
1

Edited by: 
Mariza De Andrade, 

Mayo Clinic, United States

Reviewed by: 
Paola Sebastiani, 

Boston University, United States 
Hongfang Liu, 

Mayo Clinic, United States

*Correspondence: 
Justin M. Luningham 
jluningham@gsu.edu  

Dorret I. Boomsma 
di.boomsma@vu.nl

†Present Address:  
Justin M. Luningham, 

 School of Public Health, Georgia 
State University, Atlanta, GA, 

United States

Specialty section: 
This article was submitted to 

 Statistical Genetics 
and Methodology, 

 a section of the journal 
 Frontiers in Genetics

Received: 04 October 2018
Accepted: 05 November 2019
Published: 10 December 2019

Citation: 
Luningham JM, McArtor DB, 

Hendriks AM, van Beijsterveldt CEM, 
Lichtenstein P, Lundström S, 

Larsson H, Bartels M, Boomsma DI 
and Lubke GH (2019) Data 

Integration Methods for Phenotype 
Harmonization in Multi-Cohort 

Genome-Wide Association Studies 
With Behavioral Outcomes. 

 Front. Genet. 10:1227. 
 doi: 10.3389/fgene.2019.01227

Data Integration Methods for 
Phenotype Harmonization in Multi-
Cohort Genome-Wide Association 
Studies With Behavioral Outcomes
Justin M. Luningham 1*†, Daniel B. McArtor 1, Anne M. Hendriks 2,3,  
Catharina E. M. van Beijsterveldt 2,3, Paul Lichtenstein 4, Sebastian Lundström 5,  
Henrik Larsson 4,6, Meike Bartels 2,3,7, Dorret I. Boomsma 2,3,7* and Gitta H. Lubke 1

1 Department of Psychology, University of Notre Dame, Notre Dame, IN, United States, 2 Netherlands Twin Register, 
Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands, 3 Faculty of Behavioural and 
Movement Sciences, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands, 
4 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden, 5 Gillberg Neuropsychiatry 
Centre, University of Gothenburg, Gothenburg, Sweden, 6 School of Medical Sciences, Örebro University, Örebro, Sweden, 
7 Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands

Parallel meta-analysis is a popular approach for increasing the power to detect genetic 
effects in genome-wide association studies across multiple cohorts. Consortia studying 
the genetics of behavioral phenotypes are oftentimes faced with systematic differences 
in phenotype measurement across cohorts, introducing heterogeneity into the meta-
analysis and reducing statistical power. This study investigated integrative data analysis 
(IDA) as an approach for jointly modeling the phenotype across multiple datasets. We 
put forth a bi-factor integration model (BFIM) that provides a single common phenotype 
score and accounts for sources of study-specific variability in the phenotype. In order 
to capitalize on this modeling strategy, a phenotype reference panel was utilized as a 
supplemental sample with complete data on all behavioral measures. A simulation study 
showed that a mega-analysis of genetic variant effects in a BFIM were more powerful 
than meta-analysis of genetic effects on a cohort-specific sum score of items. Saving 
the factor scores from the BFIM and using those as the outcome in meta-analysis was 
also more powerful than the sum score in most simulation conditions, but a small degree 
of bias was introduced by this approach. The reference panel was necessary to realize 
these power gains. An empirical demonstration used the BFIM to harmonize aggression 
scores in 9-year old children across the Netherlands Twin Register and the Child and 
Adolescent Twin Study in Sweden, providing a template for application of the BFIM to 
a range of different phenotypes. A supplemental data collection in the Netherlands Twin 
Register served as a reference panel for phenotype modeling across both cohorts. Our 
results indicate that model-based harmonization for the study of complex traits is a useful 
step within genetic consortia.
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InTrODUCTIOn
Multi-study consortia and large-scale meta-analyses are 
the status quo for genome-wide analyses of complex traits 
(Evangelou and Ioannidis, 2013; Pedersen et al., 2013; Reitveld 
et al., 2014). Combining data from different studies presents 
an additional challenge when behavioral, psychological, or 
other complex phenotypes have been measured by different 
means across the studies. The most practical and widely used 
phenotype scoring approach is forming a sum or mean score of 
the available measures in each cohort (Wray et al., 2007; Bath 
et al., 2010; Pappa et al., 2016). However, sum scores overlook 
the systematic measurement differences that are brought about 
by different questionnaires. Sum scores of different item sets 
may not capture the same aspects of the behavior, so their use 
introduces phenotypic heterogeneity and reduces power in 
genome-wide association studies (GWAS; van den Berg et al., 
2014). The current paper utilizes an integrative data analysis 
(IDA) framework for phenotype harmonization that can 
provide benefits for consortium-based GWAS meta-analyses 
by improving precision in phenotype measurement (Curran 
and Hussong, 2009). To quantify these benefits, we conduct 
a simulation study to assess the power to detect the effect of a 
genetic variant on a behavioral outcome that is modeled by IDA-
based phenotype harmonization. In addition, we illustrate the 
IDA approach to harmonizing behavioral phenotypes.

IDA is a broad framework that holds great potential for 
improving the phenotype measure in GWAS meta-analyses 
because it is essentially model-based phenotype harmonization. 
The IDA framework allows researchers to adjust for measurement 
differences across studies, which is usually not possible when 
conducting meta-analyses of summary statistics. The common 
practice of forming sum scores of questionnaire scales is based on 
the often implicit assumption that the individual items available 
in each cohort measure the same phenotype across studies, which 
rarely holds in studies of complex behavioral outcomes. Different 
sets of items usually evaluate different aspects of a behavioral 
phenotype; and there are often measurement differences across 
countries or cultures, age groups, or different raters (Hudziak 
et al., 2003; Bartels et al., 2007; Jak, 2017). Typical approaches to 
phenotype harmonization, such as collapsing or rescaling response 
categories, are not sufficient when there are substantial differences 
underlying phenotype measurement (Gatz et al., 2015).

Phenotype precision has been demonstrated to improve 
statistical power and precision for genetic association tests. 
For example, removing poor measurement items can reduce 
heterogeneity in the phenotype, thereby increasing the signal 
associated with genetic variants (Laurin et al., 2015). In a 
different study, Xu et al. (2015) showed that fitting a complex 
psychometric model to mental health data led to larger single-
nucleotide polymorphism (SNP) effects than performing a 
GWAS on a sum of mental health items. The study suggested that 
psychometric models more accurately reflect complex traits than 
the sum score, which ignores possible multidimensional subtypes 
of a trait. Indeed, simulations have shown that accounting for 
multidimensionality of a behavioral outcome with latent trait 
models can increase power in a GWAS compared to a sum 

score (van der Sluis et al., 2010). An additional advantage of 
psychometrically harmonizing behavioral phenotypes lies in 
the fact that, for many behaviors, subtypes of a given trait can 
have different levels of heritability (Ligthart et al., 2005; Yeh 
et al., 2010). This indicates that different SNPs may be acting on 
the different trait subtypes. Therefore, a single phenotype score 
ignoring dimensionality muddies strong genetic signals with 
weak or non-existent ones, resulting in less overall power than 
would be present if a subtype were accurately scored.

In IDA, item- or subscale-level data from different consortium 
partners are concatenated into one dataset. Psychometric 
modeling (Cattell, 1952; Lawley and Maxwell, 1963) allows items 
from different cohorts to contribute differentially to the scoring of 
the underlying trait which represents the phenotype and has the 
same metric across cohorts. The advantage of IDA is the flexibility 
to adjust for measurement differences in the measurement 
model specification such as rater, sex, and/or cohort differences. 
An inherent challenge of IDA is that combining the item-level 
data from different cohorts usually introduces a large amount 
of missing data due to the fact that not all cohorts use the same 
questionnaires. To illustrate, suppose cohort A uses questionnaire 
X, whereas cohort B uses questionnaire Y. Responses of 
questionnaire Y would be missing in cohort A and the reverse 
would be true for cohort B. IDA measurement models require 
the presence of overlapping items to adequately link data across 
all participants (Hussong et al., 2013). Collecting a supplemental 
sample with complete data on all items can help alleviate this 
problem (Hussong et al., 2013; Gatz et al., 2015). In this paper, the 
supplemental sample is called a phenotypic reference panel.

IDA has been used previously to combine different versions 
of cognitive batteries, personality measures, and alcohol use data 
across multiple studies (van den Berg et al., 2014; Xu et al., 2015; 
Marcoulides and Grimm, 2017). Many IDA approaches used a 
Rasch item response theory (IRT) model, a latent trait model 
that requires simplifying assumptions and specifies equivalent 
measurement across study (McArdle et al., 2009; Gatz et al., 2015; 
Marcoulides and Grimm, 2017). Other IDA models directly 
evaluate the differences of measurement properties of the pooled 
items. Curran and Hussong (2009) and Curran et al. (2014) 
proposed a moderated non-linear factor analysis (MNLFA) 
model that allows all of the item measurement parameters to vary 
across a set of covariates, such as study membership and country 
of origin. In a similar approach, Bauer et al. (2013) integrated 
data across multiple raters (e.g., mother and father ratings). 
This model extracts a single phenotype score while filtering out 
rater influences. The model is based on an adaptation of the 
bi-factor model, a classic psychometric model in clinical research 
(Holzinger and Swineford, 1937). The IDA model proposed in 
this paper is built upon the bi-factor model where a general factor 
represents the sought after phenotype that is common to multiple 
studies. Differences across cohorts are modeled in a set of specific 
factors. In addition to separating the common phenotype from 
cohort-specific influences, the bi-factor integration model also 
eliminates measurement error from the phenotype factor score.

This paper is structured as follows. A brief review of factor 
analysis and structural equation modeling (SEM) is presented. 
Practical issues for meta-analysis in GWAS consortia and the 
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potential advantages of a phenotype reference panel are discussed. 
A model specifically suited for IDA in multi-study GWAS, termed 
the bi-factor integration model (BFIM), is then presented. A 
series of simulations demonstrate how IDA can increase power 
to detect a genetic effect when phenotype reference panel data 
are available. A demonstration of the bi-factor integration model 
for two large datasets of aggressive behaviors in 9-year-old 
children is also presented. The implications of these results for 
behavior genetic consortia are discussed, as well as limitations of 
this approach and future directions.

