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SUPPLEMENTARY	FIGURES	

	
	
Supplementary	Figure	1.	Power	to	 test	whether	 the	observed	correlation	among	partners	 is	
greater	 than	 expected	 in	 the	 population	 for	 estimated	 genome-wide	 sharing	 of	 single	
nucleotide	polymorphisms	 (SNPs).	We	assume	50,000	independent	common	SNP	markers	in	the	
genome	and	a	type-I	error	rate	of	0.05.	h2	is	the	simulated	heritability	captured	by	common	loci,	and	
r	is	the	phenotypic	correlation.	Genome-wide	sharing	statistic	between	any	two	individuals	j	and	l	is	
!!" = !

! !!"!!"!
!!! 	where	!! = !!!!!!

!!! !!!!
	with	!!the	SNP	dosage	score	and	!!the	frequency	of	the	

ith	SNP.	
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Supplementary	 Figure	 2.	 Approximate	 summary	 statistic	 best	 linear	 unbiased	 genetic	
predictor	 (SBLUP).	 In	 our	 simulation	 study,	 5000	 SNPs	 were	 randomly	 selected	 as	 causal	
variants	 and	 effect	 sizes	 were	 allocated	 to	 these	 markers	 from	 a	 standard	 normal	
distribution.	 For	 each	 of	 50	 replicates,	 a	 phenotype	was	 generated	 for	 all	 individuals,	 a	 genome-
wide	association	study	(GWAS)	of	the	phenotype	was	conducted	in	a	randomly	selected	set	of	20,000	
individuals	at	1.2	Million	HapMap3	SNPs,	 the	SNP	effect	estimates	were	converted	 to	approximate	
best	linear	unbiased	predictor	(SBLUP)	SNP	effects	using	a	reference	set	of	10,000	randomly	selected	
individuals,	 the	 BLUP	 SNP	 effects	 were	 used	 to	 create	 an	 approximate	 BLUP	 genetic	 predictor	 in	
19,000	randomly	selected	individuals.	We	compare	the	SBLUP	predictor	(blue	circles)	to	a	predictor	
made	 from	 directly	 estimated	 BLUP	 SNP	 effects	 in	 an	 individual-level	 REML	model	 (BLUP;	 green	
circles),	 and	 to	 a	 predictor	made	 from	 the	GWAS	 least	 squares	 SNP	 estimates	 (least	 squares;	 grey	
circles).	The	left-hand	panel	shows	the	slope	of	a	regression	where	the	phenotype	is	the	dependent	
variable	 and	 the	 genetic	 predictor	 is	 the	 independent	 variable.	 The	 right-hand	 panel	 shows	 the	
correlation	 of	 the	 phenotype	 with	 the	 genetic	 predictor.	 The	 SBLUP	 approach	 has	 the	 same	
regression	slope	and	correlation	with	the	phenotype	as	the	individual-level	BLUP,	and	has	improved	
prediction	accuracy	over	a	genetic	predictor	made	from	least	squares	estimates	of	the	SNP	effects.	
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Supplementary	 Figure	 3.	 Predicting	 phenotype	 of	 an	 individual	 from	 the	 genotype	 of	 their	
partner	 to	 estimate	 the	degree	 to	which	 assortative	mating	 creates	 a	 genetic	 correlation	 at	
trait-associated	 loci	 among	partners.	We	conducted	a	simulation	study	using	real	genotype	data	
from	 60,000	 unrelated	 individuals.	 For	 each	 of	 50	 replicates,	 a	 phenotype	 was	 generated	 for	 all	
individuals,	a	genome-wide	association	study	(GWAS)	of	the	phenotype	was	conducted	in	a	randomly	
selected	 set	 of	 20,000	 individuals	 at	 1.2	 Million	 HapMap3	 SNPs,	 the	 SNP	 effect	 estimates	 were	
converted	to	approximate	best	linear	unbiased	predictor	(BLUP)	SNP	effects	using	a	reference	set	of	
10,000	randomly	selected	individuals,	the	BLUP	SNP	effects	were	used	to	create	a	genetic	predictor	
in	19,000	randomly	selected	individuals	that	were	assigned	to	9500	pairs,	and	finally	we	estimated	
the	genetic	assortative	mating	correlation	for	the	phenotype	using	our	framework	(see	Methods).	We	
simulated	 three	 scenarios.	 In	 the	 first	 scenario	 (phenotypic	 assortment),	 individuals	 were	 paired	
based	 on	 their	 phenotype,	 with	 a	 spousal	 phenotypic	 correlation	 of	 0.2.	 In	 the	 second	 scenario	
(ancestry	 assortment),	 individuals	were	 paired	 based	 on	 their	 ancestry,	 defined	 as	 an	 individual’s	
cumulative	 sum	 of	 the	 first	 10	 eigenvector	 values	 calculated	 from	 the	 SNP	 data,	 with	 a	 spousal	
correlation	 of	 0.8.	 In	 the	 third	 scenario	 (trait	 correlated	 ancestry	 assortment),	 individuals	 were	
paired	on	their	ancestry	with	a	spousal	correlation	of	0.8	and	the	first	10	eigenvectors	explained	5%	
of	 the	 phenotypic	 variance,	which	 creates	 a	 genotype-environment	 correlation	 for	 the	 phenotype.	
The	genetic	assortative	mating	correlation	for	the	phenotype	is	shown	across	50	replicates	for	each	
pairing	 scenario,	 divided	 into	 different	 analysis	 approaches	 depending	 upon	 whether	 population	
stratification	 was	 controlled	 for	 in	 the	 discovery	 analysis.	 In	 the	 first	 scenario	 (phenotypic	
assortment),	 our	 approach	 returns	 the	 correct	 simulated	 value	 when	 population	 stratification	 is	
controlled	 for	 in	 the	 discovery	 analysis	 (shown	 in	 blue)	 and	 is	 only	 slightly	 reduced	 toward	 zero	
when	population	stratification	is	not	accounted	for	in	the	discovery	analysis	(shown	in	green).	In	the	
second	 scenario	 (ancestry	 assortment)	 the	 spouse	 pair	 correlation	 is	 0	 for	 the	 phenotype	 and	we	
found	 that	 the	genetic	 assortative	mating	 correlation	 for	 the	 trait	was	never	 significantly	different	
from	 zero	 under	 the	 extreme	 scenario	 of	 no	 control	 for	 population	 stratification	 in	 the	 discovery	
analysis.	In	the	third	scenario	(trait	correlated	ancestry	assortment)	there	is	genotype-environment	
correlation	for	the	phenotype	and	again	we	found	that	the	genetic	assortative	mating	correlation	for	
the	 trait	was	 never	 significantly	 different	 from	 zero	 under	 the	 extreme	 scenario	 of	 no	 control	 for	
population	stratification	in	the	discovery	analysis.	Therefore,	our	approach	is	unbiased	provided	that	
principal	components	of	the	genotypic	data	capture	the	stratification	that	occurs.	
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Supplementary	Figure	4.	BLUP	properties	of	 the	SBLUP	predictor.	In	our	simulation	study,	we	
altered	 the	 lambda	 parameter	 across	 simulations	 in	 the	 approximate	 summary	 statistic	 BLUP	
(SBLUP)	 analysis,	 and	 then	 re-estimated	 the	 genetic	 correlation	 at	 trait-associated	 loci.	 Across	 all	
simulations	 the	 phenotypic	 correlation	 among	 partners	 was	 0.2.	 When	 the	 genetic	 predictor	 has	
BLUP	 properties	 of	 a	 regression	 coefficient	 of	 phenotype	 on	 predictor	 of	 1,	 and	 there	 is	 direct	
assortative	mating	on	 the	phenotype,	 then	 the	 estimated	 correlation	at	 trait-associated	 loci	 equals	
the	 phenotypic	 correlation.	 When	 the	 genetic	 predictor	 does	 not	 have	 BLUP	 properties	 then	 the	
estimate	changes	in	proportion	to	the	phenotypic	correlation	multiplied	by	the	slope	of	the	genetic	
predictor.	
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Supplementary	 Figure	 5.	 Simulation	 study	 of	 assortative	 mating	 on	 a	 correlated	 trait.	 We	
extended	 our	 simulation	 study	 using	 real	 genotype	 data	 from	 60,000	 unrelated	 individuals,	 to	
simulate	assortative	mating	for	a	correlated	trait.	For	each	of	50	replicates,	we	paired	individuals	on	
the	basis	of	an	unobserved	genetically	correlated	trait	(genetic	correlation,	rG,	either	0.5	or	0.75,	and	
heritability	 either	 0.5	 and	 0.8),	 with	 a	 partner	 correlation,	 rP,	 of	 either	 0.75	 or	 0.5.	 We	 then	 re-
estimated	Eq.	7	in	each	simulation	scenario	(blue	square)	for	a	focal	trait	that	was	measured	and	we	
compare	 the	 estimates	 gained	 to	 their	 expectation	 under	 Eq.	 7.10	 (grey	 circles).	 The	 phenotypic	
correlation	among	partners	for	the	measured	focal	trait	is	shown	by	green	diamonds.	Error	bars	give	
the	SD	of	the	estimates	across	50	replicates.	
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Supplementary	Figure	6.	Association	between	ancestry,	phenotype,	and	genetic	predictors	of	
height	and	body	mass	 index	 (BMI)	among	partners.	(a)	In	the	combined	sample	there	is	a	high	
correlation	at	 the	 leading	principal	 components	 (PCs)	of	 the	 genetic	data	 among	partners	because	
pairing	 occurs	within	 each	 study	 and	within	 ethnicities.	 (b)	Without	 correction	 for	 PCs,	 a	 genetic	
predictor	of	height	and	BMI	for	an	individual	is	correlated	with	the	leading	PC	values	of	their	partner	
both	positively	and	negatively.	 (c)	Phenotypically,	when	height	and	BMI	are	converted	to	a	z-score	
within	 each	 cohort,	 the	 PCs	 for	 which	 there	 is	 a	 high	 correlation	 among	 partners	 do	 not	 show	 a	
consistent	 directional	 correlation	 with	 either	 trait.	 (d)	 Therefore	 without	 correction	 for	 PCs,	 the	
estimate	of	the	degree	to	which	partners	share	trait	associated	loci	is	underestimated	because	there	
is	no	 consistent	directional	match	between	ancestry	 sharing	and	 the	 correlation	between	ancestry	
and	trait	value.	Error	bars	give	the	SE	of	the	estimates.	
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Supplementary	 Figure	 7.	 SNP	 heritability	 of	 differences	 among	 individuals	 in	 their	 partner	
phenotype.	 In	our	simulation	study,	we	estimated	the	SNP	heritability	of	 the	simulated	phenotype	
using	 REML,	 from	 which	 a	 theoretical	 expectation	 of	 the	 SNP	 heritability	 of	 differences	 among	
individuals	 in	 their	 partner	 phenotype	 can	 be	 derived	 (theoretical	 expectation).	 This	 theoretical	
expectation	 was	 then	 compared	 to	 the	 estimates	 gained	 from	 the	 analysis	 of	 the	 simulated	 data.	
Values	shown	are	the	point	estimates	across	the	50	simulation	replicates.	
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Supplementary	Figure	8.	Predicting	phenotype	from	associations	of	an	individual’s	phenotype	
with	 their	 partner’s	 genotype.	 In	 our	 simulation	 study,	 we	 estimated	 the	 correlation	 of	 the	
simulated	 phenotype	 and	 a	 BLUP	 genetic	 predictor,	 from	 which	 a	 theoretical	 expectation	 can	 be	
derived	of	the	correlation	of	an	individual’s	phenotype	with	a	genetic	predictor	created	from	the	SNP	
effects	gained	 in	a	mixed-linear	model	association	analysis	using	 their	partners	genotype	as	a	 trait	
(theoretical	 expectation).	 This	 theoretical	 expectation	was	 then	 compared	 to	 the	 estimates	 gained	
from	 the	 analyses	 of	 the	 simulated	 data.	 Values	 shown	 are	 the	 point	 estimates	 across	 the	 50	
simulation	replicates.	
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Supplementary	Figure	9.	Correlation	of	genetic	predictors	among	partners	for	height	(green)	
and	 educational	 attainment	 (blue)	 in	 7,780	 couples	 from	 the	 UK	 Biobank	 study,	 estimated	
using	different	subsets	of	SNP	markers.	Using	summary	statistics	from	recent	GWAS	studies	and	
the	clumping	procedure	 in	 the	software	PLINK,	we	selected	subsets	of	SNPs	 in	 linkage	equilibrium	
(LD	 correlation	 <	 0.01	 within	 1MB)	 that	 were	 associated	 with	 each	 trait	 across	 a	 wide	 range	 of	
significance	 thresholds.	 For	 each	 significance	 threshold,	 the	 SNPs	 selected	 were	 used	 to	 create	 a	
genetic	 predictor	 directly	 from	 the	 ordinary	 least	 squares	 estimates	 of	 the	 SNP	 effects,	 and	 we	
estimated	the	proportion	of	phenotypic	variance	explained	and	the	correlation	among	partners.	The	
expectation	of	the	correlation	in	genetic	predictors	among	partners	is	the	product	of	the	phenotypic	
correlation	among	partners	(0.2	 for	height	and	0.4	 for	educational	attainment)	and	the	phenotypic	
variance	explained	by	the	genetic	predictor,	and	this	is	given	on	the	x-axis.	The	y-axis	then	gives	the	
estimate	 of	 the	 correlation	 of	 genetic	 predictors	 among	 partners.	 Each	 point	 represents	 the	
expectation	 and	 the	 estimate	 obtained	 using	 a	 predictor	 that	 contains	 SNPs	 selected	 at	 different	
clumping	 thresholds,	with	 the	 size	 of	 the	 point	 reflecting	 the	 number	 of	 SNPs	 used	 in	 the	 genetic	
predictor.	Error	bars	show	the	SE	of	the	estimate.	
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SUPPLEMENTARY	TABLES	

Analysis	 Cohort	 Sample	size	 Number	of	SNP	Markers	

Spousal	pair	analyses	

Composite	sample	(ARIC,	HRS,	LL,	MCTFR)	 		 		

Atherosclerosis	Risk	in	Communities	Study	(ARIC)	 2,245	pairs	 1,171,654	

Health	and	Retirement	Study	(HRS)	 1,195	pairs	 1,337,895	

LifeLines	Study	(LL)	 818	pairs	 1,170,052	

Minnesota	Center	for	Twin	and	Family	Research	Study	(MCTFR)		 786	pairs	 1,195,036	

Total	 5,044	pairs	 1,135,785	

Sample	from	23andMe	research	participant	cohort	 11,908	pairs	 1,134,501	

Sample	from	the	UK	Biobank	 7,780	pairs	 1,162,900	

Approximate	BLUP	genetic	
prediction	

Reference	SNP	marker	set	from	TwinGene	study	 10,729	individuals	 1,121,023	

Ridge	regression	prediction	in	individuals	from	the	combined	sample	(ARIC,	HRS,	
LL,	MCTFR)	that	are	not	part	of,	or	related	to,	spousal	pairs	 18,134	individuals	 1,135,785	

Simulation	study	 Unrelated	European	individuals	from	Kaiser	Permanente	study	(GERA)	 10,729	individuals	 1,121,023	

Table	S1.	Cohorts	used	at	each	stage	of	analysis	with	their	sample	size	and	number	of	imputed	HapMap3	SNP	markers	passing	QC.	
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SUPPLEMENTARY	NOTE	

Expected	genome-wide	SNP	sharing	conditional	on	phenotypic	similarity	

Consider	 a	 phenotype	 as	!! = !!"!!!
!!! + !! ,	 where	!!" =  !!"!!!!

