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Using Multivariate Genetic Modeling to Detect 
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Large numbers of sibling pairs or other relatives are needed to detect linkage between a 
quantitative trait locus (QTL) and a marker, especially if the variance of the QTL is low 
relative to the total phenotypic variance of the trait. One strategy to increase the power 
to detect linkage is to reduce the environmental variance in the trait under analysis. This 
approach was explored by carrying out a series of simulation studies in which multivar- 
iate observations were used to estimate individual genotypic values at a QTL, that plei- 
otropically affected more than one trait. Simulations for different QTL allele frequencies 
with a completely informative marker showed that the power to detect the QTL increased 
substantially when estimates of individual genotypic values at the QTL were used in the 
linkage analysis instead of phenotypic observations. An advantage of this approach is 
that, rather than employing phenotypic selection, individuals with extreme genotypes may 
be selected when ascertaining a sample of extreme families. 

KEY WORDS: Genotypic factor scores; multivariate genetic modeling; linkage analysis; quanti- 
tative trait locus. 

I N T R O D U C T I O N  

With the availability o f  highly polymorphic mark- 
ers the genetic mapping of  behavioral traits in hu- 
mans has become possible. Several strategies have 
been developed to map quantitative trait loci 
(QTL), which are based on identifying marker al- 
leles that are inherited identical by descent (IBD). 
Robust methods that study the genetic linkage o f  a 
quantitative trait and a polymorphic marker in data 
from sibling pairs have been developed, for ex- 
ample by Penrose (1938) and Haseman and Elston 
(1972). Amos  and Elston (1989) have extended 
these methods to other types o f  noninbred relative 
pairs. These methods suppose that if  a marker is 
cosegregating with a quantitative trait, then siblings 
whose trait values are more alike are more likely 
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to receive the same alleles identical by descent at 
a closely linked marker locus than siblings whose 
resemblance for the trait is less. 

However, even with large numbers o f  highly 
polymorphic markers that allow the IBD status of  
family members such as siblings to be known, the 
power to detect a single locus that influences quan- 
titative traits in humans is low (e.g., Blackwelder 
and Elston, 1982). One strategy to increase power 
to detect genetic linkage is to reduce the environ- 
mental variance o f  the phenotype under study. The 
structural equation model that can be used to ana- 
lyze multivariate data f rom genetically informative 
samples offers the possibility to statistically reduce 
environmental variance by estimating an individu- 
als genotypic value at a QTL. This approach was 
investigated by carrying out a series o f  simulations 
in which individual genotypic scores were first es- 
timated from multivariate phenotypes, which were 
all influenced by the same quantitative trait locus, 
and then used in a linkage analysis. 
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Individual genotypic scores may  be estimated 
from multivariate data measured in genetically in- 
formative relatives. Multivariate observations from 
family members can be used to test whether the 
same genetic factor pleiotropically influences mul- 
tiple phenotypically correlated measures (Martin 
and Eaves, 1977; Boomsma and Molenaar, 1986). 
I f  a common genetic factor is found (see Fig. 1), 
scores on this factor can be constructed for an in- 
dividual by standard methods for the estimation o f  
factor scores (Boomsma et  al., 1990, 1991). Factor 
scores cannot be estimated in the usual statistical 
sense, since they are not parameter values but val- 
ues ascribed to unobservable variates belonging to 
an individual (Lawley and Maxwell,  1971, Chap. 
8). Because the number o f  observations usually is 
smaller than the number o f  latent factors, it is nec- 
essary to introduce a minimum variance or least 
squares principle to estimate individual factor 
scores [see Sans et  al. (1978) for a review o f  dif- 
ferent methods]. The regression method for the es- 
timation o f  factor scores minimizes the sum o f  
squares o f  the difference between estimated and 
true factor scores and is the preferred method when 
the primary interest is in the factor scores them- 
selves. 

We have shown that the regression method 
may be successfully applied in multivariate genetic 
modeling and that in both cross-sectional and lon- 
gitudinal designs, individual estimates o f  factor 
scores can be reliably obtained (Boomsma et  aL, 
1990, 1991). 