MeTHODS

Factor Analysis Models
Behavioral and mental health phenotypes such as intelligence 
or depression are not directly observable but instead are 
measured with multiple questionnaire items. The observed 
items are individual indicators of an underlying construct. 
The observed indicators are designed to capture the different 
aspects of the construct, and item responses are considered as 
manifestations of the true trait. Latent variable models capture 
the information that is common across multivariate outcomes 
(i.e., shared variance), considered the underlying latent trait 
or factor (Bollen, 1989). For example, aggression is a trait that 
is not measured directly, but researchers administer multiple 
questions that pertain to different aspects of aggressive behaviors 
or attitudes. Individuals with higher levels of true aggression 
are expected to score higher on the items. Additionally, the 
underlying factor fully accounts for the covariance of the 
items; once the aggression factor is accounted for, the items are 
conditionally independent from each other.

The factor analysis model is a direct implementation of this 
line of thought. Let yij represent a response to item i (i from 1, 
2, …, p) for person j (jfrom1,2,…,N) Assuming a single latent 
variable underlies a set of observed, continuous item responses, 
the model can be written as

 
y
ij i i j ij

= + +ν λ η ε 
 

(1)

where vi represents an item intercept, λi is an item loading 
(or slope) parameter, ηj represents the latent factor score for 
person j,  and ɛij is an error term. The latent factor is assumed 
to be normally distributed as N (α,ψ) and the error is normally 
distributed as ɛij~N(0,σ2). Individuals are assumed to be 
independent from each other, and the items are conditionally 
independent given ηj. To identify the model, one item intercept 
and loading must be fixed to zero and one, respectively, or the 
factor variance must be fixed at one (Lawley and Maxwell, 1963; 
Bollen, 1989).

The Bi-Factor Integration Model
Several models developed for IDA can be used to test 
measurement differences in the item parameters one at a time 
for multiple items over multiple covariates (Curran et al., 2014). 
In the GWAS integration scenario, however, the only interest 

is in reducing the noise in the phenotype score introduced by 
differences in measurement across cohorts. If one can reasonably 
assume that the available questionnaire items are all indicators 
of the same phenotype, then the target trait of interest is simply 
a single common factor underlying the full item set. If the items 
used by the different cohorts tap into similar aspects of the 
phenotype and have similar measurement properties, then the 
sum score model is expected to work reasonably well. However, 
a simple unidimensional factor analysis model may not fit well if 
items used in the different cohorts measure more or less severe 
aspects of the phenotype, if cohorts differ with respect to raters, 
or if items have different meanings across cultures.

In this paper we propose a bi-factor model integration 
model (BFIM) that increases precision in the estimated target 
trait by modeling additional information specific to different 
questionnaires or cohorts. The BFIM is a special case of the factor 
model in equations 1 and 2 with multiple factors, which can be 
written as

 
y
ij i ig jg

k

K

ik jk ij
= + + +

=
∑ν λ η λ η ε  

1  
(2)

where ηjg represents a general factor for person j, labeled T for 
the target trait, and there is an associated factor loading for all 
items on T, λij. ηjk represents a specific factor k (k=1,2,…,K) that 
only subsets of items load onto, with λik corresponding to item 
loadings on the kth specific factor.

Similar to the general factor analysis model, the underlying 
factors are assumed to be normally distributed as ηjk ~N (αk,ψk), 
and the error is normally distributed as ɛij∼N(0,σ2). The bi-factor 
model specification also requires constraints to identify the 
model. The bi-factor model is identified by specifying that the 
factors follow a standard normal distribution (Gibbons and 
Hedeker, 1992). Further, each item loads onto the general factor 
and only one additional specific factor; otherwise, the model is 
not identifiable (Gibbons and Hedeker, 1992). Consider a case 
with eight total items and four items loading onto each of two 
specific factors. The matrix of factor loadings and vector of latent 
factors are then (3)
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Orthogonality is imposed on the factors such that the 
specific factors are completely independent of the general factor 
and of the other specific factors. Due to this independence 
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specification, the general factor captures the target trait of 
interest, and the specific factors pull out the residual covariance 
among item subsets that is not captured in the common factor. 
For IDA across multiple studies, modeling the specific factors 
can follow known differences across the studies. For example, 
specific factors may be modeled from items that originate from 
the same questionnaire, the same study, or the same country of 
origin. By explicitly modeling these sources of heterogeneity, 
the precision of the general factor is increased. Improved 
phenotypic measurement, in turn, is likely to increase the 
precision in the SNP association coefficients. Figure 1 depicts 
a bi-factor integration model for two different questionnaires 
with a general factor, two specific factors, and a SNP effect. In 
Figure 1, the specific factors are labeled Q1 and Q2 corresponding 
to questionnaire 1 and questionnaire 2, respectively.

The target factor scores can be computed from the bi-factor 
integration model and then used by partnering studies in a 
consortium to conduct a parallel meta-analysis. Using computed 
factor scores as outcomes in association tests should result in 
more precision in each study, therefore increasing precision in the 
average effect size. Reducing the standard error of the estimated 
β  increases the power of the hypothesis test that the effect is 
significantly different from zero. Factor scores are not estimated 
in the latent variable model, but computed post hoc using fixed 
model parameters. There are multiple approaches for computing 
factor scores, such as regression scores, Bartlett scores, likelihood-
based expected a-posteriori scores, and Bayesian plausible values 
(Muthén and Muthén, 1998-2017). Certain types of factor scores 
used as dependent variables can lead to bias in the regression 

coefficients (Grice, 2001; Skrondal and Laake, 2001). Devlieger 
et al. (2016) demonstrated that different methods of factor score 
calculations have similar rates of statistical power, so regression 
factor scores were calculated for this study.

Combining data across studies with disjoint measurement 
variables creates a dataset with systematic missing data. 
Modeling an underlying factor in combined data is therefore 
also a missing data problem. The three most commonly 
assumed missing data mechanisms are missing completely at 
random (MCAR), missing at random (MAR), and missing 
not at random (MNAR; Enders, 2010; Little and Rubin, 2002). 
When data are MCAR or MAR, full information maximum 
likelihood estimation is known to provide correct inferences 
(Rubin, 1976). The MAR mechanism states that missing values 
of Y are independent of the observed values of Y after taking 
other variables in the analysis into account. In the IDA case, the 
missing data are accounted for by study or cohort membership, 
and missingness is independent of scores on the trait of interest. 
Maximum likelihood estimation is well developed for SEM 
and confirmatory factor analysis approaches (Allison, 2003; 
Asparouhov and Muthén, 2010; Enders, 2010).

Genome-Wide Association Studies 
Meta-Analysis
Common practice for GWAS in a consortium is for each 
consortium partner to conduct association tests on a sum of all 
available items. The resulting regression coefficients are then 
meta-analyzed. In this case, the phenotype score is the sum 
of the items, which can also be written in the context of the 
factor model:

 
SS y

j

i

p

ij

i

p

i i j ij
= = + +

= =
∑ ∑

1 1

 (  )ν λ η ε
 

(4)

The general association test (prediction model) for the sum 
score is simply

 

SS x
j

q

Q

q qj j
= + +

=
∑β β

0

1



 
(5)

where xqj is the genotype available for person j at locus q, and βq is 
the regression coefficient for SNP q. The primary interest is in the 
p-value and statistical significance of β coefficients corresponding 
to SNPs. In a meta-analysis, these coefficients are combined 
across the different individual analyses and their significance is 
re-evaluated. Consortia commonly use fixed-effects meta-analysis 
with inverse-variance weighting or the Z-score method (Evangelou 
and Ioannidis, 2013). Fixed effects meta-analysis requires the 
assumption that there is one true population value for the effect 
of interest. Given this, if the sum scores SSj are calculated from 
different items across study, additional error will be introduced into 
the regression weight of a SNP on the heterogeneous sum scores.

FIGUre 1 | Example of the bi-factor integration model. T represents 
the general trait. Q1 and Q2 are the specific factors corresponding to 
questionnaire 1 and questionnaire 2, respectively. λ represents the factor 
loading, γ represents the effect of the single-nucleotide polymorphism on the 
general trait. Thresholds and error terms are not depicted.
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Sum scores are straightforward, easy to compute, and easy 
to interpret. They do, however, come with drawbacks. With 
sum scores, the item uniquenesses and measurement errors are 
summed up along with the portions of the item relating to the 
true trait. This will increase the variance of the outcome relative to 
the underlying structural variance of the trait, leading to inflated 
standard errors for ˆβ

q
 in each study. Additionally, estimating the 

factor loadings in a measurement model permits each item to 
contribute to the latent factor with different weights, reflecting 
the fact that different questionnaire items are often not equally 
good indicators of an underlying trait. A sum score implicitly 
assigns equal weight to all items. Regressing a harmonized 
trait score on a set of SNPs should result in a meta-analysis of 
regression coefficients that are more directly comparable.

Genome-Wide Association Studies 
Mega-Analysis
In general, it is preferable to fit the integrated measurement 
model and simultaneously conduct genetic association tests. 
The ideal scenario is to carry out a mega-analysis with SEM in 
which the measurement model for η and the regression of η on 
x is estimated simultaneously (Bollen, 1989). While this may 
be computationally difficult for a full genome-wide search with 
millions of SNPs, it is certainly possible for cases in which a few 
hundred or even thousand candidate SNPs are identified (e.g., Xu 
et al., 2015). Furthermore, recent methodological advances have 
increased the computational feasibility of SEMs in GWAS, such 
as with genome-wide structural equation modeling (GW-SEM) 
(Verhulst et al., 2017). In the context of the bi-factor integration 
model, the covariate effect is truly expressed on the target trait 
factor Tj rather than the indicators themselves. This is specified as 
the structural portion of the SEM model. For observed covariates 
xqj (q from 1, 2, …,Q), the prediction model is written

 

T x
j

q

Q

q qj j
= +

=
∑

1

γ ζ

 
(6)

where Tj the target (general) trait score for person j, γq is the 
regression coefficient for the qth covariate, and ζj is a residual 
disturbance term. In a GWAS, the γq of primary interest is the 
one associated with a SNP, but controlling covariates such as age, 
gender, and genetic relatedness principal components may also 
be included.

