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Abstract
Background and purpose: The	ENIGMA-	EEG	working	group	was	established	to	enable	
large-	scale	international	collaborations	among	cohorts	that	investigate	the	genetics	
of	brain	function	measured	with	electroencephalography	(EEG).	In	this	perspective,	
we	will	discuss	why	analyzing	the	genetics	of	functional	brain	activity	may	be	crucial	
for understanding how neurological and psychiatric liability genes affect the brain.
Methods: We	summarize	how	we	have	performed	our	currently	largest	genome-	wide	
association	study	of	oscillatory	brain	activity	in	EEG	recordings	by	meta-	analyzing	the	
results	across	five	participating	cohorts,	resulting	in	the	first	genome-	wide	significant	
hits for oscillatory brain function located in/near genes that were previously associ-
ated	with	psychiatric	disorders.	We	describe	how	we	have	 tackled	methodological	
issues	surrounding	genetic	meta-	analysis	of	EEG	features.	We	discuss	the	importance	
of	harmonizing	EEG	signal	processing,	 cleaning,	 and	 feature	extraction.	Finally,	we	
explain	our	selection	of	EEG	features	currently	being	investigated,	including	the	tem-
poral	dynamics	of	oscillations	and	the	connectivity	network	based	on	synchronization	
of oscillations.
Results: We	present	data	that	show	how	to	perform	systematic	quality	control	and	
evaluate how choices in reference electrode and montage affect individual differ-
ences	in	EEG	parameters.
Conclusion: The	long	list	of	potential	challenges	to	our	large-	scale	meta-	analytic	ap-
proach	 requires	 extensive	 effort	 and	 organization	 between	 participating	 cohorts;	
however, our perspective shows that these challenges are surmountable. Our per-
spective	argues	that	elucidating	the	genetic	of	EEG	oscillatory	activity	is	a	worthwhile	
effort in order to elucidate the pathway from gene to disease liability.

K E Y W O R D S

brain	disorders,	electroencephalography,	ENIGMA,	harmonization,	imaging	genetics,	open	
science
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1  | INTRODUC TION

The	ENIGMA-	EEG	working	group	was	established	to	enable	 large-	
scale international collaborations among cohorts who investigate 
the genetics of brain function measured with electroencephalog-
raphy	 (EEG).	 EEG	 has	 been	 used	 for	many	 decades	 to	 investigate	

cognitive processes and individual differences in brain function 
and	to	discover	biomarkers	for	neurological,	psychiatric,	sleep,	and	
other	disorders	(Berry	et	al.,	2017;	Hughes	&	John,	1999;	Noachtar	&	
Rémi,	2009).	Until	the	advent	and	widespread	use	of	functional	MRI,	
EEG	was	the	primary	method	for	measuring	activity	of	the	brain,	but	
has	remained	an	important	part	of	neuroscientific	research.	EEG	can	