In this article the regression method to esti- 
mate factor scores was applied to simulated mul- 
tivariate twin data to address the question whether  
power to detect a QTL could be increased by using 
individual genotypic factor scores in a linkage anal- 
ysis. Simulations were carried out to compare the 
power  o f  the Haseman and Elston (1972) regres- 
sion method for linkage analysis with observed 
quantitative phenotypes and with estimated individ- 
ual genotypic scores. Three-variate phenotypes 
were simulated for MZ and DZ twin pairs. The 
total heritability o f  all three phenotypes was .5 and 
the heritability o f  the QTL was .25. Data from MZ 
and DZ twins were used to fit the multivariate 
model to the phenotypic observations. Data from 
DZ twins were used in the linkage analysis. By 
taking this approach, not only is the environmental  
variance in the data accounted for, but also the 

background genetic variation that is not associated 
with the QTL. 

S I M U L A T I O N S  

(1) QTL and marker  data were generated for 
1000 fathers and 1000 mothers.  Only heterozygous 
parents were simulated and heterozygotes mated 
only with heterozygotes that carried different al- 
leles than they carried themselves,  so that the par- 
ents had four marker alleles. Thus IBD status o f  
their offspring was always known for certain. 

(2) The QTL had two alleles in Hardy-Wein-  
berg equilibrium that were not associated with the 
marker  alleles. A represents the increaser allele at 
the QTL with frequency p,  the genotypic value o f  
A A  is d; a represents the decreaser allele with fre- 
quency q = 1 - p and genotypic value - d .  There 
was no dominance, the genotypic value o f  A a  was 
0. Three allele frequencies for  the increaser allele 
were considered: .5, .7, and .9. Given these allele 
frequencies and an additive genetic variance at the 
QTL of  1, the value o f  d was obtained by solving 
for the variance o f  the QTL: o ~2 ~--- 1 = 2pqd  z. This 
gives d = 1.543 f o r p  = .7 (with QTL mean ~t = 
(p - q )d  = .617), and d -- 1.414 and 2.357 for 
allele frequencies .5 and .9, respectively. 

(3) For DZ twin pairs two parents were drawn 
without replacement from the parental population 
and one o f  their chromosomes was randomly se- 
lected for each o f  their two children. This gave 
QTL values for each sibling and IBD status (0,1,2) 
for sibling pairs. 

(4) Three phenotypes were created for each 
subject according to (see also Fig. 1): 

P(/j) = )tq(i)*QTL(/) + )%(i)*E(j) + G(ij) + U(ij) 

where each phenotype P (i = 1, 2, 3) for each 
subject (j = 1 . . . . .  N) is a function o f  the QTL, 
which influences all three phenotypes and a func- 
tion o f  an environmental  factor (E) that is uncor-  
related in family members,  but also influences all 
three phenotypes, kq and Xo are factor loadings o f  
the phenotype on the QTL and the environmental 
factor common to all three phenotypes. Each phe- 
notype is also influenced by a unique genetic factor 
(G) and a unique environmental  factor (U). Within 
sibling pairs the QTL and the unique genetic fac- 
tors are correlated .5 on average. The variance o f  
all latent factors was 1, and all factor loadings Xq 
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and Xo also equaled 1. The variance o f  each of  the 
three phenotypes thus was equal to 4, and their her- 
itability to 2/4 = .5. The heritability o f  the QTL 
was 1/4 = .25. 

(5) The same model was used to simulate data 
for MZ twins, who always have the same QTL val- 
ues and the same unique genetic scores (G). No  
marker data were generated for MZ twins; their 
data were used only to estimate the genetic and 
environmental factor loadings in the multivariate 
model, so that individual factor scores could be es- 
timated. 