Phenotypic reference Panel
Retrospectively combining independent studies with different 
instruments often results in a sparse dataset with a high degree of 
missing data. This can lead to sets of subjects with no common 
items, resulting in latent variable models that often do not converge 
using modern estimation approaches for handling missing data. 
Lack of convergence leads to flawed estimators, if the model is 
able to provide estimates at all. Typical harmonization treats 
items that are similarly worded in the different questionnaires 
as the same item in the combined dataset, thus creating item 

overlap. This can also destabilize the model, however, if the items 
are not truly interchangeable.

A better strategy for understanding the relationships among 
all items is to collect a reference panel with complete data. The 
reference panel provides information about the association 
between items not jointly observed within cohorts when different 
surveys are used. This supplemental sample is critical for 
providing a link across cohorts and offers a potential gateway for 
psychometric harmonization through IDA. Similar approaches 
have been applied for multiple imputation integration, in which 
measurement models are not used (Carrig et al., 2015; Siddique 
et al., 2015). When there is available research and theory 
about a psychological phenotype, exploring a small number of 
measurement models can offer more precision for subsequent 
analyses than approaches making no assumptions about structure 
in the data (Collins et al., 2001). Others have collected a reference 
panel-type sample and analyzed it separately to evaluate the 
performance of more conventional phenotype harmonization 
approaches (Gatz et al., 2015). The ACTION Consortium 
(Aggression in Children: Unraveling gene-environment 
interplay to inform Treatment and InterventiON strategies) is 
actively collecting a post hoc phenotype reference panel in order 
to facilitate the multi-study integration of complex models of 
childhood aggressive behaviors (Boomsma, 2015).

The collection of the reference panel is imperative for the 
BFIM (and any measurement model) in the case of insufficient 
item overlap. In the next section, we present a Monte-Carlo 
simulation study evaluating the use of the bi-factor integration 
model compared to sum scores in hypothetical SNP association 
tests. These simulations provide insight into whether the 
collection of the reference panel and the extra effort in phenotype 
modeling are worth the costs.

SIMUlATIOn
We conducted a simulation study with the goal of comparing 
the power of sum score meta-analysis, factor score meta-
analysis, and integrated mega-analysis (full data integration 
model with SNP effect). A multiple imputation procedure was 
also carried out as an alternative method for handling missing 
items in the cohorts. The simulation was set up to represent 
a scenario in which two different studies used two different 
questionnaires to measure the same trait. Each cohort only had 
item responses on one questionnaire, with missing data on the 
items used in the other study. A small reference panel dataset 
was also included, in which subjects had responses on all items 
across the two questionnaires.

Data were simulated under four different data-generating 
models with five different sample size conditions, resulting in 
20 total simulation conditions. To evaluate the necessity of the 
reference panel, data were also generated without a reference 
panel (with additional subjects added to one or both cohorts). 
Table 1 lists the different models and sample size conditions 
utilized in the simulation study. In the first three sample size 
conditions, the reference panel makes up ~4, ~2.5, and ~7.5% of 
the total dataset, with equal sample sizes in the two cohorts. In 
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the fourth condition, unequal sample sizes are introduced into 
the cohorts. In the fifth condition, the reference panel is increased 
to make up 10% of the total sample, maintaining similar sizes to 
condition 1 and 4. For all 20 combinations of model and sample 
size, 1,000 repetitions were executed in the simulation.

For all data-generating models, the underlying factors all 
followed a (marginally) standard normal distribution, and factor 
loadings were invariant across the reference group and cohort 
item sets. A SNP covariate accounted for 0.1% of the variance in 
the general factor, and a second covariate representing biological 
sex accounted for 20% of the variance in the general factor. Note 
that this assumes a single population-level effect size of the 
SNP, the same assumption made in fixed effects meta-analysis 
(Evangelou and Ioannidis, 2013). It was also assumed that the 
multiple cohorts originated from comparable populations, 
meaning that the minor allele frequency of the SNP was the same 
across groups. In practice, quality control checks with a reliable 
genotype reference should be conducted for either meta-analysis 
or mega-analysis approaches, and population stratification 
should be controlled for.

The genotypes for the SNP were generated with a minor allele 
frequency of 0.5, such that the data-generating equation for the 
target trait was

 
T SNP X N
j j j j j

= + + ( )0 0447 0 8944 0 0 799
2

. * . *  ,  ~ , .ζ ζ
 
(7)

leading to a marginal variance of 1 for Tj, and the specific factors 
were orthogonal to Tj and each other and were standard normal. 
Item-level data were then generated from the bi-factor model: (8)

 y T
ij i ig j ik jk ij

= + + +ν λ λ η ε   (8)

where factor loadings λig ranged from 0.3 to 0.6, depending 
on data-generating condition (specific simulation parameters 
are detailed in Appendix I). The loadings for the general and 
specific factors were controlled such that the general factor and 

specific factor collectively accounted for either 60 or 45% of 
each items’ variance. For example, for factors with marginal unit 
variance, the explained variance of the factors is λ

ig

2 + λ
ik

2 . There 
were eight items total: four items for each cohort, representing 
a brief item set tapping into a sub-domain of a behavior. Two 
items across cohorts were also generated with an additional 
residual correlation, reflecting items across questionnaires that 
were similar but not exactly the same, such as items that might 
be harmonized based on similar wording in the prompts. The 
residual correlation for these items was set at 0.6.

Data-Generating Models
Data were generated for the two cohort-specific item sets under 
a series of different measurement models These measurement 
differences were quite mild compared to the potential level of 
heterogeneity that is often encountered in practice, but this allowed 
us to examine the effect of increased measurement precision with 
even a small amount of measurement heterogeneity. All data 
were generated in R (R Core Team, 2018).

Model 1: ideal measurement. The first model, depicted in 
Figure 2A, represented identical measurement across the two 
cohorts. This model reflects ideal measurement conditions where 
the item sets have equal reliabilities. In other words, the factors 
account for the same amount of variance in the item responses. 
The factors collectively account for 60% of the variance in the 
item responses. The general factor accounts for 25.5% of the item 
response variability, and the specific factors account for 34.5% in 
the item responses. This contribution breakdown is equal across 
the two questionnaires.

Model 2: reliability differences. The second data-generating 
model is depicted in Figure 2B. In the second model, the 
variance explained by the second set of items was lower than the 
first set. This reflects an applied scenario in which less reliability 
in the second measure. To simulate this, the general factor and 
specific factor accounted for only 45% of the variance in the 
observed item responses of the second item set, rather than 
60% of the variance in the more reliable set. Consequently, one 
set of four items has residual variance of 40%, but the other 
item set has residual variance of 55%. This weaker contribution 
is split between the general and specific factors, resulting in 
a slightly weaker contribution of the covariate effect to the 
manifest variables.

Model 3: mean and variance differences. The third data-
generating model is described in Figure 2C. This model 
featured a larger mean and variance in the specific factor that 
contributes to the less reliable items of model 2. Rather than 
having mean of zero and unit variance, the specific factor had 
a mean of 1 and variance of 3. At the population level, the 
effect size of the SNP on the general factor remained the same. 
With increased mean and variance in the specific factor, the 
proportional contribution of the specific factor on the manifest 
variables also increased.

Model 4: higher-order data-generating model. Model 4 is 
depicted in Figure 2D. The fourth model reflected a scenario 
where the bi-factor model is somewhat misspecified. The data-
generating model was re-formulated as a higher-order factor 

TABle 1 | Various data-generating models and sample sizes used in simulations, 
resulting in 20 simulation conditions.

Sample sizes Data-generating 
models

Varying simulation 
conditions

N1: cohort 1 = 5,000, cohort 
2 = 5,000, Ref= 400

Model 1: same 
measurement across 
item sets

N2: cohort 1 = 2,500, cohort 
2 = 2,500, Ref= 400

Model 2: different levels 
of item set reliability

N3: cohort 1 = 7,500, cohort 
2 = 7,500, Ref= 400

Model 3: mean and 
variance differences in 
cohort-specific factor

N4: cohort 1 = 2,500, cohort 
2 = 7,500, Ref= 400

Model 4: true model is 
a higher-order model 
(bi-factor model is 
misspecified)

N5: cohort 1 = 4,500, cohort 
2 = 4,500, Ref= 1,000
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model in which the covariates influenced a target trait factor, 
which then influenced two separate cohort factors that finally 
determined the item responses in each of the cohorts. This 
model included direct effects from the true factor to some of 
the item responses. Chen et al., (2006) demonstrated that the 
higher-order correlated factors model is a constrained version 
of the bi-factor model. In fact, the correlated factors model 
with direct effects of the higher-order factor on all items is 
equivalent to the bi-factor model. In our simulation, some of 
the items did not include a direct effect from the trait factor to 
the item, meaning that the BFIM was slightly misspecified to the  
generated data.

Each model was used in combination with the five different 
sample size conditions, and for each model and sample size, 
1,000 repetitions were generated to conduct analyses. The codes 
used to conduct the simulation are attached as a supplementary 
downloadable folder.

Analyses
Four different types of analyses were carried out to evaluate the 
effect of the genetic variant on a trait score across the simulated 
cohorts. The analyses were designed to compare sum scores in 
each cohort with the measurement model integration approach 
utilizing the reference panel. The different analysis procedures 
are listed below:

 1) Sum score meta-analysis: The mean score of available items 
in each cohort and in the reference panel was computed. 
A meta-analysis of the SNP effect on the mean score in 
the two cohorts and reference panel was conducted. Meta-
analyses were conducted directly in R (R Core Team, 2018).