!!! !!!!
,	 with	 xij	 the	 SNP	

dosage	score	of	the	 jth	 	 individual,	bi	the	allelic	effect	of	the	ith	causal	variant	with	allele	
frequency	 pi,	 and	 ej	 the	 residual	 (environmental	 effect)	 with	 y	 having	mean	 zero	 and	
variance	1,	and	k	the	number	of	SNP	markers.	If	!! = !!"!!!

!!! ,	then	!!! = (!!!)!
!!! =

 ℎ!,	with	ℎ!	the	heritability	of	the	phenotype.		

For	genome-wide	sharing,	the	best-case	scenario	for	detection	is	to	consider	the	causal	
variants	 directly	 and	 to	 assume	 that	 all	 causal	 variants	 are	 independent.	 For	 any	 two	
individuals	 j	 and	 l,	 the	 sharing	 statistic	!!" 	can	 be	 considered	 as	 a	 random	 variable	
!!" = (!!) !!"!!"!

!!! .	At	 the	population-level,	! !!"!!" = 0	and	!!!"!!"! = 1	and	hence	
! !!" = 0	and	!!!"! = 1/!.	

The	relationship	between	phenotypic	and	genomic	sharing	is	!!!!|!!" = ℎ!!!" + !,	which	
for	 a	 randomly	 selected	 pair	 of	 individuals	 in	 a	 population	! !!!! = 0	and	!!!!!! = 1.	
Previous	work	on	assortative	mating	has	 focussed	on	 the	genomic	 sharing	at	SNP	 loci	
conditional	 on	 phenotypic	 sharing	 which	 is	 !!"|!!!! = ! + !!!!! + ! ,	 where	 ! =
! !!",!!!!

!!!!!
! = ℎ!!!!	and	µ	is	an	intercept	with	! ! = 0.	

Hence,	

	 	 !!"|!!!! = ℎ!!!!!!!! + ! =  !!
! !!!! + !	 	 [1]	

If	 the	 phenotypes	 for	 the	 pairs	 j	 and	 l	 are	 ascertained	 as	 is	 the	 case	 when	 selecting	
partners,	 then	we	can	express	 the	expected	value	of	 their	product	as	 their	phenotypic	
correlation,	! !!!!|!"#$%&!'()$(& = !,	with	r	the	phenotypic	correlation.		

The	expectation	of	Eq.	[1]	then	becomes:	

	 	 	 ! !!"|!!!! = !ℎ!/!,	 	 	 	 [2]	

with	variance:		

!!!"|!!!!! = !!!" ! − ! !! ! !!!!
! = 1

! − ℎ! ! !!!!
!
= (1!)(1 −

ℎ!
! )	

Hence	for	detection	using	a	statistical	test,	the	non-centrality	parameter	(NCP)	of	a	test	
for	mean	sharing	among	N	selected	pairs	against	a	population-level	value	of	zero	is:	

	 !!" = ! !!!! !!

(!!)(!!
!!
! )

= !!!!!
!!!! 	 	 	 [3]	

If	 the	heritability	 is	~1	and	if	pairs	are	selected	with	 identical	phenotypes	(r	=	1)	then	
NCP	=	N/(k-1),	and	thus	the	power	depends	on	the	number	of	causal	variants	relative	to	
the	sample	size	 (N	pairs).	Evidence	suggests	 that	 for	a	complex	phenotype	 like	height,	
k>>1000	and	 thus	even	 in	 the	scenario	where	all	 causal	variants	are	known	and	pairs	
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are	 selected	 with	 identical	 phenotypes,	 ~8000	 pairs	 would	 be	 required	 to	 detect	 a	
significant	deviation	from	the	null	at	p<0.05	if	we	assume	k=2000.		

In	 reality,	 the	 phenotypic	 correlation	 among	 partners	 for	 height	 is	 r	 ~	 0.2,	 the	 h2	
captured	 by	 SNP	 loci	 ~	 0.5,	 and	 k	 is	 the	 effective	 number	 of	 common	 independent	
markers	 in	 the	 genome	 ~50,0001.	 Placing	 these	 numbers	 into	 Eq.	 [3]	 reveals	 that	 7	
million	 couples	would	 be	 required	 in	 order	 to	 detect	 a	 deviation	 from	 expectation	 in	
genome-wide	sharing.	Power	calculations	from	Eq.	[3]	are	presented	in	Supplementary	
Figure	1	assuming	a	type-I	error	rate	of	0.05.		

These	 results	 demonstrate	 that	 very	 large	 sample	 size	 is	 required	 to	 detect	 whether	
couples	share	more	SNP	marker	alleles	than	randomly	selected	pairs	of	individuals	from	
the	population	and	thus	we	devised	a	novel	approach	to	estimating	the	genetic	basis	of	
phenotypic	assortment.		

Genetic	(co)variance	of	phenotype	and	mate	choice	in	related	individuals	
A	 recent	 study32,	 presents	 a	 variance	 components	 approach	 for	 examining	 the	 genetic	
basis	 of	 assortative	 mating	 for	 a	 phenotype.	 They	 present	 a	 bivariate	 linear	 mixed	
effects	 model,	 where	 the	 first	 phenotype	 is	 the	 phenotype	 of	 the	 individual	 and	 the	
second	 is	 the	 phenotype	 of	 their	 chosen	 partner.	 In	 this	 model,	 the	 phenotypic	
(co)variance	 is	 partitioned	 into	 two	 components,	 genetic	 (co)variance	 using	 a	
relationship	matrix	estimated	from	SNP	data,	and	residual	(co)variance.	The	study	uses	
data	that	is	a	mixture	of	unrelated	and	related	individuals	and	as	a	result,	like	all	family	
designs,	 it	 does	 not	 allow	 for	 a	 complete	 separation	 of	 genetic	 effects	 from	 common	
environment	 effects.	 This	 is	 because	 genetic	 and	 common	 environment	 effects,	 while	
being	 uncorrelated,	may	 be	 confounded	 as	 close	 relatives	 share	 both	 genes	 and	 their	
environment	to	a	greater	extent	than	to	other	individuals.		

Consider	a	phenotype	as	!! = !! + !! + !! ,	where	!!is	 the	additive	genetic	value	 for	 the	
jth	 individual,	!! 	are	 cultural	 or	 common	 environment	 effects	 that	 are	 shared	 among	
close	 relatives	 who	 come	 from	 the	 same	 family	 background,	 and	 ej	 the	 residual	
(environmental	effect).	We	assume	! !, ! =  ! !, ! =  0	and	a	phenotypic	variance	of	
1,	 giving	!!! = ℎ! +  !! +  !!,	 with	ℎ!	the	 heritability.	 One	 approach	 to	 estimating	 the	
heritability	 of	 a	 trait	 is	 to	 determine	 the	 covariance	 amongst	 full	 siblings,	 with	ℎ! =
2!(!!, !!),	where	!! 	and	!! 	are	the	phenotypes	of	sibling	j	and	k	respectively.		
The	covariance	between	full	siblings	is	! !!, !! =  ! !!, !! + ! !!, !! +  ! !!, !! .	We	
can	 then	 consider	 the	 covariance	 between	 a	 sibling	 and	 their	 partner	 which	 is	
! !!, !!! =  ! !!, !!! + ! !!, !!! +  ! !!, !!! ,	 and	 the	 covariance	 between	 the	

partners	of	the	full	siblings	is	then	! !!!, !!! =  ! !!!, !!! + ! !!!, !!! +  ! !!!, !!! .	
The	 expected	 value	of	 the	 estimate	of	 heritability	 of	mate	 choice	 from	 this	 full	 sibling	
design	is	ℎ!!!"#$! = 2! !!!, !!! .	

The	 covariance	 terms	depend	on	 the	 assumptions	 as	 to	 the	mechanism	of	 assortment	
and	 the	 assumptions	 on	 how	 the	 shared	 /	 common	 environment	 effects,	 c,	 covary	
between	 the	 full	 siblings	 and	 their	 spouses.	 In	 an	 extreme	 case,	 where	 all	 mate	
assortment	 is	 due	 to	 shared	 common	 environment	 effects	 and	 these	 are	 fully	 shared	
between	full	siblings	then,	! !!, !! = !

! ℎ
! + !!	and	! !!, !!! = ! !!, !!! !! = !,	with	

the	correlation	in	the	non-genetic	shared	environment	effects	among	partners	and	m	is	
the	 phenotypic	 correlation	 among	 partners.	 In	 this	 scenario,	 the	 only	 covariance	
between	 the	spouses	of	 the	 full	 siblings	 is	 through	sharing	of	 family	background,	with	
! !!!, !!! =  ! !!!, !!! = ! !!!, !!! !! = ! !!, !!! ! !!, !! ! !!, !!! c! =
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 ! !!, !!!
!
c! = ! !!, !!! !.	With	these	assumptions,	the	expected	value	of	the	estimate	

of	heritability	of	realized	mate	choice	is	ℎ!!!"#$! = 2! !!!, !!! = 2! !!, !!! !.	

If	 we	 assume	 values	 of	 ! !!, !!! 	from	 0.1	 to	 0.5	 and	 !! 	from	 0.1	 to	 0.2	 then	
ℎ!!!"#$! ranges	from	0.2%	to	10%	and	!	ranges	from	0.01	to	0.1.	For	height,	m	has	been	
characterized	 in	 the	 human	 population	 as	~0.2,	 common	 environment	 effects	 of	~0.1	
have	 been	 reported54,	 	 there	 is	 evidence	 for	 pairing	 on	 family	 background	 with	
correlation,	! !!!, !!! =  0.554	and	a	recent	study	finds	ℎ!!!"#$! ~0.0432,	meaning	that	the	
model	 described	here	 is	 not	 consistent	with	 current	 findings	 for	 height.	However,	 the	
contribution	 of	 shared	 environment	 to	 phenotypic	 variance,	 and	 the	 degree	 to	which	
individuals	 assort	 based	 on	 environmental	 effects	 such	 as	 family	 similarity	 will	 vary	
depending	upon	the	phenotype.	It	is	clear	that	under	this	model	and	these	assumptions,	
covariance	of	the	phenotypes	of	the	spouses	of	relatives	can	contain	an	environmental	
component.	 Therefore,	 when	 using	 data	 on	 relatives	 mate	 choice	 based	 on	 family	
background	can	make	it	appear	as	though	attraction	to	a	mate	of	similar	phenotype	can	
be	 explained	 by	 a	 person’s	 genotype	 with	 a	 high	 ‘genetic’	 correlation	 between	 the	
phenotype	and	choice	of	the	phenotype.		

In	 this	 study,	 we	 use	 unrelated	 individuals	 when	 estimating	ℎ!!!"#$! .	 Although	 the	
estimates	 of	ℎ!!!"#$! 	for	 unrelated	 individuals	will	 be	 unbiased	 by	 shared	 environment	
effects,	 partitioning	 the	 phenotypic	 covariance	 of	 spousal	 pairs	 into	 genetic	 and	
environmental	 components	 in	 a	 bivariate	 mixed	 model	 will	 likely	 always	 yield	 a	
significant	 estimate	 of	 both	 genetic	 and	 environmental	 covariance,	 even	 under	 direct	
mate	 choice.	 Therefore,	 conclusions	 as	 to	 the	 relative	 contributions	 of	 different	
mechanisms	are	difficult	and	hence	we	take	the	approach	of	predicting	the	phenotype	of	
an	 individual	 from	 the	 genotype	 of	 their	 partner,	 enabling	 a	 direct	 comparison	 of	 the	
degree	 to	which	phenotypic	 assortment	 among	partners	 creates	 a	 correlation	 at	 trait-
associated	loci,	that	is	free	of	environmental	confounding.		

Correlation	of	effect	size	estimates	made	using	the	same	individuals	
Another	 approach	 to	 assessing	 whether	 the	 genetic	 basis	 of	 a	 phenotype	 and	 mate	
choice	 of	 phenotype	 are	 the	 same,	 is	 to	 estimate	 the	 correlation	 between	 (i)	 GWAS	
summary	 statistics	 for	 the	 trait,	 and	 (ii)	GWAS	 summary	 statistics	when	 the	partner’s	
phenotype	 is	 treated	 as	 the	 choice	 of	 an	 individual.	 However,	 when	 these	 two	
association	 studies	 are	 conducted	 on	 identical	 samples	 in	 the	 same	 population	 (in	 (i)	
and	 (ii)	 the	 same	 genetic	 markers	 are	 used),	 this	 analysis	 can	 result	 in	 a	 significant	
correlation	 in	 the	 estimated	 regression	 coefficients	 even	when	 no	 genetic	 correlation	
exists	between	the	trait	and	choice	of	the	trait.		

Consider	 a	 scenario	 where	 two	 phenotypes	 measured	 on	 the	 same	 individuals,	
!1! = !!"!1!!