2019. M.V. was funded by the Ministry of 
Science	and	Innovation,	Spain,	grant	number	
PGC2018-	099013-	A-	I00	and	by	the	María	
de	Maeztu	Unit	of	Excellence	(Institute	of	
Neurosciences,	Universitat	de	Barcelona)	
MDM-	2017-	0729.	Brisbane	Adolescent	
Twin	Study:	Funding	was	obtained	from		the	
Australian	Research	Council,	grant	numbers	
A79600334,	A79906588,	A79801419,	
DP0212016.	Netherland	Twin	Register:	
Funding	was	obtained	from	the	Netherlands	
Organization	for	Scientific	Research	
(NWO)	and	The	Netherlands	Organisation	
for	Health	Research	and	Development	
(ZonMW)	grants	904-	61-	090,	985-	10-	002,	
912-	10-	020,	904-	61-	193,480-	04-	004,	463-	
06-	001,	451-	04-	034,	400-	05-	717,	Addiction	
311-	60-	008,	016-	115-	035,	481-	08-	011,	
400-	07-	080,	056-	32-	010,	Middelgroot-	
911-	09-	032,	NWO	Gravity	program	
024.001.003,	NWO-	Groot	480-	15-	001/674,	
Center	for	Medical	Systems	Biology	
(CSMB,	NWO	Genomics),	NBIC/BioAssist/
RK(2008.024),	Biobanking	and	Biomolecular	
Resources Research Infrastructure 
(BBMRI-	NL	184.021.007/184.033.111),	
X-	Omics	184-	034-	019;	Amsterdam	Public	
Health	research	institute	(former	EMGO+);	
Neuroscience	Amsterdam	research	institute	
(former	NCA);	the	European	Community's	
Fifth	and	Seventh	Framework	Program	
(FP5-	LIFE	QUALITY-	CT-	2002-	2006,	FP7-	
HEALTH-	F4-	2007-	2013,	grant	01254:	
GenomEUtwin,	grant	01413:	ENGAGE	and	
grant	602768:	ACTION);	the	European	
Research	Council	Starting	284167,	
Consolidator	771057,	Advanced	230374;	
Rutgers	University	Cell	and	DNA	Repository	
(NIMH	U24	MH068457-	06),	the	National	
Institutes	of	Health	(NIH,	R01D0042157-	
01A1,	R01MH58799-	03,	MH081802,	
DA018673,	R01	DK092127-	04,	Grand	
Opportunity	grants	1RC2	MH089951	and	
1RC2	MH089995);	the	Avera	Institute	
for	Human	Genetics,	Sioux	Falls,	South	
Dakota	(USA).	Part	of	the	genotyping	
and analyses were funded by the Genetic 
Association	Information	Network	(GAIN)	of	
the	Foundation	for	the	National	Institutes	
of	Health.	Computing	was	supported	by	
NWO	through	grant	2018/EW/00408559,	
BiG	Grid,	the	Dutch	e-	Science	Grid	and	
SURFSARA.
The	LIFE	cohort	(LIFE—	Leipzig	Research	
Center	for	Civilization	Diseases)	is	funded	
by	means	of	the	European	Union,	by	the	
European	Regional	Development	Fund	
(ERDF)	and	by	means	of	the	Free	State	
of	Saxony	within	the	framework	of	the	
excellence	initiative.
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directly measure synaptic processes with higher temporal resolution 
(in	the	millisecond	range),	which	makes	it	different	from	other	imag-
ing	modalities	like	functional	MRI.	It	is	also	silent	and	more	comfort-
able	for	the	participant—	that	is,	less	intrusive,	and	less	cramped	and	
noisy—	thus	affecting	the	subject	less	than	functional	MRI	during	the	
recordings.	 It	 is	 also	much	 less	expensive	and	more	convenient	 to	
use,	making	it	feasible	for	widespread	research	and	clinical	applica-
tion worldwide.

EEG	research	has	a	rich	history	of	providing	biomarkers	for	be-
havioral	traits	and	mental	health	disorders.	The	primary	interest	of	
ENIGMA-	EEG	is,	however,	not	to	repeat	biomarker	research	in	larger	
samples.	 Individual	 variation	 in	 many	 of	 the	 EEG	 biomarkers	 has	

been found to be under substantial genetic control, with twin and 
family	studies	provided	the	crucial	 information	that	EEG	trait	vari-
ation	 is	heritable.	Early	studies,	dating	back	 to	 the	1930s,	pointed	
toward	nearly	identical	recordings	of	resting	EEG	in	identical	twins	
(reviewed	in	van	Beijsterveldt	and	Boomsma	(1994)).	The	first	large-	
scale	twin	studies	carried	out	by	Friedrich	Vogel	 (1958);	described	
in	 Vogel	 (1970)	 demonstrated	 that	 differences	 between	 monozy-
gotic	twins	did	not	exceed	those	seen	in	successive	EEG	recordings	
from the same individual, leading to the conclusion that variability 
in	EEG	features	is	nearly	completely	determined	by	a	multifactorial	
genetic	 system.	Subsequent	 studies	of	other	 resting	EEG	 features	
in	children,	adolescents,	 and	adults	 showed	 that	EEG	measures	of	