 2) Factor score meta-analysis: A BFIM was fitted to the 
overlapping phenotype information with no genetic variant 
included. The BFIM models were fitted using Mplus 7.11 
(Muthén and Muthén, 1998-2017), and estimation was carried 
out using maximum likelihood estimation with numeric 
integration. Numeric integration was needed because of the 
low rates of coverage for some items. Regression-type factor 
scores were saved and used as the outcome in association tests 
within the two cohorts and reference panel and subsequently 
meta-analyzed. Meta-analyses were computed in R (R Core 
Team, 2018).

 3) BFIM mega-analysis: The BFIM was fitted to all of the items 
to model a harmonized phenotype, and the general factor of 
the BFIM was regressed on the SNP simultaneously in the 
structural part of the model. The full SEM mega-analysis 
models were fitted using Mplus 7.11 (Muthén and Muthén, 
1998-2017), and estimation was carried out using maximum 
likelihood estimation with numeric integration.

 4) Multiple imputation: Multiple imputation of the individual 
items is an alternative approach to addressing missingness in 

FIGUre 2 | Path diagrams of the data-generating models for the simulation. T represents the general trait. Q1 and Q2 are the specific factors corresponding to 
questionnaire 1 and questionnaire 2, respectively. (A) depicts model 1, representing the ideal measurement case with equal reliabilities for both questionnaires.  
(B) depicts model 2, in which the items on the second questionnaire have lower reliabilities than the first questionnaire, represented by shading. (C) depicts model 
3, in which the Q2 factor is shaded, representing an increased mean and variance along with reliability differences. (D) depicts model 4, a second-order model where 
the general factor summarizes the covariance among two questionnaire-specific factors, and the general factor additional direct effects on select items.
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the combined data. For a benchmark comparison, we used 
multivariate imputation by chained equations (MICE, van 
Buuren and Groothuis-Oudshoorn, 2011) to impute each item 
from all other items and the covariates. We then summed the 
items for an imputed sum score as the outcome in mega-analysis 
association tests. Predictive mean matching, which is the default 
imputation model of the “mice” package in R1, was specified as 
the imputation model. The default value of 5 iterations was used 
for each imputed dataset, and 50 datasets were imputed for each 
to account for the large proportion of missing data. Results from 
the regression analyses were pooled according to Rubin’s rules 
to obtain correct standard errors and degrees of freedom (see 
Rubin, 1987; van Buuren, 2018; for details on pooling, predictive 
mean matching, and multiple imputation).

A bi-factor SEM was also carried out with complete data 
(i.e., no missingness) for all participants as a benchmark for the 
maximum power that could be achieved. To evaluate the utility 
of the reference panel, the factor score meta-analysis and SEM 
mega-analysis were also conducted without a reference panel 
included. In order to fit the models, some overlapping item 
information must be present. Therefore, the items with large 
residual correlation across questionnaires were treated as the 
same item. This is consistent with the practical scenario in which 
similarly worded items are recoded as equivalent items in the 
harmonization process.

The primary outcome of interest was the empirical power to 
detect the SNP effect (i.e., proportion of significant findings). Raw 
empirical power and empirical power relative to the maximum 
power under the complete data condition were computed. Type 
I errors, relative bias, and 95% coverage rates were also recorded. 
Relative bias is the difference between the true parameter and 
the average estimate across repetitions divided by the true value.

reSUlTS
The overall results indicated a small-to-moderate advantage to 
detect the SNP effect for the data integration approach, in general. 
Under the fourth model data-generating model, in which the 
bi-factor model is misspecified, the sum score meta-analysis 
outperforms the factor score meta-analysis, but the BFIM mega-
analysis still provides the best overall result.

Power and Type I error
Figure 3 presents the different rates of power of the sum score 
meta-analysis, factor score meta-analysis, and BFIM mega-
analysis relative to the power obtained with no missing data. 
Power is plotted as a function of different data-generating 
model across different panels representing the various sample 
size conditions. This was included because the raw power is not 

1 We note that multiple imputation can utilize a large number of different 
prediction models, and the number of iterations and imputed datasets can be 
tuned and optimized across different settings. As this paper focuses on the explicit 
psychometric modeling and not imputation, we used the default model and a 
single set of imputation settings.

truly generalizable, as some data-generating models by design 
had less power to detect the genetic effect even with complete 
data than others. Therefore, the empirical power relative to the 
maximal power is more comparable across conditions. Table 2 
presents the raw power rates of each of the methods, as well as 
type I error rates.

As seen in Figure 3, the BFIM mega-analysis resulted in 
the most statistical power to detect the variant effect across 
all conditions. The advantage in relative power for the BFIM 
mega-analysis over the sum score ranged from about 4% 
(model 1, N4 condition) to about 19% (model 3, N1 condition). 
The BFIM mega-analysis also displayed larger power rates 
than the meta-analysis using harmonized factor scores. This 
is true even in the fourth data-generating model in which the 
BFIM is slightly misspecified. However, in this fourth model 
condition, the advantage of the BFIM mega-analysis over 
the sum score is generally at its smallest, compared to the 
other conditions.

The meta-analysis of factor scores also resulted in more 
statistical power than the meta-analysis of sum scores in 13 of 
the 20 different conditions. The power rates across these two 
methods were essentially equivalent in three conditions, and the 
sum score approach was more powerful in four conditions. The 
factor score meta-analysis resulted in more power for the first 
three data-generating models. However, with smaller sample 
sizes or unbalanced sizes across cohorts, the advantage of the 
factor score meta-analysis over the sum score is fairly small. In 
the fourth data-generating model, where the BFIM is slightly 
misspecified, the meta-analysis of factor scores is generally less 
powerful than sum score meta-analysis.

The multiple imputation approach used in these simulations 
resulted in the least power across nearly all conditions. This 
is especially true under data-generating model 3, when there 
are measurement differences across cohort, and in the fourth 
sample size condition, when there is significant imbalance in 
cohort size. For balanced sample sizes and no measurement 
differences across cohorts, the imputation approach performed 
similarly to the meta-analysis of sum scores. As seen in Table 2, 
all methods displayed acceptable type I error rates (between 
2.5 and 7.5%).

Bias and Coverage
Figure 4 depicts the relative bias of the different methods across 
models and sample size conditions. Across all conditions, the 
BFIM mega-analysis estimates were within acceptable levels 
(±0.05) of relative bias. The bias in sum score meta-analysis fell 
within the acceptable range in 18 of the 20 conditions, and only 
presented problematic bias with unbalanced sample sizes. The 
bias resulting from factor score meta-analysis was between 5 and 
10% in 8 of the 20 conditions, and was within acceptable levels 
in 12 of the 20 conditions. The imputation approach resulted in 
negative bias that was greater than 5% when the data-generating 
model was model 3. The sum score meta-analysis and the BFIM 
mega-analysis had excellent coverage rates, and the factor score 
meta-analysis had good coverage rates in 18 of the 20 conditions, 
as seen in Table 3.
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Differences Across Simulation Conditions
The BFIM mega-analysis was most powerful and unbiased 
across all conditions. The pattern of results was also the same 
across the conditions, except with unbiased sample sizes across 

cohorts (N4). In this condition, the relative power of the BFIM 
mega-analysis increased as the models became more complicated, 
and the relative bias departed from zero more in this sample 
size condition.

TABle 2 | Empirical power and type I error results with different analysis methods under the four data-generating models and five sample size conditions.

Model n Complete 
data power

Mega SeM FS meta SS meta Impute power Full T1 Mega T1 FS T1 SS T1 Impute T1

Model1 N1 0.760 0.567 0.557 0.519 0.496 0.046 0.046 0.044 0.040 0.037
Model2 N1 0.710 0.517 0.481 0.445 0.446 0.051 0.044 0.043 0.055 0.039
Model3 N1 0.678 0.479 0.399 0.356 0.275 0.045 0.047 0.071 0.067 0.037
Model4 N1 0.760 0.549 0.486 0.531 0.505 0.049 0.047 0.047 0.059 0.047
Model1 N2 0.480 0.358 0.329 0.323 0.295 0.046 0.040 0.057 0.051 0.033
Model2 N2 0.444 0.305 0.277 0.280 0.266 0.045 0.057 0.064 0.057 0.047
Model3 N2 0.384 0.241 0.219 0.213 0.151 0.048 0.045 0.045 0.044 0.043
Model4 N2 0.466 0.327 0.264 0.285 0.287 0.047 0.051 0.050 0.044 0.051
Model1 N3 0.878 0.743 0.723 0.666 0.637 0.055 0.054 0.042 0.043 0.034
Model2 N3 0.858 0.675 0.658 0.619 0.596 0.045 0.049 0.054 0.048 0.044
Model3 N3 0.816 0.596 0.554 0.526 0.424 0.049 0.046 0.049 0.047 0.032
Model4 N3 0.886 0.719 0.665 0.681 0.665 0.048 0.061 0.054 0.066 0.042
Model1 N4 0.772 0.576 0.553 0.551 0.410 0.045 0.046 0.055 0.058 0.049
Model2 N4 0.719 0.549 0.508 0.497 0.380 0.062 0.047 0.064 0.061 0.053
Model3 N4 0.653 0.509 0.487 0.457 0.203 0.048 0.041 0.057 0.052 0.029
Model4 N4 0.738 0.549 0.498 0.513 0.420 0.051 0.050 0.049 0.050 0.042
Model1 N5 0.747 0.588 0.572 0.535 0.512 0.036 0.044 0.044 0.039 0.039
Model2 N5 0.711 0.535 0.515 0.488 0.478 0.064 0.066 0.052 0.046 0.028
Model3 N5 0.626 0.450 0.398 0.399 0.318 0.051 0.049 0.055 0.058 0.040
Model4 N5 0.713 0.525 0.504 0.494 0.497 0.048 0.049 0.056 0.052 0.048

FS, factor score meta-analysis; Mega, BFIM SEM mega-analysis; SS, mean score meta-analysis; T1, type I error rate.

FIGUre 3 | Power to detect single-nucleotide polymorphism effect of each analysis approach relative to complete data power. Results are presented across 
the different data-generating models and the different sample size conditions detailed in Table 1. The analysis approaches were sum score meta-analysis, 
factor score meta-analysis, mega-analysis with the bi-factor integration mode, and multiple imputation of the missing items. SEM, structural equation 
modeling; Imp., imputation.
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The meta-analysis of factor scores was least effective under 
data-generating model 4. Under this model, the factor score 
meta-analysis was slightly less powerful than the sum score-meta 
analysis. In the other three models, the factor-score meta-analysis 
was generally more powerful, but the degree of advantage was 
largest with larger sample sizes.