!!! + !1! ,	and	!2! = !!"!2!!
!!! + !2! ,	 the	allelic	effects	b1	and	b2	arise	

from	 a	 multivariate	 normal	 distribution	 with	!!!! = ℎ!!/!,	!!!! = ℎ!!/!	and	!!!,!! = 0,	
giving	a	genetic	correlation	between	the	two	phenotypes	of	0.	The	environmental	effects	
e1	 and	 e2	 also	 arise	 from	 a	 multivariate	 normal	 distribution	 with	!!!! = 1 − ℎ!!,	
!!!! = 1 − ℎ!! 	and	!!!,!! 	the	 environmental	 covariance,	 which	 will	 be	 high	 when	 the	
phenotype	 is	 measured	 on	 identical	 individuals.	 For	 example,	 it	 is	 likely	 that	 family	
background	 is	 correlated	with	 the	 environment	 experienced	 during	 development,	 the	
developmental	 environment	 influences	 variation	 of	 many	 phenotypes,	 and	 family	
background	influences	mate	choice,	which	together	create	an	environmental	covariance	
between	an	individual’s	trait	value	and	their	choice	of	partner.	
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Following55,	 if	!1! 	and	!2!are	estimated	in	 linear	regressions	on	identical	samples	then	

the	 covariance	 in	 the	 estimated	 effects	 is	!"# !1!, !2! = ! !!!!
!

!!!!
! ,	 which	 reflects	 the	

phenotypic	correlation	m,	a	correlation	that	may	be	both	genetic	and	environmental.	To	
demonstrate	 this	 we	 use	 the	 same	 simulation	 approach	 described	 above,	 to	 generate	
two	 phenotypes	 (ℎ!! = 0.7;  ℎ!! = 0.04 )	 with	 a	 genetic	 correlation	 of	 zero	 and	 an	
environmental	 correlation	 of	 0.2.	 Across	 50	 simulation	 replicates,	 the	 estimated	 SNP	
effect	 sizes	 were	 correlated	 at	 0.203	 (0.01	 SD).	 Therefore	 in	 this	 study,	 we	 took	 the	
approach	 of	 conducting	 the	 discovery	 and	 then	 prediction	 in	 independent	 samples	 to	
avoid	the	potential	for	environmentally	induced	covariance	in	SNP	effect	sizes	estimates.	
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SUPPLEMENTARY	METHODS	

Approximate	BLUP	genetic	predictor	(SBLUP)		
Genome-wide	 association	 studies	 (GWAS)	 analyze	 one	 SNP	 at	 a	 time	 using	 the	model	
! = !!!! + ! ,	 where	 y	 is	 a	! × 1 	vector	 of	 the	 phenotype,	!! 	is	 a	! × 1 	vector	 of	
genotypes	for	each	SNP	i	=	1,	…,	k	(coded	as	0,	1,	or	2	defining	the	number	of	reference	
alleles),	with	k	 the	number	of	SNP	markers,	and	e	 is	an	! × 1	vector	of	 residuals.	 	The	
computed	 least-squares	estimates	of	 the	effect	size,	!! ,	of	 this	model	can	be	written	as	
diag !!! ! = !!!.		
We	re-estimated	these	SNP	estimates	in	a	random	effects	model	that	converts	the	least	
squares	 estimates,	!,	 into	 approximate	 best	 linear	 unbiased	 predictors	 (BLUP).	 The	
motivation	behind	this	is	that	prediction	power	is	maximized	and	the	genetic	predictor	
gained	has	BLUP	properties	which	include	of	a	regression	slope	of	1	on	the	phenotype2,3.	
To	obtain	the	BLUP	estimates	of	SNP	effects,	the	effects	of	all	SNPs	are	fitted	jointly	in	a	
random	 effect	 model	 as	 y	 =	 Xb	 +	 e	 with	!~!(0, !!!)	and	!~!(!, !!!),	 and	 the	 BLUP	
solution	is	! = !!! + !λ !!!!!,	with	λ = !!!/!!!	.	Although	X	and	y	in	the	discovery	set	
are	 not	 available	when	 using	 summary	 statistics,	 we	 can	 approximate	 the	 covariance	
matrix	 of	 SNP	 genotypes,	!!! ,	 by	 that	 from	 a	 reference	 cohort,	!!! ,	 that	 is	
independent	 from	the	prediction	population	as	!!! ≈ !!!!!

!!
= !	with	!! 	and	!! 	being	

the	samples	sizes	of	the	discovery	set	and	reference	sample,	respectively.	This	assumes	
that	 the	 allele	 frequencies	 and	 linkage	 disequilibrium	 (LD)	 between	 SNPs	 in	 the	
discovery	 set	 are	 similar	 to	 those	 in	 a	 reference	 sample.	 We	 can	 also	 approximate	
!!! = diag ! !.	We	therefore	have	! = ! + !λ !!diag ! !.	
Since	 the	 random	 effect	 model	 assumes	 every	 SNP	 has	 an	 effect	 on	 the	 trait,	 the	
proportion	 of	 phenotypic	 variance	 explained	 by	 all	 SNPs	 is	ℎ!! = !!!!/!!!	with	 k	 being	
the	 total	 number	 of	 SNPs	 used	 in	 the	 analysis	 and	!!!	being	 the	 phenotypic	 variance	
(which	 is	~1	 if	 the	 discovery	 GWAS	was	 based	 on	 standardised	 phenotype).	We	 then	
have	λ = ! 1 − ℎ!! /ℎ!!.	
For	each	 individual,	 the	BLUP	SNP	effects	can	be	used	 to	create	a	genetic	predictor	as	
! =  !!!

!!! b! ,	where	!! 	the	number	of	SNP	minor	alleles	at	SNP	i	(again	coded	0,	1,	or	
2),	b! 	the	BLUP	effects	 estimate	at	 SNP	 i,	which	 is	 then	 summed	over	k	 SNPs	 to	give	a	
! × 1	vector	 of	 predicted	 genetic	 effects,	!.	 This	 predictor	 has	 the	 expected	 property	
! !, ! =  !!!	where	g	is	the	genetic	predictor	gained	if	the	true	SNP	effects	were	known.	
This	 follows	 a	 recent	 study4	 and	 is	 implemented	 within	 the	 software	 package	 GCTA5	
under	the	term	SBLUP	(--cojo-sblup).		

We	used	the	meta-analysis	SNP	effect	size	estimates	and	gained	BLUP	approximations	of	
the	SNP	effects	using	the	TwinGene	cohort	(Supplementary	Table	1)	as	a	reference.	Our	
theory	and	empirical	analyses	outlined	below	rely	on	the	assumption	that	 the	slope	of	
the	regression	of	the	BLUP	predictor	on	the	phenotype	is	~1.	We	therefore	conducted	a	
ridge	regression	to	find	the	value	of	λ	that	gives	a	predictor	with	these	BLUP	properties	
of	a	 regression	slope	of	1	on	 the	phenotype.	We	selected	 individuals	 from	 the	cohorts	
listed	 in	Supplementary	Table	1	that	had	genotypic	and	phenotypic	data,	but	were	not	
part	of	a	spouse	pair	or	related	to	the	spouse	pairs,	and	we	devised	an	algorithm	to	grid	
search	the	value	of	lambda	that	gave	a	regression	slope	of	1	within	this	data.	Data	access	
restrictions	prevented	a	ridge	regression	tailored	specifically	to	the	23andMe	data.	
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Predicting	the	phenotype	of	an	individual	from	the	genotype	of	their	partner	
To	estimate	the	degree	to	which	assortative	mating	creates	a	genetic	correlation	at	trait-
associated	 loci,	we	 first	 determined	 the	 relationship	 between	 the	 genetic	 predictor	 of	
males	and	the	phenotype	of	their	female	partner,	and	vice	versa	as:	

!! =  !! + !!! +  !! + !!,		 	 	 	 	 	 	 [4]	
!! =  !! +  !!! + !! + !!	
where	! 	is	 a	! × 	1	 vector	 of	 the	 total	 genetic	 effects	 of	 the	 individuals,	 with	! =
! 0, !!!! ,	A	 is	 the	 genetic	 relationship	 matrix	 (GRM)	 between	 either	 males	 (when	
estimating	!! ),	 or	 females	 (when	 estimating	!! )	 with	 its	 jlth	 element	 being	!!" =
!
! !!"!!!! !!"!!!!

!!!(!!!!)
!
!!! 	where	 pi	 is	 the	 frequency	 of	 the	 minor	 allele	 of	 the	 imputed	

HapMap3	common	SNP	i.	and	x	is	the	SNP	genotype	(best	guess	for	the	combined	cohort	
and	 rounded	 imputed	diploid	dosage	 for	 the	23andMe	 cohort).	 The	GRM	accounts	 for	
population	stratification	 in	 the	phenotype,	as	 it	 is	equivalent	 to	 fitting	all	 the	principal	
components	within	the	model.	Eq.	[4]	was	estimated	using	the	GREML	function	in	GCTA	
v1.25.	

The	expectation	of	the	regression	coefficient	from	a	linear	regression	of	the	phenotype	
of	males	on	the	genetic	predictor	of	their	female	partners	and	vice	versa	can	be	derived	
under	different	 types	of	assortative	mating.	Under	direct	assortment	on	a	quantitative	
trait	in	Eq.	[4]:	

![! !!, !! ] =  !!!,!!! !!, !! ,   with !!!,!! =
! !!,!!
!!(!!)

 	 	 	 [5]	

If	!!	and	!! 	are	standardized	to	a	z-score	with	mean	=	0	and	variance	=	1	then:		

![!!!,!!] = ! !!, !! 	 	 	 	 	 	 	 	 [6]	

where	r	is	the	correlation.	Under	the	BLUP	assumptions	of	! !, ! =  !!!	then:	
![! !!, !! ] =  ! !!, !! =  !!!

! 	 	 	 	 	 	 [7]	

and	in	Eq.	[4]	the	slope	of	the	regression	of	!!	on	!!is:		

![!!!!!] =
! !!,!!

!!!
! = ! !!,!! ! !!,!!

! !!,!!
=  ! !!, !! 	 	 	 	 [8]	

An	alternative	 scenario	 is	where	assortment	occurs	on	a	 trait	 that	 is	 correlated	 to	 the	
observed	 trait.	 If	y	 is	 the	 trait	 upon	which	assortment	occurs,	 but	z	 is	 the	 trait	 that	 is	
measured	then	the	observed	correlation	among	couples	for	trait	z	will	be:	

! !!, !! = ! !, ! !! !!, !! 	 	 	 	 	 	 	 [9]	

If	we	assume	both	traits	have	unit	variance,	we	can	consider	the	phenotypic	regression	
of	z	on	y:	

! =  ! !, ! ! + !	 	 	 	 	 	 	 	 [10]	

and	the	genetic	regression	of	z	on	y	assuming	that	the	true	genetic	value	is	known:	

!! =  ! !!, !! ℎ!/ℎ! !! + !	 	 	 	 	 	 	 [11]	

with	ℎ!! and	ℎ!! 	the	heritability	of	trait	z	and	y	respectively.	Then	the	expectation	of	the	
covariance	of	trait	z	in	males	and	the	genetic	value	of	their	female	partners	is:	

! ! !!, !!! =  ! ! !, ! !!, ! !!, !! ℎ!/ℎ! !! 	 	

	 	 =  ! !, !  ! !!, !! ℎ!/ℎ! ! !!, !!! 	 	
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	 	 =  ! !, !  ! !!, !! ℎ!/ℎ! ! !!, !! ℎ!! 		

	 	 = ! !, ! ! !!, !! ! !!, !! ℎ!ℎ!	 	 	 	 [12]	

So	then	the	regression	of	trait	z	 in	males	on	the	genetic	value	of	their	female	partners,	
!!! ,	is:	

![!!!!!!] =
! !,! ! !!,!! ! !!,!! !!!!

!!!
=  ! !, ! ! !!, !!  ! !!, !! ℎ!/ℎ!  	 [13]	

If	both	traits	are	the	same,	! = !,	then	! !, ! = 1	,		! !!, !! ℎ!/ℎ! = 1	and	thus	Eq.	[13]	
reverts	 to	Eq.	 [8].	Using	Eq.	 [9]	 the	 ratio,	d,	 of	 the	 expectation	under	 assortment	on	 a	
correlated	trait,	relative	to	the	expectation	under	direct	assortment	is:	

! ! =  ! !,! ! !!,!!  ! !!,!! !!
! !!,!! !!

=  ! !!,!! !!
! !,! !!

	 	 	 	 	 [14]	

meaning	that	under	assortment	on	a	correlated	trait	the	estimate	from	Eq.	[4]	can	either	
be	 higher	 or	 lower	 than	 the	 expectation	 given	 by	 Eq.	 [8]	 depending	 upon	 (i)	 the	
magnitude	of	the	genetic	correlation	as	compared	to	the	phenotypic	correlation	of	z	and	
y,	and	(ii)	the	heritability	of	y	as	compared	to	that	of	z.	

Under	 both	 direct	 assortment	 on	 a	 phenotype	 and	 assortment	 on	 correlated	 traits,	 a	
correlation	among	partners	at	trait	associated	loci	is	expected,	with	Eq.	[8]	providing	the	
expectation	 under	 direct	 assortment,	 and	 Eq.	 [13]	 providing	 the	 expectation	 under	
secondary	assortment.	Therefore,	our	approach	provides	an	estimate	of	the	correlation	
among	 couples	 at	 trait	 associated	 loci	 but	 cannot	 differentiate	 between	 direct	
assortment	on	a	phenotype	and	assortment	on	a	genetically	correlated	 trait.	However,	
our	 approach	 does	 differentiate	 between	 assortative	 mating	 based	 on	 selection	 of	
phenotypic	 characteristics	 and	 assortative	 mating	 based	 on	 shared	
social/environmental	 factors,	because	under	only	social/environmental	homogamy	we	
would	 not	 expect	 an	 association	 between	 genetic	 predictors	 of	 phenotype	within	 the	
mixed	 effect	 model	 of	 Eq.	 [4]	 as	 it	 accounts	 for	 population	 stratification,	 by	 both	
regressing	PCs	from	the	genetic	predictor,	and	by	fitting	a	relationship	matrix	estimated	
from	the	SNP	markers.		