F I G U R E  1  The	organization	of	the	work	required	in	our	investigations	of	EEG	genetics.	Much	of	the	work	is	performed	by	the	
collaborating	sites	(columns	in	black),	including	EEG	recording,	preprocessing,	phenotype	extraction,	and	performing	the	genetic	association.	
The	role	of	ENIGMA-	EEG	is	to	regularly	hold	teleconference	calls	to	create	the	protocols	for	EEG	analysis,	QC,	and	genetics	analyses	(blue).	
Lead	groups	of	ENIGMA-	EEG	members	are	formed	to	perform	centralized	quality	control	(QC)	of	the	EEG	features	and	to	meta-	analyze	
of	the	summary	statistics	provided	by	the	sites.	The	summary	statistics	are	then	distributed	to	the	individuals	who	will	perform	genetic	
follow-	up	analyses.	Finally,	a	manuscript	is	prepared.	Note	that	most	of	the	genetics	work	is	not	included	in	this	workflow,	thus	excluding	a	
huge	amount	of	work	on	taking	biological	samples	(blood,	saliva),	DNA	extraction	and	storage,	sending	for	genotyping,	data	management,	
imputation,	quality	control.	EEG,	electroencephalography;	ENIGMA,	Enhancing	NeuroImaging	Genetics	through	Meta-	Analysis;	GWAMA,	
genome-	wide	meta-	analysis;	QC,	Quality	control;	Sumstats,	Genetic	summary	statistics	from	genome-	wide	association
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oscillation power, oscillation dynamics, and connectivity are herita-
ble	traits	(Anokhin	et	al.,	2001;	van	Beijsterveldt	&	van	Baal,	2002;	
van	Beijsterveldt	&	van	Baal,	2002;	Chorlian	et	al.,	2007;	Posthuma	
et	al.,	2005;	Rangaswamy	&	Porjesz,	2008;	Smit	et	al.,	,,2005,	2010;	
Tang	et	al.,	2007;	Zietsch	et	al.,	2007).

At	 the	 same	 time,	 it	 is	well	 known	 that	 the	 liability	 for	 neuro-
logical	and	psychiatric	disorders	is	under	genetic	control	(Polderman	
et	al.,	2015).	In	the	beginning	of	this	century,	many	argued	that	in-
vestigating	EEG	as	an	intermediate	phenotype	(or	endophenotype)	
would aid in finding specific genes for behavioral traits and mental 
health	 disorders	 (de	Geus,	 2010).	 This	 idea	was	 surpassed	 by	 the	
massive	case–	control	genome-	wide	association	studies	(GWAS)	per-
formed	in	human	genetics	(Bulik-	Sullivan	et	al.,	2015;	Sullivan	2010).	
However,	the	black	box	method	of	GWAS	leaves	unexplained	how	
specific	risk	variants	exert	their	influence	on	the	brain	on	a	systems	
level	 (de	Geus,	2010).	This	 is	the	main	focus	of	our	consortium:	to	
find	how	genetic	variants	influence	individual	variation	in	EEG	phe-
notypes	and	to	link	these	to	variants	affecting	brain	disorders.

