardless of their location in the body, will have to be conducted in
a manner that recognizes the strongly held view (Mayer, Ryu, &
Bhatt, 2023) that this functional disorder must be investigated and
treated using a multidimensional approach that encompasses
multiple biological mechanisms as well as attention to environ-
mental factors.

9. Heritability of neuroticism trait in humans

Large-scale studies of the N dimension have provided more precise
estimates of its heritability. N is a heritable trait in humans with a
broad-sense heritability of 48% based on ameta-analysis of six twin
cohorts (total N 29 496 twin pairs; van den Berg et al., 2014) and
confirmed by pedigree analyses (Boomsma et al., 2018) as well as
literature reviews (Sanchez-Roige, Gray, MacKillop, Chen, &
Palmer, 2017). Vukasović and Bratko (2015) noted the higher
heritability estimates in twin studies (47%) compared to family and
adoption studies (22%) and attributed these differences to
nonadditive genetic effects, which contribute to resemblances of
twins and full siblings, but not to resemblance of nearly all other
relatives.

Large-scale studies have also enhanced our understanding of
the N dimension by providing analyses of its relationship to other
personality dimensions, based on GWAS results. Exemplary of this
trend are the findings of a comprehensive analysis which examined
the relationship of the Big Five personality dimensions to
loneliness (Abdellaoui et al., 2019a) in more than 29 000 twins
and their family members. All personality traits were correlated
with loneliness, but only N showed a significant relationship to
loneliness (r= 0.50) after correcting for the remaining four
personality traits. Loneliness has an estimated heritability of
42% (Distel et al., 2010). In the study of Abdellaoui et al. (2019a),
single-nucleotide polymorphisms (SNPs) data were available in
~4000 subjects. From the molecular data, it was estimated that the
SNP (i.e., narrow-sense) heritability was 22% for N and 14% for
loneliness. Narrow-sense heritability, of course, is particularly
important when considering selection experiments because it is the
magnitude of the narrow-sense heritability that gauges the additive
genetic variance which selection can assort. A genetic correlation
between these traits was estimated at .71, and second larger study
(Abdellaoui et al., 2019b) confirmed this estimate (rg= 0.69). N’s
correlation with loneliness draws attention to the social milieu for
the expression of this dimension and underlines the potential
significance of studies of social behavior in the Maudsley strains
referred to earlier.

10. GWAS studies of neuroticism

Research in humans has led to multiple discoveries of regions in
the genome that are implicated in N. Inspired initially by the
seminal paper by Flint et al. (1995) that demonstrated the
feasibility of identifying quantitative trait loci (QTLs; regions in the
genome influencing quantitative phenotypes or traits) in mice for
complex traits such as anxiety, linkage studies of N were
undertaken (e.g., Wray, Kemper, Hayes, Goddard, & Visscher,
2008), as well as candidate gene studies that, for example, exploited
the known synteny between mouse and human loci to screen the
human genome for loci identified in mice (Fullerton et al., 2008).
The initial enthusiasm for linkage studies in humans diminished
rapidly when power simulations for complex traits were carried out
based on realistic effect sizes. Likewise, candidate gene studies did
not prove a fruitful approach. For example, QTLs for major
depressive disorder discovered in genome-wide studies do not
generally confirm the significance of candidate genes (e.g., Bosker
et al., 2011). Breakthroughs in genotyping technology enabled
screening large numbers of participants for SNPs and genome-
wide association studies became feasible, leading to several projects
on N. Van der Walt, Campbell, Stein, and Dalvie (2023) identified
32 GWASs of anxiety disorders, nondiagnostic anxiety traits, and
N that reported 563 independently significant variants, with 29
replicated nominally in independent samples and three replicated
significantly. In considering the low replication rate, van der Walt
et al. reached the sobering conclusion that future GWAS
investigations would need to increase sample sizes into the
millions. We took their supplementary report for N based on eight
meta-analyses of GWAS studies, the first one published in 2015
and the most recent one in 2019 (Baselmans et al., 2019; de Moor
et al., 2015; Kim et al., 2017; Lo et al., 2017; Luciano et al., 2018;
Nagel et al., 2018; Okbay et al., 2016; Smith et al., 2016). Figure 2
summarizes these genome-wide significant results for N and
plotted the total number of hits for each chromosome (Fig. 2A) and
the proportion of hits per chromosome (Fig. 2B). Generally, the
larger chromosomes (chromosome length is included under the X-
axis) tend to have a larger number of significant hits, with some
notable exceptions for chromosomes 8 and 18. The genes coding
for the receptors relevant to contraction and relaxation of colonic
muscle mentioned earlier do not align with any of the GWAS
regions in Figure 2B.

11. Developments in rat behavioral genetics

When Broadhurst conducted his selection experiment, the
laboratory rat was the animal of choice in most psychology
departments. During the course of the molecular revolution, most
studies focused on the mouse because it was the traditional
organism of choice for mammalian genetic studies, and inves-
tigators interested in behavior genetics accordingly switched their
focus to that species. Nevertheless, the enormous literature on rat
behavior remains a huge resource and has stimulated develop-
ments in rat genetics. In one mapping study, investigators studied
F2 offspring of a cross between two rat lines selected for differences
in sensation-seeking behavior. Relevant to the present interest in
defecation response, they identified a statistically significant locus
on rat chromosome 18 for frequency of defecation in the open field
(Chitre et al., 2022). Another study (Munro et al., 2022) has
mapped regulatory genes affecting expression of genes in five brain
regions using genetically heterogeneous rats derived from a cross
of eight strains originating in the former NIH colony. These results
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Figure 2. Based on Supplement Table 3 in van der Walt et al. (2023). X-axis: chromosome number and length of chromosome (number of base pairs, corresponding to https://
www.ncbi.nlm.nih.gov/grc/human/data). Y-axis: 2A: number of hits on each chromosome is a sum of hits on each chr from Sup Table 3. 2B: proportion of hits per chromosome.
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from the Palmer laboratory are available online at RatGTEx.org
where expression data for individual genes as well as expression
QTLs can be accessed. These developments in genetics will be an
important resource for future investigations of rat models of
human personality dimensions.

12. Conclusions

After its initial conception and development, the Maudsley model
became an object of fascination in its own right. More and more
comparisons were made between the strains, each one appearing to
add to the presumptive validity of the model. On the other hand,
the findings were seldom held up as a window to elucidate the
human dimension of N. Obviously, disciplinary specialization
made this difficult for both animal and human researchers. It is
now time to use the model for its original purpose. In this brief
review, we have tried to show that a bidirectional process of
exchange between the animal model and the human dimension of
N can be productive.We have focused attention on the relationship
between the respective roles of the central and peripheral nervous
systems in emotional behavior in the animal model and raised
questions about simplistic notions of cause and effect that can be
fruitfully applied when considering the N dimension. Seeing
phenomena through a genetic lens also provides an excellent
means of promoting animal/human exchanges, and this is
facilitated by the extraordinary advances in understanding and
analysis of the mammalian genome. This process of exchange
needs to be strengthened (see also e.g., Cacioppo et al., 2015). Some
exciting developments also include genetic prediction across
species (Wray et al., 2019). This issue of Personality Neuroscience is
an important attempt to promote this kind of interaction so that
future progress is achieved via a more inclusive process.
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