We	estimated	Eq.	[4]	in	the	combined	set	of	data,	and	we	then	repeated	the	estimation	
in	the	23andMe	and	then	the	UK	Biobank	data.	The	estimates	gained	were	adjusted	by	
the	 regression	 coefficient	 gained	 from	 regressing	 the	 phenotypic	 values	 onto	 the	
adjusted	genetic	predictors.	This	was	done	to	ensure	that	the	genetic	predictor	has	the	
expected	 BLUP	 properties.	 We	 then	 compared	 our	 estimates	 from	 Eq.	 [4]	 to	 the	
phenotypic	correlation	between	partners	in	z-scores	of	their	phenotype.		

	

Common	SNP	heritability	of	realized	mate	choice	
We	 estimated	 the	 heritability	 associated	with	 common	 SNPs	 (ℎ!"#! )	 for	 realized	mate	
choice	of	height	and	body	mass	index	as:		

!! =  !! +  !!! + !! + !!,			 	 	 	 	 	 [15]	
!! =  !! +  !!! +  !! + !!	
with	notation	the	same	as	above.	Eq.	[15]	controls	for	population	stratification	by	fitting	
the	 effects	 of	 the	 first	 20	 principal	 components	 estimated	 within	 the	 23andMe	 data	
before	then	estimating	the	effects	! = ! 0, !!!! .	We	selected	Hapmap3	common	SNPs	
from	 the	 best-guess	 imputed	 SNP	 data	 to	 estimate	 A	 and	 thus	!!! 	is	 the	 variance	
explained	by	 those	SNPs.	Eq.	 [15]	was	estimated	using	 the	GREML	 function	 in	GCTA	v	
1.25.	

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE HUMAN BEHAVIOUR | DOI: 10.1038/s41562-016-0016 | www.nature.com/nathumbehav	 18

SUPPLEMENTARY INFORMATION

http://dx.doi.org/10.1038/s41562-016-0016


The	expectation	of	ℎ!"#! 	estimated	in	Eq.	[15]	can	be	derived	if	we	consider	Eq.	[15]	as	
the	regression	

	!!!!!! =  ! + !!!!!,!! + !	,		 	 	 	 	 	 	 [16]	

with	!!!!!!	an	! × 1	vector	of	the	phenotypes	of	the	males	of	the	jlth	couple	multiplied	
together,	!!!!,!! 	an	! × 1	vector	 the	 genetic	 relationship	 between	 the	 females	 of	 the	 jlth	
couple	taken	from	!,	and	!	is	the	regression	coefficient.		
The	expectation	of	!	can	be	derived	by	first	considering	the	regression	
	!!!!!! =  ! + !! !!!!!! + !,		 	 	 	 	 	 [17]	

with	!!!!!! 	an	! × 1	vector	of	the	phenotypes	of	the	females	of	the	jlth	couple	multiplied	
together.		

![!!] =
! !!!!!!,   !!!!!!

!!!!!!!!
= ! !!!!!!!!!!!! ,		 	 	 	 [18]		

when	all	phenotypes	are	standardised	to	z-score	where	! = !(0, 1).	Then:	 	 	

! !!!!!!!!!!!! = ! !!!!!!!!!!!! − ! !!!!!! ! !!!!!! 	
= ! !!!!!! ! !!!!!! ,		 	 	 [19]	

and	thus	we	have	![!!] =  ! !!, !!
!.	

Hence,	we	can	then	write	Eq.	[16]	as:	

!!!!!!!! =  ! + !!!!!!,!! + !,		 	 	 	 	 	 	 [20]	

Thus,	 as	 the	 regression	 of	!!!!!!on	!!!!,!! provides	 an	 estimate	 of	ℎ!"#! 6,7	 then	 the	
expectation	of	!	is:	
![!] =  ℎ!"#! ! !!, !!

!	 	 	 	 	 	 	 [21]	

Under	 the	 assumption	 of	ℎ!"#! 	~0.5	 for	 height	 and	 ~	 0.2	 BMI,	 and	 a	 phenotypic	
correlation	among	partners	of	~0.38–10,	our	expectation	 in	Eq.	 [21]	 is	~0.05	 for	height	
and	 	 ~0.018	 for	 BMI.	 With	N	 ~10,000	 the	 standard	 error	 of	 these	 estimates	 will	 be	
~0.04	 and	 thus	 we	 are	 only	 interested	 in	 determining	 the	 magnitude	 of	 the	 point	
estimate	rather	than	assessing	whether	the	estimate	is	significantly	greater	than	zero.	If	
the	 estimates	 conform	 to	 the	 expectation,	 then	 this	 provides	 further	 evidence	 for	 a	
correlation	at	trait	associated	loci	among	couples.	

	

Mixed	linear	model	association	analysis	of	realized	mate	choice	
To	 identify	 the	 genomic	 regions	 associated	 with	 realized	 mate	 choice	 and	 test	 for	 a	
single	 genetic	 basis	 of	 the	 trait	 and	mate	 choice,	 which	 implies	 direct	 assortment	 on	
phenotype,	we	conducted	a	mixed	linear	model	association	analysis11	as:	

!! =  !! + !!!!! +  !! + !!,		 	 	 	 	 	 [22]	
!! =  !! +  !!!!! +  !! + !!	
with	notation	the	same	as	above,	where	β! 	is	the	regression	coefficient,	!!! 	and	!!! 	is	a	
! × 1	vector	 of	 genotypes	 for	 each	 SNP	 i	 =	 1,	 …,	 k	 (coded	 as	 0,	 1,	 or	 2	 defining	 the	
number	of	reference	alleles),	for	males	and	females	respectively,	and	!! and !! 	are	the	
polygenic	 effect	 (random	 effect)	 for	 males	 and	 females	 respectively,	 and	 e	 is	 the	
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residual.	 We	 selected	 HapMap3	 common	 SNPs	 (MAF	 >=	 0.01)	 from	 the	 best-guess	
imputed	SNP	data	in	Eq.	[22]	as	we	did	for	Eq.	[4]	and	[15].	Eq.	[22]	was	estimated	using	
the	MLMA	function	in	GCTA	v1.25.	

The	 variance	 explained	 by	 a	 SNP	 for	 a	 phenotype	! = ! 0, 1 ,	has	 the	 expectation	
![ℎ!"#!! ] = 2! 1 − ! !!!and	 thus	 the	expectation	of	 the	phenotypic	variance	explained	
by	 a	 SNP	 in	 Eq.	 [22]	 is	![ℎ!"#!! ] = 2! 1 − ! !!!! !!, !!

!.	 For	 height,	 genome-wide	
significant	 SNPs	 cumulatively	 account	 for	~16%	of	 the	 phenotypic	 variance,	 and	 thus	
the	 expectation	 is	 that	 they	 should	 cumulatively	 account	 for	~1.4%	of	 the	phenotypic	
variance	when	using	!! 	from	Eq.	[22].	For	BMI,	the	expectation	is	only	~0.6%	and	data	
sharing	restrictions	of	23andMe	prohibited	 this	analysis	 in	 their	dataset.	Therefore,	 in	
this	section	we	only	focus	on	height.	

We	used	the	!! 	from	Eq.	[22]	and	gained	BLUP	approximations	of	the	SNP	effects	using	
the	 TwinGene	 cohort	 (Supplementary	 Table	 1)	 as	 a	 reference.	 We	 used	 these	
approximate	BLUP	SNP	effects	to	create	a	genetic	predictor	! =  !!!

!!! !! 	for	each	trait	
within	 an	 independent	prediction	 cohort.	We	used	 the	 individuals	 from	 the	 combined	
cohorts	 that	had	genotypic	and	phenotypic	data,	but	were	not	part	of	a	spouse	pair	or	
related	to	the	spousal	pairs.	We	estimated	principal	components	(PCs)	of	the	HapMap	3	
best-guess	imputed	SNPs	in	the	prediction	cohort.	We	selected	the	top	20	PCs	to	create	a	
! × !	matrix	 Z,	 of	 eigenvectors	 across	 the	 P	 selected	 PCs.	 For	 each	 trait,	 we	 then	
regressed	 the	 estimated	 genetic	 predictor	 onto	 the	 eigenvectors	 as	! = ! + !! + !	
where	!	is	 the	mean	and	!	is	 a	! × 1	vector	of	 the	 regression	 coefficients,	 and	e	 is	 the	
residual	error.	We	 then	adjusted	 the	predictor	of	each	 trait	as	!! =  ! −  !!.	For	each	
trait,	we	 then	 regressed	 the	 phenotypic	 values	 onto	 the	 adjusted	 genetic	 predictor	 as	
! =  ! +  !! + ! to	determine	whether	phenotypic	variance	in	the	prediction	set	can	be	
explained	by	a	genetic	predictor	created	using	!! 	from	Eq.	[22].	

	

Simulation	study	
To	support	our	 results	we	conducted	a	simulation	study	using	real	genotype	data.	We	
used	SNP	data	 from	the	Kaiser	Permanente	study	(GERA	cohort,	Supplementary	Table	
1),	 where	we	 conducted	 identical	 imputation	 and	 QC	 steps	 described	 above	 to	 select	
autosomal	HapMap3	loci.	We	selected	60,000	individuals	of	European	ancestry.	
We	conducted	50	simulation	replicates.	In	each	simulation	replicate,	we:	

1. Randomly	selected	5000	SNPs	that	were	in	approximate	linkage	equilibrium	(LD	
r2	<	0.05).		

2. Simulated	 a	 phenotype	 across	 all	 individuals	 from	 these	 loci	 as:	

!! = !!"!!!
!!! + !! ,	 where	!!" =  !!"!!!!

!!! !!!!
,	 with	 bi	 the	 allelic	 effect	 of	 the	 ith	

causal	variant	and	ej	 the	residual	(environmental	effect).	bi		was	simulated	from	

! 0,1 	and	 ej	 was	 simulated	 from	! 0, ! !!"!!!
!!!
! × (1 ℎ! − 1) ,	 where	ℎ!	is	

the	heritability	of	the	trait	which	we	set	as	0.5.		
3. Estimated	 the	 effects	 of	 each	 HapMap3	 locus	 in	 20,000	 randomly	 selected	

individuals	in	a	GWAS,	controlling	for	the	first	10	PCs	that	were	estimated	in	the	
discovery	sample.		

4. Gained	BLUP	approximations	of	the	SNP	effects,	using	a	randomly	selected	set	of	
10,000	reference	individuals.		

5. Randomly	 selected	 20,000	 individuals	 and	 paired	 them	 on	 the	 basis	 of	 their	
phenotypic	values.	To	do	this,	we	used	the	phenotypic	values	of	the	first	half	of	
the	 sample,	 and	 created	 a	 new	 linear	 variable	 that	 was	 correlated	 with	 the	
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phenotype	at	r	=	0.2.	We	then	(i)	ordered	the	 first	half	of	 the	sample	based	on	
the	new	linear	variable;	(ii)	ordered	the	second	half	of	the	sample	based	on	their	
phenotypic	values;	(iii)	paired	the	ordered	first	and	second	half	of	the	samples.	
This	creates	pairs	of	individuals	that	are	phenotypically	assorted	with	a	partner	
correlation	of	r	=	0.2.	

6. Estimated	 Eq.	 [7.1],	 [8.1]	 and	 [9.1]	 in	 the	 10,000	 pairs	 of	 individuals	 and	
compared	 these	 to	 our	 theoretical	 predictions	 given	 r	 =	 0.2	 among	 partner	
phenotypes	and	ℎ! = 0.5	for	the	trait.	

Second,	we	 then	repeated	another	50	simulation	replicates,	but	we	did	not	control	 for	
population	stratification	in	the	GWAS	in	step	3.	

Third,	we	then	repeated	another	50	simulation	replicates,	where	we	did	not	control	for	
population	stratification	in	the	GWAS	in	step	3,	and	the	pairing	in	step	5	was	based	upon	
the	cumulative	value	of	the	first	10	principal	components	and	not	on	the	phenotype	with	
a	spousal	pair	correlation	of	r	=	0.8.		

Fourth,	 after	 creating	 the	 phenotype,	 y,	 in	 step	 2	 above,	 we	 created	 an	 association	
between	 y	 and	 the	 first	 10	 principal	 components	 so	 that	 the	 first	 10	 PCs	 explained	
~20%	of	the	phenotypic	variance.	The	pairing	in	step	5	was	based	upon	the	cumulative	
value	of	the	first	10	principal	components	and	not	on	the	phenotype	with	a	spousal	pair	
correlation	 of	 r	 =	 0.8.	 As	 the	 first	 10	 PCs	 influence	 the	 phenotype,	 this	 results	 in	 a	
spousal	 correlation	 for	 the	 phenotype	 that	 is	 due	 to	 cultural	 homogamy	 rather	 than	
assortative	mating.	Therefore,	 this	 final	 set	of	 simulations	 tests	whether	our	approach	
can	differentiate	cultural	homogamy,	as	captured	by	principal	components	of	the	genetic	
data,	from	assortative	mating.	

Finally,	we	extended	our	simulations	to	support	our	results	under	assortative	mating	for	
a	correlated	trait	(Eq.	7.6	to	7.11),	where	assortment	occurs	for	an	unobserved	trait	that	
is	genetically	correlated	 to	a	 trait	 that	 is	measured.	We	repeated	step	5	above,	but	we	
paired	 individuals	on	the	basis	of	 the	 ‘unobserved’	genetically	correlated	trait	 (genetic	
correlation	 either	 0.5	 or	 0.75,	 and	 heritability	 either	 0.5	 and	 0.8),	 with	 a	 partner	
correlation	 of	 either	 0.75	 or	 0.5.	 We	 then	 re-estimated	 Eq.	 7.1	 for	 the	 focal	 measured	
trait	 across	 50	 replicates	 in	 each	 of	 8	 simulation	 scenarios	 and	 we	 compare	 the	
estimates	gained	to	their	expectation	under	Eq.	7.10.	