In	order	to	do	so,	we	need	to	increase	sample	sizes	sufficiently	to	
reach	the	statistical	power	required	to	detect	and	replicate	genetic	
associations	of	common	variants	with	the	EEG	biomarkers.	Genetic	
variants	typically	have	small	effect	sizes,	thus	requiring	large	sample	
sizes.	As	in	other	ENIGMA	workgroups,	a	core	element	of	ENIGMA-	
EEG	 is	 to	 perform	 our	 genetic	 studies	 using	 a	 meta-	analytic	 ap-
proach,	where	participating	cohorts	analyze	their	data	locally,	after	
which	 they	 are	 collected,	 scrutinized,	 and	 meta-	analyzed,	 after	
which	 they	 are	 linked	 to	 the	disorders.	 This	 requires	 coordination	
between	participating	cohorts	in	prioritizing	subject	of	investigation,	
the method of analysis, and coordination of the effort put in by each 
site	to	reach	the	inevitable	goal	of	science,	the	manuscript.	Figure	1	
shows	 the	workflow	of	 our	 consortium	 in	more	 detail,	 illustrating	
that	 collaborative	efforts	 require	extensive	discussion	and	coordi-
nation. It shows how data/results are shared, what data/results are 
shared, the role of each of the participating sites, and the role of 
ENIGMA-	EEG	in	coordinating	this	process.	As	Figure	1	shows,	most	
of	 the	work	 is	performed	by	the	collaborating	sites,	 including	EEG	
recording,	preprocessing,	phenotype	extraction,	and	performing	the	
genetic	 association.	 The	 role	 of	 ENIGMA-	EEG	 is	 to	 regularly	 hold	
teleconference	calls	to	discuss	progress,	provide	support,	and	make	
decisions that lead to the analysis plan. In doing so, we are supported 
by	ENIGMA	(Thompson	et	al.,	2014,	2017),	who	provide	the	infra-
structure	for	teleconferencing,	sharing	protocols,	and	results	(http://
enigma.ini.usc.edu/).	ENIGMA	holds	annual	meetings	(virtual	or	live)	
to	provide	a	platform	for	collaborations	between	 the	workgroups,	
for	sharing	methods	or	any	other	type	of	collaboration	(e.g.,	between	
ENIGMA-	EEG	and	ENIGMA-	MEG,	ENIGMA	Epilepsy,	and	ENIGMA	
Genetics).

In the following sections, we show our perspective on how to 
tackle	the	open	questions	in	the	field	of	EEG	genetics.	We	first	argue	
why	EEG	may	be	crucial	for	advancing	understanding	of	synaptic	and	
circuit-	level	functioning	of	the	brain	in	normal	functioning	and	dis-
ease, and how oscillatory activity captures important characteristics 
of	information	processing	in	the	brain.	Next,	we	focus	on	describing	

the	 challenges	 for	 international	 EEG	 genetics	 collaborations,	 es-
pecially those regarding analytic and methodological choices, and 
homogeneity within and across cohorts. We also describe in more 
detail	the	key	scientific	questions	that	we	aim	to	address	in	our	next	
endeavors.	This	results	in	our	future	plans	for	investigating	the	ge-
netics	of	EEG-	based	brain	activity.

2  | A FOCUS ON EEG OSCILL ATIONS IN 
NEUR AL PROCESSING

EEG	 has	 provided	 the	 scientific	 community	 with	 a	 large	 range	 of	
biomarkers	and	putative	biomarkers	for	neurological	and	behavioral	
disorders,	offering	insight	into	the	localization	and	timing	of	cogni-
tive	processes	(Arns	et	al.,	2013;	de	Geus,	2010;	Hegerl	et	al.,	2008;	
Murias	et	al.,	2007;	Uhlhaas	&	Singer,	2010),	and	has	provided	bio-
markers	that	track	brain	development	(Smit	&	Anokhin,	2016;	Smit	
et	 al.,	 2011,	 2012).	 More	 recently,	 EEG	 has	 provided	 insight	 into	
modes	of	communication	in	large-	scale	brain	networks	via	synchro-
nous	oscillatory	activity	 (Cohen	et	al.,	2012;	Horschig	et	al.,	2015;	
Salinas	&	Sejnowski,	2001;	Stam,	2014;	Uhlhaas	et	al.,	2010;	Varela	
et	al.,	2001).	For	clinical	purposes,	EEG	is	routinely	used	 in	the	di-
agnosis of neurological disorders. It is the gold standard for sleep 
staging, which is used to establish disruption of sleep patterns 
(Berry	et	al.,	2017;	Coleman	et	al.,	1982).	EEG	is	also	used	to	detect	
epileptiform	 activity	 and	 epileptic	 seizures	 or	 their	 absence	 (Flink	
et	al.,	2002;	Niedermeyer,	1999a),	or	to	monitor	nonconvulsive	sta-
tus	epilepticus	in	critically	 ill	patients	(Abend	et	al.,	2010).	By	con-
trast,	EEG	has	only	rarely	found	a	way	into	clinical	use	for	diagnosis	
and evaluation of psychiatric disorders, although complementary 
treatments	that	use	EEG	are	being	widely	offered	in	the	form	of	neu-
rofeedback	 training	 (Enriquez-	Geppert	et	al.,	2017).	Many	patents	
have	 been	 filed	 for	 diagnostics	 or	 neurofeedback	 systems	 (patent	
category	A61B5/0482),	but	only	a	single	method	has	achieved	FDA	
approval	(theta/beta	ratio	for	ADHD;	see	Arns	et	al.,	2016).