Advantage of the reference Panel
The necessity of the reference panel was apparent in the 
simulations due to the low rates of convergence for both the 
BFIM mega-analysis and the BFIM factor analysis models. 
Without any overlapping items, the covariance matrix of 
the combined data had completely missing cells across the 

TABle 3 | Relative bias, coverage rates, type I error rates, and standard errors computed with different analysis methods under the four data-generating models and 
five sample size conditions.

Model n Mega bias FS bias SS bias Impute bias Mega coverage FS coverage SS coverage Impute 
coverage

Model1 N1 −0.011 0.063 −0.001 −0.036 0.944 0.939 0.962 0.972
Model2 N1 0.014 0.030 −0.017 −0.041 0.958 0.940 0.944 0.950
Model3 N1 0.026 −0.062 0.016 −0.093 0.959 0.903 0.948 0.966
Model4 N1 0.029 0.022 0.004 −0.015 0.949 0.941 0.956 0.955
Model1 N2 0.016 0.070 0.018 −0.021 0.941 0.926 0.937 0.947
Model2 N2 0.005 0.029 −0.022 −0.039 0.941 0.934 0.934 0.949
Model3 N2 −0.006 −0.069 -0.019 −0.121 0.941 0.910 0.944 0.963
Model4 N2 0.027 0.011 −0.011 −0.012 0.948 0.933 0.943 0.942
Model1 N3 0.005 0.062 −0.015 −0.057 0.952 0.929 0.949 0.962
Model2 N3 0.011 0.034 −0.017 −0.049 0.944 0.944 0.953 0.952
Model3 N3 −0.004 −0.053 0.025 −0.073 0.941 0.883 0.951 0.968
Model4 N3 0.031 0.027 −0.007 −0.022 0.958 0.944 0.950 0.966
Model1 N4 −0.009 0.070 −0.002 −0.042 0.954 0.934 0.956 0.966
Model2 N4 0.004 0.062 0.062 −0.010 0.957 0.938 0.949 0.960
Model3 N4 0.014 −0.007 0.092 −0.052 0.946 0.917 0.945 0.965
Model4 N4 0.039 0.034 0.017 −0.017 0.945 0.921 0.945 0.947
Model1 N5 0.011 0.090 0.012 −0.031 0.954 0.917 0.953 0.952
Model2 N5 0.013 0.060 −0.011 −0.009 0.955 0.929 0.950 0.958
Model3 N5 −0.004 −0.036 0.032 −0.060 0.938 0.917 0.936 0.961
Model4 N5 0.035 0.042 −0.011 −0.034 0.945 0.938 0.934 0.956

FS, factor score meta-analysis; Mega, BFIM SEM mega-analysis; SS, mean score meta-analysis; Impute, multiple imputation.

FIGUre 4 | Empirical bias of single-nucleotide polymorphism effect of each analysis approach relative to true effect size. Results are presented across the different 
data-generating models and the different sample size conditions detailed in Table 1. The analysis approaches were sum score meta-analysis, factor score meta-
analysis, mega-analysis with the bi-factor integration mode, and multiple imputation of the missing items. SEM, structural equation modeling; Imp., imputation.
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cohorts. When two items were treated as the same item, 
reflecting the real-world scenario of recoding items based on 
similar face validity, the BFIM models often did not converge. 
When estimates were obtained, the power of the BFIM mega-
analysis was similar to the sum score meta-analysis, and the 
estimates were downwardly biased. The meta-analysis of 
factor scores resulted in very low rates of power, due in part to 
non-convergence across repetitions and to unstable estimates 
with large standard errors. Table 4 provides details across the 
four data-generating models with the N1 condition when no 
reference panel was included.

results Summary
In conclusion, the BFIM mega-analysis approach employing 
the bi-factor integration model provided meaningful power 
increases, very low bias, and appropriate coverage. The factor 
score meta-analysis also resulted in power gains compared to 
sum score meta-analysis when the BFIM is correctly specified, 
although there was a small amount of bias in the estimates. 
Additionally, the use of the reference panel was crucial for 
the BFIM models. The measurement models were completely 
unstable when there was no item overlap, and harmonization 
carried out on two non-identical items caused issues for model 
estimation. The integration approach will be problematic when 
there is sparse item overlap, as would happen in consortia 
using different instruments across studies. The reference panel 
overcame this limitation and resulted in more power gain that 
the same amount of additional subjects added through one of the 
partners. Multiple imputation of the items using default settings 
followed by mega-analysis of sum scores resulted in the lowest 
power rates in all conditions.

APPlICATIOn
The BFIM approach was demonstrated on data from two 
cohorts participating in the ACTION Consortium (http://www.
action-euproject.eu/; Boomsma, 2015; Bartels et al., 2018). The 
main objective of ACTION is to improve understanding of the 
sources of individual differences in aggression among children 
to better inform treatment strategies. The ACTION consortium 
is unique because several participating cohorts used distinct 
questionnaires to measure aggression in children. The ACTION 
Consortium also collected reference panel data: parents 
(fathers and mothers) of young twins from the Netherlands 
Twin Register (van Beijsterveldt et al. (2013)) were contacted 

when their children were around 9 years old to complete 
supplemental questionnaires that were also administered among 
other partnering studies. The reference panel data facilitate 
harmonization using the BFIM approach. We demonstrate the 
data management and analysis plan for saving harmonized 
factor scores. These scores can then but used as the phenotype 
in any genetic analysis.

Participants
For this application, data were analyzed from mother report 
for twins around age 9. In all cases, subjects were retained for 
analysis if they had less than 30% missing values on the aggression 
items administered within their cohort. Details of samples and 
measures used are below.

Netherlands Twin Register
For this study, 22,772 mother reports for the Netherlands Twin 
Register (NTR) were used from collections when children were 
approximately 9 (mean = 9.94, SD = 0.51). The sample was 50.4% 
female. For details on data collection in the NTR see e.g., van 
Beijsterveldt et al. (2013).

Child and Adolescent Twin Study in Sweden
Parents from the Swedish Twin Register were interviewed via 
telephone on the 9th birthday of their children. Mother report 
data were available for 18,278 children at age 9. The sample was 
approximately 49.4% female at age 9. For details on Child and 
Adolescent Twin Study in Sweden (CATSS) see Anckarsäter et al. 
(2011).

The Phenotypic Reference Panel
The reference panel is a supplemental collection of participants 
from the NTR with additional questionnaires collected. 
Throughout 2017, the complete survey items were collected. 
Questionnaires were mailed to families with children around 
age 9 (mean = 9.42, SD = 0.78). The current study utilized 
mother report data on 2,205 children. The reference panel is 
51.5% female.

Measures
Child Behavior Checklist
The Child Behavior Checklist (CBCL) 6–18 (Achenbach and 
Rescorla, 2001) was used by the NTR and the reference panel. 
The CBCL 6–18 consists of 120 items which are rated on a three-
point scale ranging from “not true = 0,” “somewhat or sometimes 
true = 1,” to “very true or often true = 2.” In the CBCL 6–18 
aggressive symptom subscale, we identified 8 items that pertain 
directly to an overt/physical subtype of aggression for this 
analysis (see Lubke et al., 2018). These items are listed in Table 5.

Autism-Tics, Attention-Deficit Hyperactivity Disorder, 
and Other Comorbidities Inventory
The Autism-Tics, Attention-Deficit Hyperactivity Disorder, 
and Other Comorbidities Inventory (ATAC) (Larson et al., 
2010) was administered in CATSS and the reference panel. 

TABle 4 | Results for sample size condition 1 when no reference panel data 
were included.

Model n Mega rel. 
power

FS rel. 
power

Mega 
bias

FS bias

mdl1 N1 0.690 0.465 −0.378 0.012
mdl2 N1 0.620 0.449 −0.426 0.158
mdl3 N1 0.531 0.410 −0.497 0.212
mdl4 N1 0.662 0.483 −0.228 0.189
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The ATAC is a comprehensive screening interview for autism 
spectrum disorders, attention deficit/hyperactivity disorder, 
tic disorders, developmental coordination disorder, learning 
disorders, and other childhood mental disorders. The ATAC 
included four items related to overt/physical subtype of 
aggression, and responses were scored on a three-point scale 
(response options “yes,” “yes, to some extent,” and “no”). These 
items are listed in Table 5.

Analysis Plan
The NTR, CATSS, and reference panel data were concatenated into 
the same dataset for analysis. A BFIM was constructed in which 
all items were modeled by a general factor, representing the target 
trait of overt/physical type aggression. Specific factors were used to 
model ATAC-specific and CBCL-specific item subsets. The factors 
were specified to be standard normal, with all factor loadings freely 
estimated, and the factors were all uncorrelated with each other. 

The model is presented in Figure 5. Because subjects were nearly 
always twin pairings, sandwich-type robust standard errors were 
used for twins clustered within the same family. Analyses were 
carried out in Mplus 7.11 (Muthén and Muthén, 1998-2017).

reSUlTS
The BFIM model overall displayed excellent fit to the data χ2 (42) = 
418.98, p < 0.001, RMSEA = 0.014 [0.013, 0.016], CFI = 0.992, 
TLI = 0.988).While the sum of a limited number of categorical 
items provide a small number of possible observed scores, the 
factor scores provided more nuance based on the relationship 
among all items. The factor scores and the sum scores were 
correlated at 0.91. Factor scores were computed as maximum 
a posteriori estimates of the factor scores (the only option for 
categorical variables in Mplus). The harmonized scores could be 
returned to individual cohorts for genetic analyses prior to meta-
analysis. If genetic data is shared among cohorts, the integration 
model could be used as part of a larger mega-analysis.