	

Web	resources	
We	used	the	following	programs	and	documentation:		

UK	Biobank	documentation	
http://www.ukbiobank.ac.uk/wp-
content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf	
http://www.ukbiobank.ac.uk/wp-
content/uploads/2014/04/imputation_documentation_May2015.pdf	
R	3.2.3	https://www.r-project.org/	
GCTA	http://cnsgenomics.com/software/gcta/	
HapMap3	ftp://ftp.ncbi.nlm.nih.gov/hapmap/	
Imputation	https://github.com/CNSGenomics/impute-pipe.	
HAPI-UR	https://code.google.com/p/hapi-ur/	
Impute2	https://mathgen.stats.ox.ac.uk/impute/impute_v2.html	
Plink1.9	https://www.cog-genomics.org/plink2	
BEAGLE	https://faculty.washington.edu/browning/beagle/b3.html	
Minimac	http://genome.sph.umich.edu/wiki/Minimac	
	

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE HUMAN BEHAVIOUR | DOI: 10.1038/s41562-016-0016 | www.nature.com/nathumbehav	 21

SUPPLEMENTARY INFORMATION

http://dx.doi.org/10.1038/s41562-016-0016


	
SUPPLEMENTARY	REFERENCES	
	
1.	 Yang,	J.	et	al.	Genomic	inflation	factors	under	polygenic	inheritance.	Eur.	J.	Hum.	

Genet.	19,	807–12	(2011).	
2.	 de	Los	Campos,	G.,	Vazquez,	A.	I.,	Fernando,	R.,	Klimentidis,	Y.	C.	&	Sorensen,	D.	

Prediction	of	complex	human	traits	using	the	genomic	best	linear	unbiased	
predictor.	PLoS	Genet.	9,	e1003608	(2013).	

3.	 Goddard,	M.	E.,	Wray,	N.	R.,	Verbyla,	K.	&	Visscher,	P.	M.	Estimating	Effects	and	
Making	Predictions	from	Genome-Wide	Marker	Data.	Stat.	Sci.	24,	517–529	
(2009).	

4.	 Yang,	J.	et	al.	Conditional	and	joint	multiple-SNP	analysis	of	GWAS	summary	
statistics	identifies	additional	variants	influencing	complex	traits.	Nat.	Genet.	44,	
369–375	(2012).	

5.	 Yang,	J.,	Lee,	S.	H.,	Goddard,	M.	E.	&	Visscher,	P.	M.	GCTA:	a	tool	for	genome-wide	
complex	trait	analysis.	Am.	J.	Hum.	Genet.	88,	76–82	(2011).	

6.	 Haseman,	J.	K.	&	Elston,	R.	C.	The	investigation	of	linkage	between	a	quantitative	
trait	and	a	marker	locus.	Behav.	Genet.	2,	3–19	(1972).	

7.	 Visscher,	P.	M.	et	al.	Statistical	Power	to	Detect	Genetic	(Co)Variance	of	Complex	
Traits	Using	SNP	Data	in	Unrelated	Samples.	PLoS	Genet.	10,	e1004269	(2014).	

8.	 Silventoinen,	K.,	Kaprio,	J.,	Lahelma,	E.,	Viken,	R.	J.	&	Rose,	R.	J.	Assortative	mating	
by	body	height	and	BMI:	Finnish	twins	and	their	spouses.	Am.	J.	Hum.	Biol.	15,	
620–7	(2003).	

9.	 Wood,	A.	R.	et	al.	Defining	the	role	of	common	variation	in	the	genomic	and	
biological	architecture	of	adult	human	height.	Nat.	Genet.	46,	1173–86	(2014).	

10.	 Locke,	A.	E.	et	al.	Genetic	studies	of	body	mass	index	yield	new	insights	for	
obesity	biology.	Nature	518,	197–206	(2015).	

11.	 Yang,	J.,	Zaitlen,	N.	A.,	Goddard,	M.	E.,	Visscher,	P.	M.	&	Price,	A.	L.	Advantages	and	
pitfalls	in	the	application	of	mixed-model	association	methods.	Nat.	Genet.	46,	
100–6	(2014).	

	

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE HUMAN BEHAVIOUR | DOI: 10.1038/s41562-016-0016 | www.nature.com/nathumbehav	 22

SUPPLEMENTARY INFORMATION

http://dx.doi.org/10.1038/s41562-016-0016


Behrooz'Z'Alizadeh'(1),'H'Marike'Boezen'(1),'Lude'Franke'(2),'Pim'van'der'Harst'(3),'
Gerjan'Navis'(4),'Marianne'Rots'(5),'Harold'Snieder'(1),'Morris'Swertz'(2),'Bruce'HR'
Wolffenbuttel'(6),'Cisca'Wijmenga'(2)'

(1)$ Department$of$Epidemiology,$University$of$Groningen,$University$Medical$Center$
Groningen,$The$Netherlands$

(2)$ Department$of$Genetics,$University$of$Groningen,$University$Medical$Center$
Groningen,$$The$Netherlands$$

(3)$ Department$of$Cardiology,$University$of$Groningen,$University$Medical$Center$
Groningen,$The$Netherlands$

(4)$ Department$of$Internal$Medicine,$Division$of$Nephrology,$University$of$Groningen,$
University$Medical$Center$Groningen,$The$Netherlands$

(5)$ Department$of$Medical$Biology,$University$of$Groningen,$University$Medical$Center$
Groningen,$The$Netherlands$

(6)$ Department$of$Endocrinology,$University$of$Groningen,$University$Medical$Center$
Groningen,$The$Netherlands$

 

'

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE HUMAN BEHAVIOUR | DOI: 10.1038/s41562-016-0016 | www.nature.com/nathumbehav	 23

SUPPLEMENTARY INFORMATION

http://dx.doi.org/10.1038/s41562-016-0016


Goncalo R Abecasis1; Devin Absher2; Helene Alavere3; Eva Albrecht4; Hana Lango Allen5; Peter Almgren6; 
Najaf Amin7; Philippe Amouyel8; Denise Anderson9,10; Alice M Arnold11,12; Dominique Arveiler13; Thor 
Aspelund14,15; Folkert W Asselbergs16; Themistocles L Assimes17; Mustafa Atalay18; Antony P 
Attwood19,20,21; Larry D Atwood22; Stephan JL Bakker23; Beverley Balkau24,25; Anthony J Balmforth26; 
Cristina Barlassina27; Inês Barroso19,28; Hanneke Basart29; Sabrina Bauer30; Jacques S Beckmann31,32; John 
P Beilby33,34,35,36; Amanda J Bennett37; Yoav Ben-Shlomo38; Richard N Bergman39; Sven Bergmann31,40; 
Sonja I Berndt41; Reiner Biffar42; Anna Maria Di Blasio43; Bernhard O Boehm44; Michael Boehnke1; Heiner 
Boeing45; Eric Boerwinkle46; Jennifer L Bolton47; Amélie Bonnefond48; Lori L Bonnycastle49,50; Dorret I 
Boomsma51; Ingrid B Borecki52,53; Stefan R Bornstein54,55; Nabila Bouatia-Naji56,57; Gabrielle Boucher58; 
Jennifer L Bragg-Gresham1; Paolo Brambilla59; Marcel Bruinenberg60; Thomas A Buchanan39,61; Christa 
Buechler30; Gemma Cadby62,63; Harry Campbell47; Mark J Caulfield64; Christine Cavalcanti-Proença56,57; 
Giancarlo Cesana65; Stephen J Chanock41; Daniel I Chasman66,67; Yii-Der Ida Chen68,69; Peter S Chines49,50; 
Deborah J Clegg70; Lachlan Coin71; Francis S Collins49,50; John M Connell72,73; William Cookson74; Matthew 
N Cooper75; Damien C Croteau-Chonka76; L Adrienne Cupples77; Daniele Cusi78,79; Felix R Day80; Ian NM 
Day81; George V Dedoussis82; Mariano Dei83,84; Panos Deloukas19; Emmanouil T Dermitzakis85; Antigone S 
Dimas85,86,87; Maria Dimitriou82; Anna L Dixon88; Marcus Dörr89; Cornelia M van Duijn7,90,91; Shah 
Ebrahim92,93; Sarah Edkins19; Gudny Eiriksdottir14; Kristina Eisinger30; Niina Eklund94,95; Paul Elliott71,96; 
Raimund Erbel97; Jeanette Erdmann98,99,100,101; Michael R Erdos49; Johan G Eriksson102,103,104,105,106; Tõnu 
Esko3,95,107; Karol Estrada7,90,108; David M Evans109; Ulf de Faire110; Tove Fall111; Martin Farrall112; Mary F 
Feitosa52; Marco M Ferrario113; Teresa Ferreira86; Jean Ferrières114; Krista Fischer3; Eva Fisher45; Gerry 
Fowkes47; Caroline S Fox115; Lude Franke60,116; Paul W Franks117,118,119; Ross M Fraser47; Francesca Frau78; 
Timothy Frayling5; Nelson B Freimer120; Philippe Froguel48,56,57,121; Mao Fu122; Stefan Gaget56,57; Andrea 
Ganna111; Pablo V Gejman123,124; Davide Gentilini43; Eco JC Geus51; Christian Gieger4; Bruna Gigante110; 
Anette P Gjesing125; Nicole L Glazer126,127; Michael E Goddard128,129; Anuj Goel112; Harald Grallert130,131,132; 
Jürgen Gräßler133; Henrik Grönberg111; Leif C Groop6; Christopher J Groves37; Vilmundur Gudnason14,15,134; 
Candace Guiducci135; Stefan Gustafsson111; Ulf Gyllensten136,137; Alistair S Hall138; Per Hall111; Göran 
Hallmans119; Anders Hamsten139; Torben Hansen125,140; Talin Haritunians141; Tamara B Harris142; Pim van 
der Harst116,143; Anna-Liisa Hartikainen144; Neelam Hassanali37; Andrew T Hattersley5; Aki S Havulinna145; 
Caroline Hayward146; Nancy L Heard-Costa22; Andrew C Heath147; Johannes Hebebrand148; Iris M 
Heid130,149,150,151; Martin den Heijer152; Christian Hengstenberg153,154,155; Karl-Heinz Herzig156,157,158; Andrew 
A Hicks159,160,161; Aroon Hingorani162; Anke Hinney148; Joel N Hirschhorn135,163,164,165; Albert Hofman7,90; 
Christopher C Holmes166,167; Georg Homuth168; Jouke-Jan Hottenga51; Kees G Hovingh29; Frank B 
Hu169,170,171; Yi-Juan Hu172; Jennifer E Huffman146; Jennie Hui33,34,35,75,173; Heikki Huikuri174; Steve E 
Humphries175; Joseph Hung34,176; Sarah E Hunt19; David Hunter169,170,171; Kristian Hveem177; Elina 
Hyppönen178; Wilmar Igl136; Thomas Illig130,131,132,179; Erik Ingelsson111; Carlos Iribarren180,181; Bo 
Isomaa105,182; Anne U Jackson1; Kevin B Jacobs41,183; Alan L James34,184; John-Olov Jansson185; Ivonne 
Jarick186; Marjo-Riitta Jarvelin71,156,187,188; Karl-Heinz Jöckel189; Åsa Johansson136,137,190,191; Toby 
Johnson31,40,64,192; Jennifer Jolley20; Torben Jørgensen193,194; Pekka Jousilahti145; Antti Jula195; Anne E 
Justice196; Marika Kaakinen156,187; Mika Kähönen197; Eero Kajantie103,198; Stavroula Kanoni19; WH Linda 
Kao199; Lee M Kaplan66,200,201; Robert C Kaplan202; Jaakko Kaprio203,204,205,206; Karen Kapur31,40; Fredrik 
Karpe37,207,208; Sekar Kathiresan209,210,211; Frank Kee212; Sirkka M Keinanen-Kiukaanniemi213,214; Shamika 
Ketkar52; Johannes Kettunen94,203; Kay-Tee Khaw215; Lambertus A Kiemeney216,217,218; Tuomas O 
Kilpeläinen80; Leena Kinnunen219; Mika Kivimaki162; Mika Kivmaki162; Melanie M Van der Klauw60,220; 
Marcus E Kleber221,222; Joshua W Knowles17; Wolfgang Koenig223; Ivana Kolcic224; Genovefa Kolovou225; 
Inke R König226; Seppo Koskinen145; Peter Kovacs227; Peter Kraft171,228; Aldi T Kraja52; Kati Kristiansson94,203; 
Kaarel KrjutÅ¡kov3; Heyo K Kroemer229; Jon P Krohn86; Vjekoslav Krzelj230; Diana Kuh231; Jennifer R 
Kulzer76; Meena Kumari162; Zoltán Kutalik31,40; Kari Kuulasmaa232; Johanna Kuusisto233,234; Kirsti Kvaloy177; 
Markku Laakso233,234; Jaana H Laitinen235; Timo A Lakka18,236; Claudia Lamina130,237; Claudia 
Langenberg80,162; Olivier Lantieri238; G Mark Lathrop239; Lenore J Launer142; Debbie A Lawlor81; Robert W 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE HUMAN BEHAVIOUR | DOI: 10.1038/s41562-016-0016 | www.nature.com/nathumbehav	 24