EEG	 recordings	 from	 the	 scalp	 as	 well	 as	 intracranial	 record-
ings indicate that cortical communication is the result of neuronal 
oscillations	 (Akam	 &	 Kullmann,	 2014;	 Cohen,	 2017;	 Stam,	 2014;	
Uhlhaas	et	al.,	2010;	Uhlhaas	&	Singer,	2010).	Both	intracranial	and	
scalp recordings show clear sinusoidal activity patterns, produced 
by the oscillations that are caused by the concerted changes in volt-
ages across the postsynaptic membranes in the dendritic trees of 
pyramidal	 neurons.	 These	 voltage	 changes	 either	 inhibit	 or	 sensi-
tize	neurons	to	create	action	potentials.	The	unique	orientation	of	
the	pyramidal	neurons—	systematically	perpendicular	to	the	cortical	
sheet—	and	the	often	strongly	correlated	coactivations	across	many	
neurons result in a large collective dipole: the summed activity of 
the local field potentials that is enough to propagate through the 
surrounding	tissues	to	reach	externally	attached	electrodes	(Buzsáki	
et	al.,	2012).	Although	the	activity	on	the	microscopic	scale	of	a	sin-
gle neuron cannot be detected, there is enough information for re-
cording synchronous activity of patches of neurons, at the scale of a 
few cm2 of cortical tissue.

http://enigma.ini.usc.edu/
http://enigma.ini.usc.edu/
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Our	primary	focus	is	to	analyze	this	oscillatory	activity—	mostly	
from	 the	 eyes-	closed	 resting	 state,	 the	 commonest	 condition	 ap-
plied	 during	 EEG	 acquisition.	 From	 these	 recordings,	 it	 is	 possible	
to	extract	a	near	endless	set	of	EEG	features	based	on	oscillatory	
frequency,	oscillatory	power,	the	temporal	dynamics	of	oscillations,	
interactions	across	oscillatory	frequencies,	and	spatial	 interactions	
(connectivity).	In	the	upcoming	sections,	we	will	highlight	the	stra-
tegic	selection	of	EEG	variables.	Oscillatory	responses	to	events	and	
event-	related	potentials	(ERPs)	in	task	data	are	another	great	source	
of	clinical	biomarkers	(Duncan	et	al.,	2009).	Most	notably,	ERP	com-
ponents	such	as	the	P300	obtained	in	the	oddball	task,	the	mismatch	
negativity,	and	the	steady-	state	responses	are	among	the	most	rele-
vant	for	clinical	research.	While	ERPs	are	not	reviewed	in	the	current	
perspective,	they	will	be	targeted	in	future	work	by	our	consortium.