DISCUSSIOn
The current paper presented IDA as a phenotype scoring framework 
for combining data across multiple independent studies. A bi-factor 
model for data integration was proposed that was designed 
specifically to adjust for measurement differences across multiple 
cohorts such as the use of different questionnaires. A series of 
simulation studies compared the BFIM to the standard approach of 
using sum scores of available items in each cohort and demonstrated 
the benefits of IDA in terms of increased power to detect a SNP effect. 
The BFIM was applied to two partnering cohorts in the ACTION 
Consortium using the collection of a reference panel dataset with 
responses to the questionnaires from both cohorts.

The IDA approach presented here has implications for joint 
gene association analyses carried out in genetic consortia. 
Several reviews have emphasized the need to improve 
phenotype measurement and consistent phenotype definition 
across the individual studies participating in GWAS meta-
analyses (Evangelou and Ioannidis, 2013; Robinson et al, 2014). 
Psychometric measurement models have been promoted in other 
areas of behavior genetics research as well, such as twin and family 
studies (van den Berg et al., 2007; van der Sluis et al., 2010; Schwabe 
and van den Berg, 2014; Luningham et al., 2017). Researchers 
have suggested item response models for use in multi-cohort 
studies of personality traits (van den Berg et al., 2014). The BFIM 
proposed in this paper is designed specifically for harmonization 
in association tests within a consortium of disparate studies.

Importantly, this study revealed that a factor score meta-analysis 
provided a gain in power over separate studies using sum score 
scores that were not directly comparable, provided the bi-factor 
model was adequately specified. This reflects the likely scenario 
where phenotypic data can be shared and jointly modeled in a 
consortium, but a full genome-wide search with SEM is not tenable. 
While the power gains found in this study were small in an absolute 
sense, the only difference in obtaining empirical power was in the 

TABle 5 | Overt/physical aggression items in Aggression in Children: Unraveling 
gene-environment interplay to inform Treatment and InterventiON strategies.

Item code Item

ATAC63 Has there ever been a time when he/she would be angry to 
the extent that he/she cannot be reached?

ATAC65 Does he/she often tease others by deliberately doing things 
that are perceived as provocative?

ATAC70 Has he/she ever been deliberately been physical cruel to 
anybody?

ATAC71 Does he/she often get into fights?
CBCL016 Cruelty, bullying, or meanness to others
CBCL020 Destroys his/her own things
CBCL021 Destroys things belonging to his/her family or others
CBCL023 Disobedient at school
CBCL037 Gets in many fights
CBCL057 Physically attacks people
CBCL094 Teases a lot
CBCL095 Temper tantrums or hot temper

FIGUre 5 | Path diagram of bi-factor integration model application to 
Aggression in Children: Unraveling gene-environment interplay to inform 
Treatment and InterventiON strategies data. Agg, overt aggression factor; 
CBCL, child behavior check-list; ATAC, autism-tics, attention-deficit 
hyperactivity disorder, and other comorbidities scale.
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method used. For GWAS analyses, where power is at a premium, 
a 4% gain in power simply through modeling the phenotype more 
precisely is a meaningful advantage. However, as advances such as 
GW-SEM (Verhulst et al., 2017) and genomic SEM (Grotzinger 
et al., 2019) make GWAS with multivariate outcomes and SEMs 
more feasible, our results suggest that the increase in power simply 
through IDA phenotypic modeling could be much greater.

A crucial aspect of the proposed IDA approach is the 
collection and use of a phenotypic reference panel. The concept 
of a phenotype reference panel to facilitate phenotype modeling 
was essential under our simulation scenarios. An important 
finding in the current paper is that the reference panel need 
only be a proportionately small increase in overall sample size 
to stabilize the integration model. It is more important to obtain 
a representative sample with complete phenotype information 
than to obtain new data as large as many of the participating 
partners. Collecting a small set of individuals that can bridge 
the gap in measurement items used across studies provide more 
benefit than increasing an individual cohort by the same amount 
of subjects.

The advantages of using a latent factor model to define 
a phenotype rather than a sum or mean score are reflected in 
the results of this paper. These advantages stem from using the 
full set of all available items and from accounting for different 
sources of heterogeneity in the observed score. The BFIM allows 
for modeling shared information in item subsets that does not 
pertain to the phenotype of interest, but to other sources of 
shared variance specific to certain studies. In our simulation, the 
residual covariance unrelated to the target trait was represented 
by different questionnaires. Additional sources of covariance 
among items can be incorporated into integrated measurement 
models, such as specific factors for different raters (e.g., mother 
and father) and residual covariance among similarly worded 
items. By modeling these as separate sources of commonality, the 
general factor becomes more precise. Covariate effects can also 
be included, such that item parameters differ as a function of age 
or gender (Curran et al., 2014).

More generally, the BFIM is not limited to GWAS, but can 
be applied in any joint analysis effort across multiple studies. 
IDA was proposed in psychological literature as a way to 
promote cumulative science, increase replicability of results, 
obtain broader psychometric assessments of constructs, and 
increase power (Curran and Hussong, 2009; Hussong et al., 
2013). The bi-factor integration model presented in this paper 
is straightforward and has potential wide-ranging uses for 
detecting meaningful covariate effects on an integrated outcome. 
The bi-factor integration approach represents a potentially 
more powerful alternative to meta-analysis when phenotypic 
heterogeneity across studies needs to be taken into account.

The current study utilizes simulated and applied items that were 
already identified as pertaining to a unidimensional trait, in this 
case, overt aggression. An unexplored potential advantage of the 
IDA harmonization framework is the possibility to fit more complex 
models to larger item sets. Previous research has demonstrated 
that removing unreliable items in a questionnaire of a phenotype 
increases the power in a GWAS of that phenotype (Laurin et al., 

2015). Further, conducting an association test of a sum score of 
items that actually originate from multiple subtypes of a trait can 
reduce GWAS power substantially compared to appropriately 
modeling the separate, but correlated, traits (van der Sluis et al., 
2010). Applications of BFIM are contingent upon investigating the 
psychometric properties of the available questionnaires, and sum 
scores including irrelevant or unrelated items would likely lead to 
increasingly less power than an IDA approach. Future investigations 
can consider more complicated integration models.

In practice, the BFIM will need to be adapted to the 
particular data available. For example, one could utilize the 
bi-factor integration model and the multi-rater integration 
model of Bauer et al. (2013) to combine mother and father 
data across different studies in one analysis. Additionally, one 
could incorporate a limited number of covariate effects on item 
parameters as in the MNLFA model (Curran and Hussong, 
2009; Curran et al., 2014). Consider a data integration scenario 
in which there were slight measurement differences across 
males and females. Rather than fitting separate models for 
each gender, one could use the bi-factor integration model 
and adjust for gender differences on individual items. Though 
real-world applications require careful application of complex 
measurement models, our study indicates that better phenotypic 
modeling with a reference panel can increase power at less cost 
than simply increasing sample size.

limitations
Our simulation design represents a fairly simplified scenario 
compared to the complexity of research designs in applied data. 
In real data applications, on the other hand, it is difficult to 
calculate exact power gains in a specific study because the true 
data-generating process in the measurement model is usually 
unknown. Furthermore, results from simulation studies are 
specific to the chosen conditions and do not necessarily generalize 
to all possible scenarios. The pattern of power gains found in 
this study is expected to hold whenever phenotype precision 
is improved. The multiple imputation procedure included for 
comparison in our simulation was also limited to using the default 
imputation model and limited settings. In practice, multiple 
imputation can employ a wide range of prediction models, and 
the procedure can be optimized by increasing iterations and/
or the number of datasets. Our results should not be seen as 
an indictment on imputation itself but on the shortcomings of 
using only default settings. However, the BFIM is better suited to 
explicitly adjust for differences in item sets as they pertain to the 
true underlying phenotype score, compared to a composite score 
of imputed items.

Data integration approaches also face challenges and potential 
pitfalls. Data integration requires extensive data sharing efforts 
among collaborators. While data sharing is often quite streamlined 
in genetic consortia, such agreements are not the norm for joint 
research ventures. The social sciences in general may benefit 
by working more collaboratively across existing studies. Data 
integration requires extremely careful planning, and joint model-
fitting efforts can be very complex. Furthermore, model fitting with 
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a combined dataset that has a high degree of missingness requires 
computationally intensive estimation algorithms. On the other 
hand, computational resources are increasingly affordable, and 
models can be fitted with the help of distributed cluster computing 
and cloud storage. Finally, IDA is only effective if models are 
properly specified. Substantive experts and data analysts must work 
together closely to ensure that integrated phenotype models are 
theoretically sound.

Data integration is not a cure-all procedure to improve SNP 
detection, but it is a reasonable and additional step that can be 
taken in genetic collaborations to improve power in GWAS of 
complex phenotypes. With all of the effort in genetic research 
projects to collect genetic data, impute gene SNP information, 
control for genetic relatedness, and collaborate internationally, 
the additional effort in phenotype modeling is certainly a small 
price to pay for meaningful gains in power.

DATA AVAIlABIlITY STATeMenT
All datasets and scripts for the simulation study are included 
in the article/Supplementary Material. The NTR and CATSS 
datasets are not publicly available to protect sensitive phenotype 
information for participating children. The NTR and CATSS 
datasets are available by submitting a data request.

eTHICS STATeMenT
Data were previously collected under approval of the participating 
cohorts’ original governing boards. All data used in the current 
analyses were collected under protocols that have been approved 
by the appropriate ethics committees, and studies were performed 

in accordance with the ethical standards laid down in the 1964 
Declaration of Helsinki and its later amendments.

AUTHOr COnTrIBUTIOnS
JL, DM, and GL devised the bi-factor approach for integration. JL 
designed and conducted simulation studies. DM and GL advised 
simulation design. JL and GL drafted the first manuscript. DB, 
MB and CB supervised NTR data collections and set up the 
reference panel. AH facilitated the merging of aggression data 
across multiple ACTION partners. PL, HL, and SL supervised 
CATSS data collection and its partnership in ACTION. All 
authors edited the manuscript.