SUPPLEMENTARY INFORMATION

http://dx.doi.org/10.1038/s41562-016-0016


Lawrence75; Irene M Leach143; Cecile Lecoeur48,56,57; Sang Hong Lee240; Terho Lehtimäki241,242; Michael F 
Leitzmann149; Guillaume Lettre58,243; Douglas F Levinson244; Guo Li127; Shengxu Li80,245; Liming Liang171,228; 
Dan-Yu Lin246; Lars Lind247; Cecilia M Lindgren37,86; Jaana Lindström219; Jianjun Liu248; Antonio Liuzzi249; 
Adam E Locke1; Marja-Liisa Lokki250; Christina Loley99,226; Ruth JF Loos80,251,252,253; Mattias Lorentzon254; 
Jian'an Luan80; Robert N Luben215; Barbara Ludwig54; Pamela A Madden147; Reedik Mägi3,86; Patrik KE 
Magnusson111; Massimo Mangino255; Paolo Manunta256; Diana Marek31,40; Michel Marre257,258; Nicholas G 
Martin259,260; Winfried März222,261; Andrea Maschio83; Iain Mathieson86; Wendy L McArdle262,263; Steven A 
McCaroll210,211,264; Anne McCarthy265; Mark I McCarthy37,86,207,208; Barbara McKnight11; Carolina Medina-
Gomez7,90,108; Sarah E Medland259,260; Thomas Meitinger266,267; Andres Metspalu3,95,107; Joyce BJ van 
Meurs7,90,108; David Meyre48,57,268; Kristian Midthjell177; Evelin Mihailov3,95; Lili Milani3; Josine L Min86,269; 
Susanne Moebus189; Miriam F Moffatt74; Karen L Mohlke76; Cliona Molony270; Keri L Monda196,271; Grant W 
Montgomery260,272; Vincent Mooser273; Mario A Morken49; Andrew D Morris274; Andrew P Morris86; 
Thomas W Mühleisen275,276; Martina Müller-Nurasyid4,186,277,278; Patricia B Munroe64; Arthur W 
Musk34,173,279; Narisu Narisu49,50; Gerjan Navis23; Benjamin M Neale280; Mari Nelis3,95,107; James Nemesh211; 
Matt J Neville37; Julius S Ngwa77; George Nicholson167,281; Markku S Nieminen282; Inger Njølstad283,284; 
Ellen A Nohr285; Ilja M Nolte286,287; Kari E North196,288; Markus M Nöthen275,276; Dale R Nyholt289; Jeffrey R 
O'Connell122; Claes Ohlsson254; Albertine J Oldehinkel290; Gert-Jan van Ommen91,291; Ken K Ong80,231; Ben A 
Oostra90,292,293; Willem H Ouwehand19,20,21,294; Colin NA Palmer274; Lyle J Palmer34,62,63,75; Aarno 
Palotie19,203; Guillaume Paré295; Alex N Parker296; Lavinia Paternoster109; Yudi Pawitan111; Sonali 
Pechlivanis189; John F Peden86,297,298; Nancy L Pedersen111; Oluf Pedersen125,299,300; Niina Pellikka94,203; 
Leena Peltonen19,103,203,301,302; Brenda Penninx303,304,305; Markus Perola3,94,203; John RB Perry5; Thomas 
Person70; Annette Peters132,306,307; Marjolein J Peters7,90,108; Irene Pichler159; Kirsi H Pietiläinen204,308; Carl 
GP Platou177,309; Ozren Polasek224,310,311; Anneli Pouta144,188; Chris Power178; Peter P 
Pramstaller159,160,161,312,313; Michael Preuss100,226; Jackie F Price47; Inga Prokopenko37,86; Michael A 
Province52; Bruce M Psaty127,314,315; Shaun Purcell210,301,316; Carolin Pütter189; Lu Qi169,170; Thomas 
Quertermous17; Aparna Radhakrishnan19,20,294; Olli Raitakari317,318,319; Joshua C Randall19,86; Rainer 
Rauramaa236,320; Nigel W Rayner37,86; Emil Rehnberg111; Augusto Rendon20,21,294,321; Martin Ridderstråle322; 
Paul M Ridker66,67; Samuli Ripatti19,94,203; Aila Rissanen308; Fernando Rivadeneira7,90,108; Carlo Rivolta31; Neil 
R Robertson37,86; Lynda M Rose67; Igor Rudan47,230; Timo E Saaristo323,324; Hendrik Sager325; Veikko 
Salomaa145,232; Nilesh J Samani326,327; Jennifer G Sambrook20,294; Alan R Sanders123,124; Camilla Sandholt125; 
Serena Sanna83,84; Jouko Saramies328; Eric E Schadt329,330,331,332; Andre Scherag189; Sabine Schipf333; David 
Schlessinger334; Stefan Schreiber335; Heribert Schunkert98,99,100,101; Peter EH Schwarz55,336; Laura J Scott1; 
Jianxin Shi41; So-Youn Shin19; Alan R Shuldiner122,337; Dmitry Shungin117,119,338; Stefano Signorini339; Kaisa 
Silander94,203; Juha Sinisalo282; Boris Skrobek48,57; Jan H Smit303; Albert Vernon Smith14,15,134; George Davey 
Smith81; Harold Snieder60,286; Nicole Soranzo19,255; Thorkild IA Sørensen340; Ulla Sovio71; Timothy D 
Spector255; Elizabeth K Speliotes135,200,341,342; Alena Stančáková343; Klaus Stark155,344; Kari Stefansson345,346; 
Valgerdur Steinthorsdottir345; Jonathan C Stephens20,294; Kathleen Stirrups19; Ronald P Stolk60,287; David P 
Strachan347,348; Rona J Strawbridge139; Heather M Stringham1; Michael Stumvoll349,350,351; Ida Surakka94,203; 
Amy J Swift49,50; Ann-Christine Syvanen352; Mari-Liis Tammesoo3; Maris Teder-Laving3,95,107; Tanya M 
Teslovich1; Alexander Teumer168; Eirini V Theodoraki82; Brian Thomson135; Barbara Thorand306; Gudmar 
Thorleifsson345; Unnur Thorsteinsdottir345,346; Nicholas John Timpson81; Anke Tönjes349,351,353; David-
Alexandre Tregouet354; Elena Tremoli355; Mieke D Trip29,356; Tiinamaija Tuomi105,357,358; Jaakko 
Tuomilehto219,359,360,361,362; Jonathan Tyrer363; Manuela Uda83; André G Uitterlinden7,90,108; Gianluca 
Usala83; Matti Uusitupa364,365; Timo T Valle219; Liesbeth Vandenput254; Vincent Vatin56,57; Sailaja 
Vedantam135,163,164,165; Femmie de Vegt216; Sita H Vermeulen216,366; Jorma Viikari367; Jarmo Virtamo232; 
Peter M Visscher240,368; Veronique Vitart146; Jana V Van Vliet-Ostaptchouk60,220; Benjamin F 
Voight210,211,264; Peter Vollenweider369; Claudia B Volpato159; Henry Völzke370,371; Gérard Waeber369; 
Lindsay L Waite2; Henri Wallaschofski372,373; G Bragi Walters345; Zhaoming Wang41,183; Nicholas J 
Wareham80; Richard M Watanabe39,374; Hugh Watkins112; Michael N Weedon5; Ryan Welch1; Robert J 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE HUMAN BEHAVIOUR | DOI: 10.1038/s41562-016-0016 | www.nature.com/nathumbehav	 25

SUPPLEMENTARY INFORMATION

http://dx.doi.org/10.1038/s41562-016-0016


Weyant1; Eleanor Wheeler19; Charles C White77; H-Erich Wichmann130,151,375,376,377,378; Elisabeth Widen203; 
Sarah H Wild47; Gonneke Willemsen51; Cristen J Willer1; Tom Wilsgaard283; James F Wilson47; Sophie van 
Wingerden7; Bernhard R Winkelmann379; Thomas W Winkler149,150; Daniel R Witte380; Jacqueline CM 
Witteman7,90; Bruce HR Wolffenbuttel60,220; Andrew Wong231; Andrew R Wood5; Tsegaselassie 
Workalemahu169,170; Alan F Wright146; Jian Yang260,368; John WG Yarnell381; Lina Zgaga224; Jing Hua Zhao80; 
M Carola Zillikens90,108; Paavo Zitting382; Krina T Zondervan383 

 

1 Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, 
Michigan 48109, USA 

2 Hudson Alpha Institute for Biotechnology, Huntsville, Alabama 35806, USA 
3 Estonian Genome Center, University of Tartu, Tartu 50410, Estonia 
4 Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for 

Environmental Health, 85764 Neuherberg, Germany 
5 Genetics of Complex Traits, Peninsula College of Medicine and Dentistry, University of Exeter, 

Exeter, EX1 2LU, UK 
6 Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, 20502 Malmö, 

Sweden 
7 Department of Epidemiology, Erasmus MC, Rotterdam, 3015GE, The Netherlands 
8 Institut Pasteur de Lille, INSERM U744, Université Lille Nord de France, F-59000 Lille, France 
9 Telethon Institute for Child Health Research, West Perth Western Australia 6872, Australia 
10 Centre for Child Health Research, The University of Western Australia, Australia 
11 Departments of Biostatistics, University of Washington, Seattle, Washington 98195, USA 
12 Collaborative Health Studies Coordinating Center, Seattle, Washington 98115, USA 
13 Department of Epidemiology and Public Health, Faculty of Medicine, Strasbourg, France 
14 Icelandic Heart Association, Kopavogur, Iceland 
15 University of Iceland, Reykjavik, Iceland 
16 Department of Cardiology, Division Heart &amp; Lungs, University Medical Center Utrecht, The 

Netherlands 
17 Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA 
18 Institute of Biomedicine/Physiology, University of Eastern Finland, Kuopio Campus, Finland 
19 Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK 
20 Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK 
21 NIHR Cambridge Biomedical Research Centre, Cambridge, UK 
22 Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118, 

USA 
23 Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 

Groningen 
24 INSERM CESP Centre for Research in Epidemiology and Public Health U1018, Epidemiology of 

diabetes, obesity and chronic kidney disease over the lifecourse, 94807 Villejuif, France 
25 University Paris Sud 11, UMRS 1018, 94807 Villejuif, France 
26 Multidisciplinary Cardiovascular Research Centre (MCRC), Leeds Institute of Genetics, Health and 

Therapeutics (LIGHT), University of Leeds, Leeds LS2 9JT, UK 
27 University of Milan, Department of Medicine, Surgery and Dentistry, 20139 Milano, Italy 
28 University of Cambridge Metabolic Research Labs, Institute of Metabolic Science Addenbrooke's 

Hospital, CB2 OQQ, Cambridge, UK 
29 Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands 
30 Regensburg University Medical Center, Innere Medizin I, 93053 Regensburg, Germany 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE HUMAN BEHAVIOUR | DOI: 10.1038/s41562-016-0016 | www.nature.com/nathumbehav	 26

SUPPLEMENTARY INFORMATION

http://dx.doi.org/10.1038/s41562-016-0016


31 Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland 
32 Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois (CHUV) University Hospital, 

1011 Lausanne, Switzerland 
33 PathWest Laboratory of Western Australia, Department of Molecular Genetics, J Block, QEII 

Medical Centre, Nedlands, Western Australia 6009, Australia 
34 Busselton Population Medical Research Foundation Inc., Sir Charles Gairdner Hospital, Nedlands, 

Western Australia 6009, Australia 
35 School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Western 

Australia 6009,Australia 
36 Department of Surgery and Pathology, University of Western Australia, Nedlands, Australia, 6009 
37 Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ, 

UK 
38 Department of Social Medicine, University of Bristol, Bristol, BS8 2PS, UK 
39 Department of Physiology and Biophysics, Keck School of Medicine, University of Southern 

California, Los Angeles, California 90033, USA 
40 Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland 
41 Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of 

Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA 
42 Zentrum für Zahn-, Mund- und Kieferheilkunde, 17489 Greifswald, Germany 
43 Molecular Biology Department, Istituto Auxologico Italiano, Milano, Italy 
44 Division of Endocrinology and Diabetes, Department of Medicine, University Hospital, Ulm, 

Germany 
45 Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 

Nuthetal, Germany 
46 Human Genetics Center and Institute of Molecular Medicine, University of Texas Health Science 

Center, Houston, Texas 77030, USA 
47 Centre for Population Health Sciences, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, 

Scotland 
48 CNRS UMR8199-IBL-Institut Pasteur de Lille, F-59000 Lille, France 
49 National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 

20892, USA 
50 Genome Technology Branch, National Human Genome Research Institute, NIH, Bethesda, MD 

20892, USA 
51 Department of Biological Psychology, VU University Amsterdam, 1081 BT Amsterdam, The 

Netherlands 
52 Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63110, USA 
53 Division of Biostatistics, Washington University School of Medicine, St.Louis, Missouri 63110, USA 
54 Department of Medicine III, University of Dresden, 01307 Dresden, Germany 
55 Department of Medicine III, University of Dresden, Medical Faculty Carl Gustav Carus, 

Fetscherstrasse 74, 01307 Dresden, Germany 
56 CNRS UMR8199-IBL-Institut Pasteur de Lille, F-59019 Lille, France 
57 University Lille Nord de France, 59000 Lille, France 
58 Montreal Heart Institute, Montreal, Quebec, H1T 1C8, Canada 
59 Dipartimento di Medicina Sperimentale. Università  degli Studi Milano-Bicocca, Monza, Italy 
60 LifeLines Cohort Study, University Medical Center Groningen, University of Groningen, The 

Netherlands 
61 Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, 

California 90033, USA 
62 Genetic Epidemiology and Biostatistics Platform, Ontario Institute for Cancer Research. Toronto, 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE HUMAN BEHAVIOUR | DOI: 10.1038/s41562-016-0016 | www.nature.com/nathumbehav	 27

SUPPLEMENTARY INFORMATION

http://dx.doi.org/10.1038/s41562-016-0016


Canada, M5G 1L7 
63 Prosserman Centre for Health Research, Samuel Lunenfeld Research Institute, Toronto, Canada, 

M5G 1X5 
64 Clinical Pharmacology and Barts and The London Genome Centre, William Harvey Research 

Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of 
London, Charterhouse Square, London EC1M 6BQ, UK 

65 Department of Clinical Medicine, University of Milano-Bicocca, Monza, Italy 
66 Harvard Medical School, Boston, Massachusetts 02115, USA 
67 Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215, 

USA 
68 Department of OB/GYN and Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, 

CA 
69 Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, 

California, USA 
70 University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas Texas 75390-8854 
71 Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, 

Imperial College London, London, W2 1PG, UK 
72 British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, 

G12 8TA, UK 
73 University of Dundee, Ninewells Hospital &amp;Medical School, Dundee, DD1 9SY, UK 
74 National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK 
75 Centre for Genetic Epidemiology and Biostatistics, University of Western Australia, Crawley, 

Western Australia 6009, Australia 
76 Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA 
77 Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 

02118, USA 
78 University of Milan, Department of Health Sciences, Ospedale San Paolo, 20139 Milano, Italy 
79 Fondazione Filarete, Milano, Italy 
80 MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 

0QQ, UK 
81 MRC Centre for Causal Analyses in Translational Epidemiology, Department of Social Medicine, 

Oakfield House, Bristol, BS8 2BN, UK 
82 Department of Dietetics-Nutrition, Harokopio University, 70 El. Venizelou Str, Athens, Greece 
83 Istituto di Neurogenetica e Neurofarmacologia del CNR, Monserrato, 09042, Cagliari, Italy 
84 Istituto di Ricerca Genetica e Biomedicadel CNR, Monserrato, 09042, Cagliari, Italy 
85 Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 