Oscillations are not epiphenomenological features of brain ac-
tivity,	but	have	 functional	 relevance.	Their	 synchronicity	 is	a	main	
mode	of	meso-		and	long-	distance	communication	between	cortical	
areas	and	from	cortical	 to	subcortical	areas	 (Fries,	2005;	Horschig	
et	al.,	2015;	Schnitzler	&	Gross,	2005).	Coactivation	in	the	form	of	
spike	propagation	can	only	take	place	when	brain	areas	are	in	syn-
chrony,	 that	 is,	are	both	sensitive	to	 input	 in	a	depolarizing	phase.	
Different	oscillation	frequencies	subserve	different	cognitive	and	af-
fective	functions,	while	sharing	the	same	anatomical	network	(Akam	
&	Kullmann,	2014;	Klimesch,	1996).	Such	communication	has	proven	
essential	 for	executing	a	wide	 range	of	behavioral	 tasks,	may	also	
be	affected	in	behavioral	disorders,	and	may	to	some	extent	explain	
individual	 differences	 in	 behavior	 (Arns	 et	 al.,	 2013;	 Doppelmayr	
et	al.,	2002;	Jenkinson	&	Brown,	2011).	The	causal	role	neural	oscil-
lations	play	in	behavioral	variation	is	becoming	increasingly	clear.	For	
example,	 blocking	 beta	 oscillations	 (13–	30	Hz)	 in	 the	 subthalamic	
nucleus	(STN)	of	patients	with	Parkinson's	disease	during	deep	brain	
stimulation	treatment	can	result	in	relieving	bradykinetic	symptoms	
(Engel	&	Fries,	2010;	Swann	et	al.,	2011);	moreover,	stimulation	only	
during	periods	of	elevated	beta	activity	 in	 the	STN	 is	sufficient	 to	
obtain	 symptom	 relief	 (Little	 &	 Brown,	 2014).	 This	 finding	 led	 to	
the	conclusion	that	a	surplus	STN	beta	activity	causes	bradykinesia	
(Brown,	2006).	Other	examples	using	optogenetic	driving	of	oscil-
lations in the mouse brain further highlight the contribution of os-
cillatory	activity	to	communication	and	behavior	 (Cho	et	al.,	2015;	
Karalis	et	al.,	2016).

A	 further	 reason	 to	 investigate	 neural	 oscillations	 is	 that	 they	
have	been	investigated	well	in	the	extant	literature.	Many	of	the	par-
ticipating	cohorts	were	established	 long	ago	as	 (twin)	family	study	
cohorts.

3  | INITIAL ENIGMA- EEG FINDINGS

ENIGMA-	EEG	 published	 their	 first	 article	 in	 November	 2018	 on	
the	genetics	underlying	the	strength	of	oscillations	present	in	EEG	
brain	activity	signals	(Smit	et	al.,	2018).	We	associated	genome-	wide	
SNPs	to	oscillation	strength	in	the	common	delta,	theta,	alpha,	and	
beta	 frequency	 bands,	 and	 alpha	 peak	 frequency.	 All	 these	 brain	

activity traits are under moderate to strong genetic control and 
are	 to	some	degree	biomarkers	of	behavioral	 traits	and	 liability	 to	
psychiatric	 illnesses	 (Boutros	et	al.,	2008;	Klimesch,	1996;	Porjesz	
&	Begleiter,	2003).	Our	primary	aim	in	this	project	was	to	increase	
power	 to	 find	 genetic	 associations	 by	 increasing	 sample	 size.	
The	 sample	 size	 of	 previous	 studies	was	modest,	with	 the	 largest	
study	 analyzing	 a	 sample	 of	 just	 over	 4,000	 individuals	 (Malone	
et	 al.,	 2014).	 Malone	 et	 al.	 did	 not	 find	 any	 significant	 individual	
SNPs,	but	detected	associations	at	the	gene	level	for	delta	power.