(6) Data sets for MZ and DZ pairs were cre- 
ated. Simulations with 200, 400, and 600 pairs o f  
MZ and DZ twins were considered. One thousand 
replications were simulated for allele frequencies p 
= .5, .7, and .9, without recombination between the 
marker and the QTL. For allele frequency p = .5, 
two additional series o f  1000 simulations were car- 
ried out, with recombination fractions | = .05 and 
|  

A N A L Y S E S  

(1) The true multivariate model was fitted to 
the simulated data and factor loadings on the com- 
mon QTL and E factors and the unique variances 
o f  G and U were estimated. These estimates were 
used for the construction o f  a weight matrix, ac- 
cording to the regression method, to obtain indi- 
vidual factor scores. The weight matrix was used 
to compute factor scores for each subject, using 
both his own multivariate phenotypic data and the 
data from his sibling: 

f = A ' P  

f 

p = 

A = 

where 

[QTL1, QTL2, El ,  E2] is a vector o f  factor 
scores o f  sibl and sib2 to be estimated, 
the measured multivariate phenotype o f  ob- 
servations in sib I and sib2, 
weight matrix that is constant across subjects 
and depends on factor loadings and unique 
variances. 

A is obtained by minimizing the sum of  squares o f  
the difference between estimated and true factor 
scores; 

Fig. 1. Path model showing quantitative trait locus (QTL) and 
environmental factors common to three phenotypes plus 
unique genetic (G) and environmental (U) factors associated 
with each trait. Because the QTL pleiotropically influences 
more than one phenotype, estimates of individual QTL values 
may be obtained by standard methods for the estimation of 
factor scores. 

A = xI*A'Z -~ = xIzA'(AWA' + H) -~ 

where 

A = matrix o f  loadings on QTL and E factors 
xtr = correlation matrix o f  factor scores 
H -- matrix o f  unique genetic and environmental 

variances 

(2) The three phenotypic observations and the 
estimated genotypic factor scores were used in a 
linkage analysis. The Haseman and Elston (1972) 
sib-pair approach for linkage analysis was em- 
ployed in which the squared difference between the 
scores of  siblings (either their estimated QTL val- 
ues or their observed phenotypic values) is re- 
gressed on the proportion o f  alleles shared IBD at 
the marker (rr = IBD/2): 

Y = oL + [3-rr 

where Y is the squared difference between quanti- 
tative trait values of  siblings and ,rr is the propor- 
tion o f  alleles IBD at the marker (~r = 0, .5, 1). 
Haseman and Elston (1972) showed that e~ = cr 2 + 
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Table I. Power to Detect Linkage Between a Two-Allele Quantitative Trait Locus (QTL) and a Fully 
Informative Polymorphic Marker Using the Haseman-Elston Regression Approach (with ~x = .05) for 

Different Numbers of Sib Pairs" 

Percentage 

N = 200 pairs N = 400 pairs N = 600 pairs 
Allele frequency 
and recombination Estimated Observed Estimated Observed Estimated Observed 
fraction QTL phenotype QTL phenotype QTL phenotype 

p ~ .5 

| = 0 43 21 72 38 88 53 
p = . 7  
| = 0 40 21 70 39 88 53 
p = . 9  
| = 0 36 18 69 38 84 51 
p = .5 
| = .05 28 13 49 25 68 36 
p = .5 
| = .10 18 10 33 18 47 24 

,, Results based on 1000 simulations for each allele frequency (p) and recombination fraction (| 

2crg z and [3 = - 2 ( 1  - 2@)2o-g z, where @ is the re- 
combination fraction between the QTL and the 

2 is the additive genetic variance o f  marker and o-~ 
the QTL. If  the regression is negative and signifi- 
cant, it implies linkage with either a large QTL at 
some distance from the marker or a smaller QTL 
closer to the marker locus. 

R E S U L T S  

Table I first gives the outcomes of  the linkage 
analyses for the cases in which there is no recom- 
bination between the QTL and the marker. Using 
the phenotypic observations in the analysis shows 
the well-known low power to detect linkage with a 
quantitative phenotype. Even when 600 pairs o f  
siblings are available, the power is only around 
50%. In contrast, for all allele frequencies, the 
power is increased substantially when estimated 
genotypic values are used in the analysis instead o f  
observed phenotypic values. When there is recom- 
bination between the QTL and the marker, the in- 
crease in power still remains roughly twice as high 
for genotypic factor scores compared to phenotypic 
observations. 