1211, Switzerland 
86 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK 
87 Biomedical Sciences Research Center Al. Fleming, 16672 Vari, Greece 
88 Department of Pharmacy and Pharmacology, University of Bath, Bath, BA1 1RL, UK 
89 Department of Internal Medicine B, Ernst-Moritz-Arndt University, 17475 Greifswald, Germany 
90 Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging 

(NCHA) 
91 Center of Medical Systems Biology, Leiden University Medical Center, 2333 ZC Leiden, the 

Netherlands 
92 The London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK 
93 South Asia Network for Chronic Disease 
94 National Institute for Health and Welfare, Department of Chronic Disease Prevention, Unit of 

Public Health Genomics, 00014, Helsinki, Finland 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE HUMAN BEHAVIOUR | DOI: 10.1038/s41562-016-0016 | www.nature.com/nathumbehav	 28

SUPPLEMENTARY INFORMATION

http://dx.doi.org/10.1038/s41562-016-0016


95 Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia 
96 MRC-HPA Centre for Environment and Health, London W2 1PG, UK 
97 Clinic of Cardiology, West German Heart Centre, University Hospital of Essen, University Duisburg-

Essen, Germany 
98 Nordic Center of Cardiovascular Research (NCCR), 23538 Lübeck, Germany 
99 Universität zu Lübeck, Medizinische Klinik II, 23562 Lübeck, Germany 
100 Universität zu Lübeck, Medizinische Klinik II, 23538 Lübeck, Germany 
101 Deutsches Zentrum für Herz-Kreislaufforschung e. V. (DZHK), Universität zu Lübeck, 23538 Lübeck, 

Germany 
102 Department of General Practice and Primary health Care, University of Helsinki, Helsinki, Finland 
103 National Institute for Health and Welfare, 00271 Helsinki, Finland 
104 Helsinki University Central Hospital, Unit of General Practice, 00280 Helsinki, Finland 
105 Folkhalsan Research Centre, 00250 Helsinki, Finland 
106 Vasa Central Hospital, 65130 Vasa, Finland 
107 Estonian Biocenter, Tartu 51010, Estonia 
108 Department of Internal Medicine, Erasmus MC, Rotterdam, 3015GE, The Netherlands 
109 MRC Centre for Causal Analyses in Translational Epidemiology, Department of Social Medicine, 

University of Bristol, Bristol, BS8 2BN, UK 
110 Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 

Stockholm, Sweden 
111 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, 

Sweden 
112 Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human Genetics, 

Oxford, OX3 7BN, UK 
113 Epidemiology and Preventive Medicine Research Center, Department of Clinical and Experimental 

Medicine, University of Insubria, Varese, Italy 
114 Department of Cardiology, Toulouse University School of Medicine, Rangueil Hospital, Toulouse, 

France 
115 Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham Heart 

Study, Framingham, Massachusetts 01702, USA 
116 Department of Genetics, University Medical Center Groningen, University of Groningen, The 

Netherlands 
117 Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Skåne University 

Hospital Malmö, Lund University, Malmö, Sweden 
118 Department of Nutrition, Harvard School of Public Health, Boston, MA 
119 Department of Public Health &amp; Clinical Medicine, Umeå University,Umeå, Sweden 
120 Center for Neurobehavioral Genetics, University of California, Los Angeles, California 90095, USA 
121 Department of Genomics of Common Disease, School of Public Health, Imperial College London, 

W12 0NN, London, UK 
122 Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, 

USA 
123 University of Chicago, Chicago, IL 
124 Northshore University Healthsystem, Evanston, Ilinois 60201, USA 
125 Hagedorn Research Institute, 2820 Gentofte, Denmark 
126 Department of Medicine, University of Washington, Seattle, Washington 98101, USA 
127 Cardiovascular Health Research Unit, University of Washington, Seattle, Washington 98101, USA 
128 University of Melbourne, Parkville 3010, Australia 
129 Department of Primary Industries, Melbourne, Victoria 3001, Australia 
130 Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE HUMAN BEHAVIOUR | DOI: 10.1038/s41562-016-0016 | www.nature.com/nathumbehav	 29

SUPPLEMENTARY INFORMATION

http://dx.doi.org/10.1038/s41562-016-0016


Environmental Health, 85764 Neuherberg, Germany 
131 Unit for Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for 

Environmental Health, Neuherberg, Germany 
132 Research Unit for Molecular Epidemiology, Helmholtz Zentrum München - German Research 

Center for Environmental Health, Neuherberg, Germany 
133 Department of Medicine III, Pathobiochemistry, University of Dresden, 01307 Dresden, Germany 
134 Department of Medicine, University of Iceland, Reykjavik, Iceland 
135 Metabolism Initiative and Program in Medical and Population Genetics, Broad Institute, 

Cambridge, Massachusetts 02142, USA 
136 Department of Genetics and Pathology, Rudbeck Laboratory, University of Uppsala, SE-75185 

Uppsala, Sweden 
137 Department of Immunology, Genetics and Pathology, Uppsala University, Sweden 
138 Division of Cardiovascular and Neuronal Remodelling, Multidisciplinary Cardiovascular Research 

Centre, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, UK 
139 Atherosclerosis Research Unit, Department of Medicine, Solna,Karolinska Institutet, Karolinska 

University Hospital, 171 76 Stockholm, Sweden 
140 Faculty of Health Science, University of Southern Denmark, 5000 Odense, Denmark 
141 Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA 
142 Laboratory of Epidemiology, Demography, Biometry, National Institute on Aging, National 

Institutes of Health, Bethesda, Maryland 20892, USA 
143 Department of Cardiology, University Medical Center Groningen, University of Groningen, The 

Netherlands 
144 Department of Clinical Sciences/Obstetrics and Gynecology, University of Oulu, 90014 Oulu, 

Finland 
145 National Institute for Health and Welfare, Department of Chronic Disease Prevention, Chronic 

Disease Epidemiology and Prevention Unit, 00014, Helsinki, Finland 
146 MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, Western General 

Hospital, Edinburgh, EH4 2XU, Scotland, UK 
147 Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63108, USA 
148 Department of Child and Adolescent Psychiatry, University of Duisburg-Essen, 45147 Essen, 

Germany 
149 Regensburg University Medical Center, Department of Epidemiology and Preventive Medicine, 

93053 Regensburg, Germany 
150 Public Health and Gender Studies, Institute of Epidemiology and Preventive Medicine, Regensburg 

University Medical Center, Regensburg, Germany 
151 Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for 

Environmental Health, Neuherberg, Germany 
152 Department of Internal Medicine, VU University Medical Centre, Amsterdam, The Netherlands 
153 Klinik und Poliklinik für Innere Medizin II, Universität Regensburg, 93053 Regensburg, Germany 
154 Regensburg University Medical Center, Innere Medizin II, 93053 Regensburg, Germany 
155 Klinik und Poliklinik für Innere Medizin II, Universitätklinikum Regensburg, 93053 Regensburg, 

Germany 
156 Biocenter Oulu, University of Oulu, 90014 Oulu, Finland 
157 Institute of Biomedicine, Department of Physiology, University of Oulu, 90014 Oulu, Finland 
158 Department of Psychiatry, Kuopio University Hospital and University of Kuopio, 70210 Kuopio, 

Finland 
159 Institute of Genetic Medicine, European Academy Bozen/Bolzano (EURAC), Bolzano/Bozen, 39100, 

Italy. Affiliated Institute of the University of Lübeck, Lübeck, Germany. 
160 Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano/Bozen, 39100, Italy. 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE HUMAN BEHAVIOUR | DOI: 10.1038/s41562-016-0016 | www.nature.com/nathumbehav	 30

SUPPLEMENTARY INFORMATION

http://dx.doi.org/10.1038/s41562-016-0016


Affiliated Institute of the University of Lübeck, Lübeck, Germany. 
161 Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano/Bozen, 39100, Italy - 

Affiliated Institute of the University of Lübeck, Lübeck, Germany. 
162 Department of Epidemiology and Public Health, University College London, 1-19 Torrington Place, 

London WC1E 6BT, UK 
163 Divisions of Genetics and Endocrinology and Program in Genomics, Children's Hospital, Boston, 

Massachusetts 02115, USA 
164 Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA 
165 Divisions of Genetics and Endocrinology and Centerfor Basic and Translational Obesity Research, 

Children's Hospital, Boston, Massachusetts 02115, USA 
166 MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, UK 
167 Department of Statistics, University of Oxford, Oxford OX1 3TG, UK 
168 Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt-University 

Greifswald, 17487 Greifswald, Germany 
169 Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115, USA 
170 Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard 

Medical School, Boston, Massachusetts 02115, USA 
171 Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA 
172 Department of Biostatistics andBioinformatics, Emory University, Atlanta, Georgia 30322, USA 
173 School of Population Health, The University of Western Australia, Nedlands WA 6009, Australia 
174 Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, 90014 Oulu, 

Finland 
175 Cardiovascular Genetics, British Heart Foundation Laboratories, Rayne Building, University College 

London, London, United Kingdom 
176 School of Medicine and Pharmacology, The University of Western Australia, Nedlands WA 6009, 

Australia 
177 HUNT Research Centre, Department of Public Health and General Practice, Norwegian University 

of Science and Technology, 7600 Levanger, Norway 
178 Centre For Paediatric Epidemiolgy and Biostatistics/MRC Centre of Epidemiology for Child Health, 

University College of London Institute of Child Health, London, UK 
179 Hannover Unified Biobank, Hannover Medical School, 30625 Hannover, Germany 
180 Division of Research, Kaiser Permanente Northern California, Oakland, California 94612, USA 
181 Department of Epidemiology and Biostatistics, University of California, San Francisco, San 

Francisco, California 94107, USA 
182 Department of Social Services and Health Care, 68601 Jakobstad, Finland 
183 Core Genotyping Facility, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA 
184 School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia 

6009, Australia 
185 Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, 

University of Gothenburg, 405 30 Gothenburg, Sweden 
186 Institute of Medical Biometry and Epidemiology, University of Marburg, 35037 Marburg, Germany 
187 Institute of Health Sciences, University of Oulu, 90014 Oulu, Finland 
188 National Institute for Health and Welfare, 90101 Oulu, Finland 
189 Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital of Essen, 

University of Duisburg-Essen, Essen, Germany 
190 Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian 

University of Science and Technology (NTNU), Trondheim, N-7489, Norway 
191 Uppsala Clinical Research Center, Uppsala university hospital, Sweden 
192 Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE HUMAN BEHAVIOUR | DOI: 10.1038/s41562-016-0016 | www.nature.com/nathumbehav	 31

SUPPLEMENTARY INFORMATION

http://dx.doi.org/10.1038/s41562-016-0016


Medicine and Dentistry, Queen Mary, University of London, London, UK 
193 Research Centre for Prevention and Health, Glostrup University Hospital, 2600 Glostrup, Denmark 
194 Faculty of Health Science, University of Copenhagen, 2100 Copenhagen, Denmark 
195 National Institute for Health and Welfare, Department of Chronic Disease Prevention, Population 

Studies Unit, 20720 Turku, Finland 
196 Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, 

Chapel Hill, North Carolina 27514, USA 
197 Department of Clinical Physiology, University of Tampere and Tampere University Hospital, 33520 

Tampere, Finland; 
198 Hospital for Children and Adolescents, Helsinki University Central Hospital and University of 

Helsinki, 00029 HUS, Finland 
199 Department of Epidemiology and Medicine, Johns Hopkins Bloomberg School of Public Health, 

Baltimore, Maryland 21205, USA 
200 Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA 
201 MGH Weight Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA 
202 Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, 

New York 10461, USA 
203 Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland 
204 Finnish Twin Cohort Study, Department of Public Health, University of Helsinki, 00014, Helsinki, 

Finland 
205 National Institute for Health and Welfare, Department of Mental Health and Substance Abuse 

Services, Unit for Child and Adolescent Mental Health, 00271 Helsinki, Finland 
206 National Institute for Health and Welfare, Unit for Child and Adolescent Psychiatry, Helsinki, 

Finland 
207 NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, OX3 7LJ, UK 
208 Oxford National Institute for Health Research Biomedical Research Centre, Churchill Hospital, Old 

Road Headington, Oxford, OX3 7LJ, UK 
209 Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Boston, 

Massachusetts 02114, USA. 
210 Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 

02114, USA. 
211 Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts 

Institute of Technology, Cambridge, Massachusetts 02142, USA 
212 UKCRC Centre of Excellence for Public Health (NI) Queens University, Belfast 
213 Faculty of Medicine, Institute of Health Sciences, University of Oulu, Oulu, Finland 
214 Unit of General Practice, Oulu University Hospital, Oulu, Finland 
215 Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, 

Cambridge CB2 2SR, UK 
216 Department of Epidemiology, Biostatistics and HTA, Radboud University Nijmegen Medical Centre, 

6500 HB Nijmegen, The Netherlands 
217 Department of Urology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The 

Netherlands 
218 Comprehensive Cancer Center East, 6501 BG Nijmegen, The Netherlands 
219 National Institute for Health and Welfare, Diabetes Prevention Unit, 00271 Helsinki, Finland 
220 Department of Endocrinology, University Medical Center Groningen, University of Groningen, P.O. 