Our	 study	 of	 EEG	data	 from	8,425	 individuals	 found	 genome-	
wide	 significant	hits—	that	 is,	 genetic	variants	associated	with	EEG	
signal	 variation—	although	 these	 did	 not	 remain	 significant	 when	
correcting	across	the	various	EEG	phenotypes	tested	 (i.e.,	 the	five	
oscillation	frequency	powers	and	alpha	peak	frequency).	The	asso-
ciation	results	are	available	upon	request	via	http://enigma.ini.usc.
edu/ongoi	ng/enigm	a-	eeg-	worki	ng-	group/.	 Our	 application	 proce-
dure	requires	filling	out	a	short	form	with	contact	information	and	
requires	the	requestor	to	agree	with	the	ethical	statement	regarding	
the	 download	 of	 genetic	 association	 data.	 The	 biological	 function	
of	 the	 SNPs	was	 investigated	 using	 several	 gene-	based	 and	 gene	
expression-	based	 approaches.	 These	 results	 highlighted	 several	
significant effects across the genome. One important region associ-
ated with alpha oscillations was found on 3p21.1, which holds many 
genes	 associated	 with	 risk	 for	 schizophrenia	 and	 bipolar	 disorder	
(Ripke	et	al.,	2014;	Stahl	et	al.,	2019).	Brain	expression	analysis	found	
significant effects on GNL3 and ITIH4	expression	in	prefrontal	cor-
tices,	explaining	the	observed	aberrant	brain	activity	in	schizophre-
nia. Recently, a study found that the genetic variants in the 3p21.1 
region	affect	expression	of	NEK4, GNL3, and PBRM1 in the frontal 
cortices, which in turn affected dendritic spines, cognitive function, 
schizophrenia,	and	bipolar	disorder	(Yang	et	al.,	2020).	This	provides	
evidence	 that	 frontal	 EEG	 alpha	 oscillations	may	 indeed	be	 a	 bio-
marker	for	schizophrenia	(Merrin	&	Floyd,	1996;	Nikulin	et	al.,	2012),	
although the effect has not always been consistent across studies of 
oscillations	at	this	frequency	(Boutros	et	al.,	2008).

3.1 | Follow- up inquiries into the genetic 
contributions to EEG

Based	on	 these	genome-	wide	association	 results,	 several	 analyses	
were	 performed	 to	 investigate	 interesting	 targets,	 brain	 expres-
sion	of	genes,	and	links	to	psychiatric	and	neurological	phenotypes.	
Alcohol	dependence	has	been	found	to	be	linked	to	SNPs	in	gamma-	
aminobutyric	 acid-	receptor	 subunit	 alpha	 2	 gene	 (GABRA2)	 (Dick	
et	al.,	2006;	Edenberg	et	al.,	2004;	Porjesz	et	al.,	2002;	Rangaswamy	
&	Porjesz,	2008;	Rangaswamy	et	al.,	2002).	GABRA2 and alcoholism 
have	been	linked	to	individual	differences	in	beta	oscillation	power	
(12–	28	Hz)	(Edenberg	et	al.,	2004;	Porjesz	et	al.,	2002;	Rangaswamy	
&	Porjesz,	2008;	Rangaswamy	et	al.,	2002).	We	aimed	to	replicate	
this	 last	 result	 using	 our	 genome-	wide	 study	 of	 beta	 oscillation	
power.	The	association	was	found	to	be	present	in	the	gene-	based	
test	 (Smit	 et	 al.,	 2018).	 Gene-	expression	 analysis	 of	 the	GABRA2 

http://enigma.ini.usc.edu/ongoing/enigma-eeg-working-group/
http://enigma.ini.usc.edu/ongoing/enigma-eeg-working-group/
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gene suggested that beta power was most strongly associated with 
hippocampal	expression.	This	suggests	that	hippocampal	GABRA2	
expression	affects	beta	oscillations	and	may	be	linked	to	the	pivotal	
role	hippocampal	GABA	plays	in	habit-	forming	and	reward	process-
ing	in	alcohol	dependence	(Enoch,	2008).	Interestingly,	this	is	in	line	
with	ongoing	work	by	ENIGMA's	Addiction	working	group;	a	 fine-	
scale morphometric analysis alcohol dependence was associated 
with abnormalities in a range of structures, but showed the strong-
est	effects	in	the	hippocampus	(Chye	et	al.,	2020),	as	well	as	in	the	
thalamus, putamen, and amygdala.