FUnDInG
This work was supported by FP7-602768 “ACTION: Aggression 
in Children: Unraveling gene-environment interplay to inform 
Treatment and InterventiON strategies” from the European 
Commission/European Union Seventh Framework Program. 
GL was in addition supported by DA-018673 awarded by the 
National Institutes of Health: The funders had no role in study 
design, data collection and analysis, decision to publish, or 
preparation of the manuscript.

SUPPleMenTArY MATerIAl
The Supplementary Material for this article can be found online at: 
https://www.frontiersin.org/articles/10.3389/fgene.2019.01227/
full#supplementary-material

reFerenCeS
Achenbach, T. M., and Rescorla, L. A. (2001). Manual for the ASEBA school-

age forms and profiles (child behavior checklist for ages 6–18). ASEBA, 
Burlington, Vermont.

Allison, P. D. (2003). Missing data techniques for structural equation modeling. 
Journal of abnormal psychology, 112 (4), 545

Anckarsäter, H., Lundström, S., Kollberg, L., Kerekes, N., Palm, C., Carlström, E., 
et al. (2011). The Child and Adolescent Twin Study in Sweden (CATSS). Twin 
Res. Hum. Genet. 14 (6), 495–508. doi: 10.1375/twin.14.6.495

Asparouhov, T., and Muthén, B. (2010). Weighted least squares estimation with 
missing data. Mplus Technical Appendix, 2010, 1–10.

Bartels, M., Boomsma, D. I., Hudziak, J. J., van Beijsterveldt, C. E. M., and van den 
Oord, E. J. C. G. (2007). Twins and the study of rater (dis)agreement. Psychol. 
Methods 12, 451–466. doi: 10.1037/1082-989X.12.4.451

Bartels, M., Hendriks, A., Mauri, M., Krapohl, E., Whipp, A., Bolhuis, K., et al. 
(2018). Childhood aggression and the co-occurrence of behavioural and 
emotional problems: results across ages 3-16 years from multiple raters in six 
cohorts in the EU-ACTION project. Eur. Child Adolesc. Psychiatry 9, 1105–
1121. doi: 10.1007/s00787-018-1169-1

Bath, P. A., Deeg, D., and Poppelaars, J. (2010). The harmonisation of 
longitudinal data: a case study using data from cohort studies in The 
Netherlands and the United Kingdom. Ageing Soc. 30, 1419–1437. doi: 
10.1017/S0144686X1000070X

Bauer, D. J., Howard, A. L., Baldasaro, R. E., Curran, P. J., Hussong, A. M., 
Chassin,  L., et al. (2013). A trifactor model for integrating ratings across 
multiple informants. Psychol. Methods 18, 475–493. doi: 10.1037/a0032475

Bennett, S. N., Caporaso, N., Fitzpatrick, A. L., Agrawal, A., Barnes, K., Boyd, H. A., 
et al. (2011). Phenotype harmonization and cross-study collaboration in GWAS 
consortia: the GENEVA experience. Genet. Epidemiol. 35, 159–173. doi: 10.1002/
gepi.20564

Bollen, K. A. (1989). Structural equations with latent variables (New York: Wiley 
and Sons). doi: 10.1002/9781118619179

Boomsma, D. I. (2015). Aggression in children: Unraveling the interplay of genes 
and environment through (epi)genetics and metabolomics. J. Pediatr. Neonatal 
Individualized Med. 4, e040251.

Cattell, R. B. (1952). Factor analysis: an introduction and manual for the psychologist 
and social scientist. New York: Harper. 

Carrig, M. M., Manrique-Vallier, D., Randby, K. W., Reiter, J. P., and Hoyle, R. K. 
(2015). A nonparametric, multiple imputation-based method for the 
retrospective integration of data sets. Multivariate Behav. Res. 50, 383–397. doi: 
10.1080/00273171.2015.1022641

Chen, F. F., West, S. G., and Sousa, K. H. (2006). A comparison of bifactor and 
second-order models of quality of life. Multivariate Behav. Res. 41, 189–225. 
doi: 10.1207/s15327906mbr4102_5

Collins, L. M., Schafer, J. L., and Kam, C. M. (2001). A comparison of inclusive and 
restrictive strategies in modern missing data procedures. Psychol. Methods 6, 
440–451. doi: 10.1037/1082-989X.6.4.330

Curran, P. J., and Hussong, A. M. (2009). Integrative data analysis: The simultaneous 
analysis of multiple data sets. Psychol. Methods 14, 81–100. doi: 10.1037/a0015914

Curran, P. J., Mcginley, J. S., Bauer, D. J., Hussong, A. M., Burns, A., Chassin, L., 
et al. (2014). A moderated nonlinear factor model for the development of 
commensurate measures in integrative data analysis. Multivariate Behav. Res. 
49, 214–231. doi: 10.1080/00273171.2014.889594

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 1227

https://www.frontiersin.org/articles/10.3389/fgene.2019.01227/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.01227/full#supplementary-material
https://doi.org/10.1375/twin.14.6.495
https://doi.org/10.1037/1082-989X.12.4.451
https://doi.org/10.1007/s00787-018-1169-1
https://doi.org/10.1017/S0144686X1000070X
https://doi.org/10.1037/a0032475
https://doi.org/10.1002/gepi.20564
https://doi.org/10.1002/gepi.20564
https://doi.org/10.1002/9781118619179
https://doi.org/10.1080/00273171.2015.1022641
https://doi.org/10.1207/s15327906mbr4102_5
https://doi.org/10.1037/1082-989X.6.4.330
https://doi.org/10.1037/a0015914
https://doi.org/10.1080/00273171.2014.889594
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Phenotype Harmonization in Multi-Cohort GWASLuningham et al.

15

Devlieger, I., Mayer, A., and Rosseel, Y. (2016). Hypothesis Testing Using 
Factor Score Regression: A Comparison of Four Methods. Educational and 
Psychological Measurement, 76(5), 741–770. doi: 10.1177/0013164415607618

Enders, C. K. (2010). Applied missing data analysis. New York: Guilford press.
Evangelou, E., and Ioannidis, J. P. A. (2013). Meta-analysis methods for genome-wide 

association studies and beyond. Nat. Rev. Genet. 14, 379–389. doi: 10.1038/nrg3472
Gatz, M., Reynolds, C. A., Finkel, D., Hahn, C. J., Zhou, Y., and Zavala, C. (2015). 

Data harmonization in aging research: Not so fast. Exp. Aging Res. 41, 475–495. 
doi: 10.1080/0361073X.2015.1085748

Gibbons, R. D., and Hedeker, D. R. (1992). Full-information item bi-factor 
analysis. Psychometrika 57, 423–436. doi: 10.1007/BF02295430

Grice, J. W. (2001). Computing and evaluating factor scores. Psychol. Methods 6, 
430–450. doi: 10.1037/1082-989X.6.4.430

Grotzinger, A. D., Rhemtulla, M., de Vlaming, R., Ritchie, S. J., Mallard, T. T., 
Hill,  W. D., et al. (2019). Genomic structural equation modelling provides 
insights into the multivariate genetic architecture of complex traits. Nat. 
Human Behav. 3 (5), 513. doi:10.1038/s41562-019-0566-x

Holzinger, K., and Swineford, F. (1937). The bi-factor method. Psychometrika 2, 
41–54. doi: 10.1007/BF02287965

Hudziak, J. J., van Beijsterveldt, C. E. M., Bartels, M., Reitveld, M., Rettew, D., 
Derks, E., et al. (2003). Individual differences in aggression: Genetic analyses 
by age, gender, and informant in 3-, 7-, and 10-year-old Dutch twins. Behav. 
Genet. 5, 575–589. doi: 10.1023/A:1025782918793

Hussong, A. M., Curran, P. J., and Bauer, D. J. (2013). Integrative data analysis in 
clinical psychology research. Annu. Rev. Clin. Psychol. 9, 61–89. doi: 10.1146/
annurev-clinpsy-050212-185522

Jak, S. (2017). Testing and explaining differences in common and residual factors across 
many countries. J. Cross-Cult. Psychol. 48, 75–92. doi: 10.1177/0022022116674599

Larson, T., Anckarsäter, H., Gillberg, C., Ståhlberg, O., Carlström, E., and 
Kadesjö, B. (2010). The autism–tics, AD/HD and other comorbidities inventory 
(A-TAC): further validation of a telephone interview for epidemiological 
research. BMC Psychiatry 10, 1. doi: 10.1186/1471-244X-10-1

Laurin, C. A., Hottenga, J. J., Willemsen, G., Boomsma, D. I., and Lubke, G. H. 
(2015). Genetic analyses benefit from using less heterogeneous phenotypes: 
an illustration with the hospital anxiety and depression scale (HADS). Genet. 
Epidemiol. 39, 317–324. doi: 10.1002/gepi.21897

Lawley, D. N., and Maxwell, A. E. (1963). Factor analysis as a statistical method 
(London: Buttersworth).

Ligthart, L., Bartels, M., Hoekstra, R. A., Hudziak, J. J., and Boomsma, D. I. (2005). 
Genetic contributions to subtypes of aggression. Twin Res. Hum. Genet. 8, 
483–491. doi: 10.1375/twin.8.5.483

Little, R. J. A., and Rubin, D. B. (2002). Statistical analysis with missing data. (2nd 
ed) (New York: Wiley). doi: 10.1002/9781119013563

Lord, F. M., and Novick, M. R. (1968). Statistical theories of mental test scores 
(Reading, Mass: Addison-Wesley).

Lubke, G. H., McArtor, D. B., Boomsma, D. I., and Bartels, M. (2018). Genetic 
and environmental contributions to the development of childhood aggression. 
Developmental psychology, 54 (1), 39.

Luningham, J. M., McArtor, D. B., Bartels, M., Boomsma, D. I., and Lubke, G. H. 
(2017). Sum scores in twin growth curve models: practicality versus bias. 
Behav. Genet. 47, 516–536. doi: 10.1007/s10519-017-9864-0

Marcoulides, K. M., and Grimm, K. J. (2017). Data integration approaches to 
longitudinal growth modeling. Educ. Psychol. Measurement 77, 971–989. doi: 
10.1177/0013164416664117

McArdle, J. J., Grimm, K. J., Hamagami, F., Bowles, R. P., and Meredith, W. (2009). 
Modeling life-span growth curves of cognition using longitudinal data with 
multiple samples and changing scales of measurement. Psychol. Methods 14, 
126–149. doi: 10.1037/a0015857

Muthén, L. K., and Muthén, B. O. (1998-2017). Mplus user's guide. 8th ed. (Los 
Angeles: Muthén and Muthén).