Box 30001, 9700 RB Groningen, The Netherlands 
221 LURIC Study nonprofit LLC, Freiburg, Germany 
222 Mannheim Institute of Public Health, Social and Preventive Medicine, Medical Faculty of 

Mannheim, University of Heidelberg, Mannheim, Germany 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE HUMAN BEHAVIOUR | DOI: 10.1038/s41562-016-0016 | www.nature.com/nathumbehav	 32

SUPPLEMENTARY INFORMATION

http://dx.doi.org/10.1038/s41562-016-0016


223 Department of Internal Medicine II – Cardiology, University of Ulm Medical Center, Ulm, Germany 
224 Andrija Stampar School of Public Health, Medical School, University of Zagreb, 10000 Zagreb, 

Croatia 
225 1st Cardiology Department, Onassis Cardiac Surgery Center 356, Sygrou Ave., Athens, Greece 
226 Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum 

Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany 
227 Interdisciplinary Centre for Clinical Research, University of Leipzig, 04103 Leipzig, Germany 
228 Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA 
229 Institut für Pharmakologie, Universität Greifswald, 17487 Greifswald, Germany 
230 Croatian Centre for Global Health, School of Medicine, University of Split, Split 21000, Croatia 
231 MRC Unit for Lifelong Health &amp; Ageing, London, UK 
232 National Institute for Health and Welfare, Department of Chronic Disease Prevention, Chronic 

Disease Epidemiology and Prevention Unit, 00271, Helsinki, Finland 
233 Department of Medicine, University of Kuopio and Kuopio University Hospital, 70210 Kuopio, 

Finland 
234 Department of Medicine, University of Eastern Finland, Kuopio Campus and Kuopio University 

Hospital, 70210 Kuopio, Finland 
235 Finnish Institute of Occupational Health, 90220 Oulu, Finland 
236 Kuopio Research Institute of Exercise Medicine, Kuopio, Finland 
237 Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical 

Pharmacology, Innsbruck Medical University, 6020 Innsbruck, Austria 
238 Institut inter-regional pour la sante (IRSA), F-37521 La Riche, France. 
239 Centre National de Genotypage, Evry, Paris 91057, France 
240 The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia 
241 Department of Clinical Chemistry, University of Tampere and Tampere University Hospital, 33520 

Tampere, Finland 
242 Department of Clinical Chemistry, Fimlab Laboratories, University of Tampere and Tampere 

University Hospital, 33520 Tampere, Finland 
243 Department of Medicine, Université de Montréal, Montreal, Quebec, H3T 1J4, Canada 
244 Stanford University School of Medicine, Stanford, California 93405, USA 
245 Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, 

LA 70112, USA 
246 Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA 
247 Department of Medical Sciences, Uppsala University, Akademiska sjukhuset, 751 85 Uppsala, 

Sweden 
248 Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore 
249 Department of Internal Medicine, Istituto Auxologico Italiano, Verbania, Italy 
250 Transplantation Laboratory, Haartman Institute, University of Helsinki, 00014, Helsinki, Finland 
251 The Charles Bronfman Institute of Personalized Medicine, Mount Sinai School of Medicine, New 

York, NY 10029, USA 
252 Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY 10029, 

USA 
253 Department of Preventive Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA 
254 Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of 

Gothenburg, 413 45 Gothenburg, Sweden 
255 Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, 

UK 
256 Università Vita-Salute San Raffaele, Chair of Nephrology San Raffaele Scientific Institute, OU 

Nephrology and Dialysis, 20132 Milan, Italy 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE HUMAN BEHAVIOUR | DOI: 10.1038/s41562-016-0016 | www.nature.com/nathumbehav	 33

SUPPLEMENTARY INFORMATION

http://dx.doi.org/10.1038/s41562-016-0016


257 Department of Endocrinology, Diabetology and Nutrition, Bichat-Claude Bernard University 
Hospital, Assistance Publique des Hôpitaux de Paris, F-75018 Paris, France 

258 Cardiovascular Genetics Research Unit, Université Henri Poincaré-Nancy 1, 54000, Nancy, France 
259 Genetic Epidemiology Laboratory, Queensland Institute of Medical Research, Queensland 4006, 

Australia 
260 Queensland Institute of Medical Research, Queensland 4029, Australia 
261 Synlab Academy, Mannheim, Germany 
262 Avon Longitudinal Study of Parents and Children (ALSPAC) Laboratory, Department of Social 

Medicine, University of Bristol, Bristol, BS8 2BN, UK 
263 School of Social and Community Medicine, University of Bristol, UK 
264 Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, 

USA 
265 Division of Health, Research Board, An Bord Taighde Sláinte, Dublin, 2, Ireland 
266 Institute of Human Genetics, Klinikum rechts der Isar der Technischen Universität München, 81675 

Munich, Germany 
267 Institute of Human Genetics, Helmholtz Zentrum München - German Research Center for 

Environmental Health, 85764 Neuherberg, Germany 
268 Department of Clinical Epidemiology and Biostatistics, McMasterUniversity, Hamilton, Ontario L8S 

4L8, Canada 
269 Human Genetics, Leiden University Medical Center, Leiden 2333, The Netherlands 
270 Merck Research Laboratories, Merck &amp; Co., Inc., Boston, Massachusetts 02115, USA 
271 Center for Observational Research, Amgen, Thousands Oaks, CA, 91320 
272 Molecular Epidemiology Laboratory, Queensland Institute of Medical Research, Queensland 4006, 

Australia 
273 Genetics Division, GlaxoSmithKline, King of Prussia, Pennsylvania 19406, USA 
274 Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School. Dundee, 

DD1 9SY 
275 Institute of Human Genetics, University of Bonn, Bonn, Germany 
276 Department of Genomics, Life &amp; Brain Center, University of Bonn, Bonn, Germany 
277 Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, 

Munich, Germany 
278 Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, 

Ludwig-Maximilians-Universität, Munich, Germany 
279 Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Australia, 6009 
280 Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114 
281 MRC Harwell, Harwell, UK 
282 Division of Cardiology, Cardiovascular Laboratory, Helsinki University Central Hospital, 00029 

Helsinki, Finland 
283 Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, 

Norway 
284 Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, 

Norway 
285 Department of Public Health, Section of Epidemiology, Aarhus University, Denmark 
286 Unit of Genetic Epidemiology and Bioinformatics, Dept of Epidemiology, University Medical Center 

Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands 
287 Department of Epidemiology, University of Groningen, University Medical Center Groningen, The 

Netherlands 
288 Carolina Center for Genome Sciences, School of Public Health, University of North Carolina Chapel 

Hill, Chapel Hill, North Carolina 27514, USA 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE HUMAN BEHAVIOUR | DOI: 10.1038/s41562-016-0016 | www.nature.com/nathumbehav	 34

SUPPLEMENTARY INFORMATION

http://dx.doi.org/10.1038/s41562-016-0016


289 Neurogenetics Laboratory, Queensland Institute of Medical Research, Queensland 4006, Australia 
290 Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, 

University Medical Center Groningen, The Netherlands 
291 Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, the 

Netherlands 
292 Department of Clinical Genetics, Erasmus MC, Rotterdam, 3015GE, The Netherlands 
293 Centre for Medical Systems Biology &amp; Netherlands Consortium on Healthy Aging, Leiden, the 

Netherlands 
294 NHS Blood and Transplant, Cambridge Centre, Cambridge, CB2 0PT, UK 
295 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario 

L8N3Z5, Canada 
296 Amgen, Cambridge, Massachusetts 02139, USA 
297 Department of Cardiovascular Medicine, University of Oxford, Level 6 West Wing, John Radcliffe 

Hospital, Headley Way, Headington, Oxford, OX3 9DU 
298 Illumina Inc. Cambridge 
299 Institute of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark 
300 Faculty of Health Science, University of Aarhus, 8000 Aarhus, Denmark 
301 The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA 
302 Department of Medical Genetics, University of Helsinki, 00014 Helsinki, Finland 
303 Department of Psychiatry/EMGO Institute, VU University Medical Center, 1081 BT Amsterdam, The 

Netherlands 
304 Department of Psychiatry, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands 
305 Department of Psychiatry, University Medical Centre Groningen, 9713 GZ Groningen, The 

Netherlands 
306 Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for 

Environmental Health, Neuherberg, Germany 
307 Munich Heart Alliance, Munich, Germany 
308 Obesity Research unit, Department of Psychiatry, Helsinki University Central Hospital, Helsinki, 

Finland 
309 Department of Medicine, Levanger Hospital, The Nord-Trøndelag Health Trust, 7600 Levanger, 

Norway 
310 Gen-Info Ltd, 10000 Zagreb, Croatia 
311 Faculty of Medicine, University of Split, Croatia 
312 Department of Neurology, General Central Hospital, Bolzano, Italy 
313 Department of Neurology, University of Lübeck, Lübeck, Germany. 
314 Departments of Epidemiology, Medicine and Health Services, University of Washington, Seattle, 

Washington 98195, USA 
315 Group Health Research Institute, Group Health, Seattle, Washington 98101, USA 
316 Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115, USA 
317 Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 

Turku, Finland 
318 The Department of Clinical Physiology, Turku University Hospital, 20520 Turku, Finland 
319 The Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, 20520 

Turku, Finland 
320 Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, 

Finland 
321 MRC Biostatistics Unit, Institute of Public Health, Cambridge, UK 
322 Department of Clinical Sciences, Lund University, 20502 Malmö, Sweden 
323 Finnish Diabetes Association, Kirjoniementie 15, 33680, Tampere, Finland 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE HUMAN BEHAVIOUR | DOI: 10.1038/s41562-016-0016 | www.nature.com/nathumbehav	 35

SUPPLEMENTARY INFORMATION

http://dx.doi.org/10.1038/s41562-016-0016


324 Pirkanmaa Hospital District, Tampere, Finland 
325 Medizinische Klinik II, Universität zu Lübeck Ratzeburger Allee 160, D-23538 Lübeck, Germany 
326 Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, LE3 

9QP, UK 
327 Leicester NIHR Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, 

LE3 9QP, UK 
328 South Karelia Central Hospital, 53130 Lappeenranta, Finland 
329 Pacific Biosciences, Menlo Park, California 94025, USA 
330 Sage Bionetworks, Seattle, Washington 98109, USA 
331 Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, One Gustave L. 

Levy Place, Box 1498, New York, NY 10029-6574 USA 
332 Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, One Gustave L. Levy 

Place, Box 1498, New York, NY 10029-6574 USA 
333 Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany 
334 Laboratory of Genetics, National Institute on Aging, Baltimore, Maryland 21224, USA 
335 Institut für Klinische Molekularbiologie, Christian-Albrechts Universität, Kiel, Germany 
336 Department of Medicine III, Prevention and Care of Diabetes, University of Dresden, 01307 

Dresden,Germany 
337 Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical 

Center, Baltimore, Maryland 21201, USA 
338 Department of Odontology, Umeå University, Sweden 
339 Azienda ospedaliera di Desio e Vimercate, Milano, Italy 
340 Institute of Preventive Medicine, Bispebjerg University Hospital, Copenhagen, and Novo Nordisk 

Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark 
341 Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, 

Michigan, USA 
342 Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, 

Michigan, USA 
343 University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland 
344 Regensburg University Medical Center, Clinic and Policlinic for Internal Medicine II, 93053 

Regensburg, Germany 
345 deCODE Genetics, 101 Reykjavik, Iceland 
346 Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland 
347 Division of Community Health Sciences, St George's, University of London, London, SW17 0RE, UK 
348 Division of Population Health Sciences and Education, St George's, University of London, London, 

SW17 0RE, UK 
349 Department of Medicine, University of Leipzig, 04103 Leipzig, Germany 
350 LIFE Study Centre, University of Leipzig, Leipzig, Germany 
351 University of Leipzig, IFB Adiposity Diseases, Leipzig, Germany 
352 Uppsala University / Dept. of Medical Sciences, Molecular Medicine, 751 85 Uppsala, Sweden 
353 Coordination Centre for Clinical Trials, University of Leipzig, Härtelstr. 16-18, 04103 Leipzig, 

Germany 
354 INSERM UMR_S 937, ICAN Institute, Pierre et Marie Curie Medical School, Paris 75013, France 
355 Department of Pharmacological Sciences, University of Milan, Monzino Cardiology Center, IRCCS, 

Milan, Italy 
356 Heart Failure Research Centre, Department of Clinical and Experimental Cardiology, Academic 

Medical Center, Amsterdam, the Netherlands 
357 Department of Medicine, Helsinki University Central Hospital, 00290 Helsinki, Finland 
358 Research Program of Molecular Medicine, University of Helsinki, 00014 Helsinki, Finland 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE HUMAN BEHAVIOUR | DOI: 10.1038/s41562-016-0016 | www.nature.com/nathumbehav	 36

SUPPLEMENTARY INFORMATION

http://dx.doi.org/10.1038/s41562-016-0016


359 Hjelt Institute, Department of Public Health, University of Helsinki, 00014 Helsinki, Finland 
360 South Ostrobothnia Central Hospital, 60220 Seinajoki, Finland 
361 Red RECAVA Grupo RD06/0014/0015, Hospital Universitario La Paz, 28046 Madrid, Spain 
362 Centre for Vascular Prevention, Danube-University Krems, 3500 Krems, Austria 
363 Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK 
364 Department of Public Health and Clinical Nutrition, University of Eastern Finland, Finland 
365 Research Unit, Kuopio University Hospital, Kuopio, Finland 
366 Department of Human Genetics, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 

HB Nijmegen, The Netherlands 
367 Department of Medicine, University of Turku and Turku University Hospital, 20520 Turku, Finland 
368 Queensland Statistical Genetics Laboratory, Queensland Institute of Medical Research, Queensland 

4006, Australia 
369 Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) University 

Hospital, 1011 Lausanne, Switzerland 
370 Institut für Community Medicine, 17489 Greifswald, Germany 
371 Institute for Community Medicine, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany 
372 Institut für Klinische Chemie und Laboratoriumsmedizin, Universität Greifswald, 17475 Greifswald, 

Germany 
373 Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 

Greifswald, Germany 
374 Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 

Los Angeles, California 90089, USA 
375 Klinikum Grosshadern, 81377 Munich, Germany 
376 Ludwig-Maximilians-Universität, Institute of Medical Informatics, Biometry and Epidemiology, 

Chair of Epidemiology, 81377 Munich, Germany 
377 Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig-

Maximilians-Universität, and Klinikum Grosshadern, Munich, Germany 
378 Klinikum Grosshadern, Munich, Germany 
379 Cardiology Group, Frankfurt-Sachsenhausen, Germany 
380 Steno Diabetes Center, 2820 Gentofte, Denmark 
381 Centre for Public Health, Queen's University, Belfast, UK 
382 Department of Physiatrics, Lapland Central Hospital, 96101 Rovaniemi, Finland 
383 Genetic and Genomic Epidemiology Unit, Wellcome Trust Centre for Human Genetics, OX3 7BN, 

Oxford 
 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE HUMAN BEHAVIOUR | DOI: 10.1038/s41562-016-0016 | www.nature.com/nathumbehav	 37

SUPPLEMENTARY INFORMATION

http://dx.doi.org/10.1038/s41562-016-0016