D I S C U S S I O N  

The results presented in this paper demon- 
strate that power to detect linkage in a sibling anal- 
ysis o f  quantitative traits can be increased 

substantially by analyzing unobserved, estimated, 
genotypes instead o f  observed, measured, pheno- 
types. Using the information contained in the co- 
variance between quantitative traits in this way  
leads to a substantial increase in power to detect 
quantitative trait loci. 

The method o f  estimating individual scores on 
latent factors is well established in factor analysis 
(Lawley and Maxwell, 1971; Mulaik, 1972). To be 
applied in genetic modeling, the method requires 
multiple QTL indicators measured in genetically 
related individuals. As more or better indicators o f  
the QTL are available, individual factor scores can 
be obtained more reliably. Estimation o f  individual 
genotypic and environmental scores is numerically 
also possible in univariate designs, but this gives 
intercorrelated estimates o f  independent factor 
scores. In a univariate design, for example, DZ 
twins supply 2 observations (one on twinl and one 
on twin2). Even under a simple additive genetic 
model, this does not provide enough information to 
obtain independent factor scores, since four factor 
scores need to be estimated (two genotypic scores 
that are correlated in siblings and two environmen- 
tal scores that are uncorrelated). The method is not 
restricted to twin data and can easily be generalized 
to multivariate data from other family members. 

In their 1989 paper Lander and Botstein sug- 
gested three strategies to increase power in QTL 
mapping. The first two methods, selective genotyp- 
ing o f  extreme phenotypes and interval mapping or 
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simultaneous search, have been explored in several 
papers. Carey and Williamson (1991), Cardon and 
Fulker (1994), Eaves and Meyer (1994), and Risch 
and Zhang (1995) have extensively discussed the 
value of  nonrandom sampling strategies and shown 
that selective genotyping of extreme individuals 
may lead to an appreciable difference in power of  
linkage studies of quantitative traits. 

Likewise, methods for QTL multipoint inter- 
val mapping in humans have successfully been de- 
veloped. Goldgar (1990) introduced a method for 
estimating the proportion of genetic material IBD 
in a chromosomal region based on marker loci 
spanning the region and incorporated these esti- 
mates into a variance-components model. Compar- 
ing this approach to the Haseman and Elston 
method showed it to be more powerful. Fulker et  

al. (1994, 1995) demonstrated both an increase in 
power and good prospects for approximate QTL 
location employing interval mapping methods 
based on multiple regression. Recently, Kruglyak 
and Lander (1995) described how to obtain the 
complete multipoint inheritance information for 
sibling pairs, which uses all available marker in- 
formation, and how to employ this information to 
map both qualitative and quantitative traits. 

The approach outlined in this paper represents 
an example of the third strategy to increase power 
in QTL mapping, i.e., statistically decreasing en- 
vironmental variance by using an estimate of  an 
individual's genotypic value at a QTL. This ap- 
proach also decreases the background genetic var- 
iance that is not associated with the QTL. The three 
approaches to increase power, selective genotyp- 
ing, multipoint mapping, and reduction of environ- 
mental and genetic background variation are not 
mutually exclusive and may, in fact, be employed 
simultaneously. The largest increases in power 
probably will be realized by combining them into 
one design. 

It remains to be established how the approach 
outlined in this paper relates to fitting the complete 
multivariate model to the data simultaneously with 
the marker information. Since factor scores can be 
estimated only imprecisely, it is likely that fitting 
the complete model to the data will show even 
larger increases in power than the approach out- 
lined in this paper. Amos et  al. (1990) explored 
how multiple measures can be incorporated into a 
multivariate regression approach that estimates the 
linear function that results in the strongest corre- 

lation between the squared pair differences and 
IBD status at the marker locus. Schork (1993) ap- 
plied the method proposed by Goldgar (1990) to 
bivariate phenotypes and found that a larger genetic 
correlation between the two traits led to a larger 
increase in power. However, these last methods al- 
ways require marker information on all subjects. 

One clear advantage of  the method of esti- 
mated genotypic factor scores compared to general 
multivariate models is that selective genotyping of 
extreme individuals can be based on sibling pairs 
that have been selected on the basis of their ex- 
treme genotype, instead of  their phenotype. 
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