Nugent, W. R. (2009). Construct validity invariance and discrepancies in meta-
analytic effect sizes based on different measures: A simulation study. Educ. 
Psychol. Measurement 69, 62–78. doi: 10.1177/0013164408318762

Pappa, I., St. Pourcain, B., Benke, K., Cavadino, A., Hakulinen, C., Nivard, M. G., 
et al. (2016). A genome-wide approach to children's aggressive behavior: the 
EAGLE consortium. Am. J. Med. Genet. Part B.: Neuropsychiatr. Genet. 171, 
562–572. doi: 10.1002/ajmg.b.32333

Pedersen, N. L., Christensen, K., Dahl, A. K., Finkel, D., Franz, C. E., and Gatz, 
M. (2013). IGEMS: the consortium on interplay of genes and environment 

across multiple studies. Twin Res. Hum. Genet. 16, 481–489. doi: 10.1017/
thg.2012.110

R Core Team (2018). R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. Available at: https://
www.R-project.org/.

Rietveld, C. A., Conley, D., Eriksson, N., Ekso, T., Medland, S. E., Vinkhuyzen, A. A., 
et al. (2014). Replicability and robustness of genome-wide association studies for 
behavioral traits. Psychol. Sci. 25, 1975–1986. doi: 10.1177/0956797614545132

Robinson, M. R., Wray, N. R., and Visscher, P. M. (2014). Explaining additional 
genetic variation in complex traits. Trends In Genet. 30, 124–132. doi: 10.1016/j.
tig.2014.02.003

Rubin, D. B. (1976). Inference and missing data. Biometrika 63 (3), 581–592.
Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys (New York: 

Wiley). doi: 10.1002/9780470316696
Schwabe, I., and van den Berg, S. M. (2014). Assessing genotype by environment 

interaction in case of heterogeneous measurement error. Behav. Genet. 44 (4), 
394–406. doi: 10.1007/s10519-014-9649-7

Siddique, J., Reiter, J. P., Brincks, A., Gibbons, R. D., Crespi, C. M., and Brown, C. H. 
(2015). Multiple imputation for harmonizing longitudinal non-commensurate 
measures in individual participant meta-analysis. Stat In Med. 34, 3399–3414. 
doi: 10.1002/sim.6562

Skrondal, A., and Laake, P. (2001). Regression among factor scores. Psychometrika 
66, 563–575. doi: 10.1007/BF02296196

Van Beijsterveldt, C., Groen-Blokhuis, M., Hottenga, J., Franić, S., Hudziak,  J., 
Lamb, D., Boomsma, D. (2013). The Young Netherlands Twin Register 
(YNTR): longitudinal twin and family studies in over 70,000 children. Twin 
Research and Human Genetics 16 (1), 252–267. doi: 10.1017/thg.2012.118

van Buuren, S., and Groothuis-Oudshoorn, K. (2011). mice: Multivariate 
imputation by chained equations in R. J. Stat. Software 45 (3), 1–67. doi: 
10.18637/jss.v045.i03

van Buuren, S. (2018). Flexible imputation of missing data. 3rd Ed (Chapman and 
Hall/CRC Press). doi: 10.1201/b11826

van den Berg, S. M., Glas, C. A. W., and Boomsma, D. I. (2007). Variance 
decomposition using an IRT measurement model. Behav. Genet. 37, 604–616. 
doi: 10.1007/s10519-007-9156-1

van den Berg, S. M., de Moor, M. H. M., Mcgue, M., Pettersson, E., Terracciano, A., 
Verweij, K. J. H., et al. (2014). Harmonization of the neuroticism and 
extraversion phenotypes across inventories and cohorts in the Genetics of 
Personality Consortium: an application of item response theory. Behav. Genet. 
44, 295–313. doi: 10.1007/s10519-014-9654-x

van der Sluis, S., Verhage, M., Posthuma, D., and Dolan, C. V. (2010). Phenotypic 
complexity, measurement bias, and poor phenotypic resolution contribute to 
the missing heritability problem in genetic association studies. PloS One 5, 
e13929. doi: 10.1371/journal.pone.0013929

Verhulst, B., Maes, H., and Neale, M. (2017). GW-SEM: a statistical package to 
conduct genome-wide structural equation modeling. Behav. Genet. 47, 345–
359. doi: 10.1007/s10519-017-9842-6

Wray, N. R., Birley, A. J., Sullivan, P. F., Visscher, P. M., and Martin, N. G. (2007). 
Genetic and phenotypic stability of measures of neuroticism over 22 years. 
Twin Res. Hum. Genet. 10, 695–702. doi: 10.1375/twin.10.5.695

Xu, M. K., Gaysina, D., Barnett, J. H., Scoriels, L., van de Lagemaat, L. N., Wong, A., 
et al. (2015). Psychometric precision in phenotype definition is a useful step in 
molecular genetic investigation of psychiatric disorders. Trans. Psychiatry 8, 
316–326. doi: 10.1038/tp.2015.86

Yeh, M. T., Coccaro, E. F., and Jacobson, K. C. (2010). Multivariate behavior 
genetic analyses of aggressive behavior subtypes. Behav. Genet. 40, 603–617. 
doi: 10.1007/s10519-010-9363-z

Conflict of Interest: The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be construed as 
a potential conflict of interest.

Copyright © 2019 Luningham, McArtor, Hendriks, van Beijsterveldt, Lichtenstein, 
Lundström, Larsson, Bartels, Boomsma and Lubke. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other forums is permitted, provided the original 
author(s) and the copyright owner(s) are credited and that the original publication in this 
journal is cited, in accordance with accepted academic practice. No use, distribution or 
reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 1227

https://doi.org/10.1177/0013164415607618
https://doi.org/10.1038/nrg3472
https://doi.org/10.1080/0361073X.2015.1085748
https://doi.org/10.1007/BF02295430
https://doi.org/10.1037/1082-989X.6.4.430
https://doi.org/10.1038/s41562-019-0566-x
https://doi.org/10.1007/BF02287965
http://doi.org/10.1023/A:1025782918793
https://doi.org/10.1146/annurev-clinpsy-050212-185522
https://doi.org/10.1146/annurev-clinpsy-050212-185522
https://doi.org/10.1177/0022022116674599
https://doi.org/10.1186/1471-244X-10-1
https://doi.org/10.1002/gepi.21897
https://doi.org/10.1375/twin.8.5.483
https://doi.org/10.1002/9781119013563
https://doi.org/10.1007/s10519-017-9864-0
https://doi.org/10.1177/0013164416664117
https://doi.org/10.1037/a0015857
https://doi.org/10.1177/0013164408318762
https://doi.org/10.1002/ajmg.b.32333
https://doi.org/10.1017/thg.2012.110
https://doi.org/10.1017/thg.2012.110
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1177/0956797614545132
https://doi.org/10.1016/j.tig.2014.02.003
https://doi.org/10.1016/j.tig.2014.02.003
https://doi.org/10.1002/9780470316696
https://doi.org/10.1007/s10519-014-9649-7
https://doi.org/10.1002/sim.6562
https://doi.org/10.1007/BF02296196
http://doi.org/10.1017/thg.2012.118
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.1201/b11826
https://doi.org/10.1007/s10519-007-9156-1
https://doi.org/10.1007/s10519-014-9654-x
https://doi.org/10.1371/journal.pone.0013929
https://doi.org/10.1007/s10519-017-9842-6
https://doi.org/10.1375/twin.10.5.695
https://doi.org/10.1038/tp.2015.86
https://doi.org/10.1007/s10519-010-9363-z
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Phenotype Harmonization in Multi-Cohort GWASLuningham et al.

16

APPenDIX I: DATA-GenerATInG MODel 
PArAMeTerS
Four data-generating models were used in the simulations—three 
using a bi-factor model, and a fourth using a higher-order latent 
variable model that resulted in the bi-factor model having slight 
misspecification to the generated data. The vector of latent variables 
was generated from the following model for an individual j

 ηη ββ ζζ
j j j

x= +  (9)

where η is a k×1 vector of k latent factors for person j, xj is a Q × 
1 vector of Q predictors (the genetic variant and any covariates) 
for person j, β is a k × Q vector of effect sizes of each covariate 
on each latent factor, and ζ is a vector of residuals for the k 
factors. In these simulations, we generated a general factor that 
was predicted by a single nucleotide polymorphism (SNP) and a 
covariate term, along with two independent specific factors that 
did not have exogenous predictors: 
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In this equation, the residual variance of the general factor is 
0.799 because it is calculated as 1 minus the sum of the variance 
explained by the predictors. 

The item-level data is then generated from the factors and the 
factor loading matrices: 

 y
j j j

= +ΛΛηη εε  (11)

where yj is a p×1 vector of items for person j, Λ is a p×k matrix of 
factor loadings for each p items on the k factors, and ɛj is a p×1 
vector of item residuals. To manipulate the conditions across the 
first three data-generating conditions, the loadings matrices and 
residual variance matrix was manipulated: 
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The residual variance is calculated as:

 
Var MVN diag

j
ε( ) − ′( )( )  I

p
~ ,0 ΛΛ ΛΛ

 
(13)

Meaning that the variance is a diagonal matrix. In addition, a 
covariance is inserted in the variance matrix such that σ38 = 0.6. 

For the fourth data-generating model, the general factor is 
directly predicted by the SNP and covariate as before, and then the 
two cohort-specific factors are directly caused by the general factor 
itself, such that it accounts for 60% of the variance in the two factors: 
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The item loading matrix is then p×2 instead of p×3 and the 
items also have a direct effect of the general factor. For graphical 
representations, see Figure 2. The codes used to conduct the 
simulation are attached as a supplementary downloadable folder.
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