In	a	preprint	manuscript	(Stevelink	et	al.,	2019),	we	explored	the	
genetic correlation between theta and beta power and the gener-
alized	 genetic	 epilepsy	 (GGE)	 GWAS	 of	 the	 International	 League	
Against	Epilepsy	(ILAE	Consortium,	2014).	Beta	power	in	particular	
may	prove	to	be	a	biomarker	with	links	to	GABA	expression	in	inhibi-
tory	interneurons	(Hall	et	al.,	2010;	Porjesz	et	al.,	2002;	Rangaswamy	
et	al.,	2002)	and	consequently	may	have	a	role	in	epilepsy	when	in-
hibition	and	excitation	are	imbalanced	(Magloire	et	al.,	2019).	Beta	
power is generally not considered interictal epileptiform brain ac-
tivity,	which	typically	 includes	spike	and	sharp	wave	activity	 (Pillai	
&	 Sperling,	 2006).	 Significant	 positive	 genetic	 correlations	 were	
found	between	beta	power	and	liability	for	GGE,	indicating	shared	
genetic	architecture.	In	an	independent	Epilepsy	GWAS	(Epi25	con-
sortium),	the	genetic	correlation	remained	significant.	Since	the	par-
ticipants	studied	in	ENIGMA-	EEG	were	all	nonepileptic	(epilepsy	in	
all	 its	 forms	 is	 an	 exclusion	 criterion	 for	most	 if	 not	 all	 EEG	 stud-
ies	that	do	not	focus	on	epilepsy),	this	provides	some	insights	 into	
whether	resting-	state	recordings	can	be	used	to	determine	neuro-
nal	hyperexcitability	below	the	clinical	threshold,	which	may	affect	
psychological	 function	 and	explain	 some	of	 the	 comorbidities	 and	
genetic correlations observed between behavioral disorders and 
epilepsy	 (Anttila	 et	 al.,	 2018;	 Bulik-	Sullivan	 et	 al.,	 2015;	 Gaitatzis	
et	al.,	2004;	Hesdorffer	et	al.,	2012;	Swinkels	et	al.,	2005;	Volkmar	
&	Nelson,	1990).

Despite	the	modest	sample	sizes—	small	when	compared	to	the	
very	large	GWASs	of	psychiatric	disorders	and	other	complex	traits—	
our	initial	GWAS	of	oscillation	strength	already	found	significant	loci	
for alpha band oscillations with plausible biological mechanisms. 
These	associations	will	continue	to	be	followed	up	as	we	further	in-
crease	our	sample	sizes.	Combining	SNP	results	into	gene-	based	and	
gene-	expression	 tests,	 we	 observed	 significant	 associations	 with	
alpha oscillation strength and pointed to brain areas and genomic 
loci	 previously	 linked	 to	 psychiatric	 disorders.	 EEG	 oscillatory	 pa-
rameters	may	be	less	polygenic	than	other	complex	traits—	although	
not	to	the	degree	as	previously	suggested	or	hoped	for	(see	also	de	
Geus,	 2010).	 Nevertheless,	 genetic	 analyses	 of	 EEG	 features	 are	
starting	to	be	helpful	in	explaining	how	specific	psychiatric	liability	
genes	affect	the	functioning	brain,	plotting	the	pathway	from	SNP	
to	expression	to	neural-	level	function,	to	systems-	level	function,	and	
finally	to	behavior	(de	Geus,	2010;	Iacono,	2018).	Investigating	these	
pathways	will	be	greatly	aided	by	increase	sample	sizes	and	by	estab-
lishing	the	EEG	features'	polygenicity	(Holland	et	al.,	2019),	as	well	
as	variant-	level	 joint-	polygenicity	analyses	that	are	currently	being	
developed	(Frei	et	al.,	2019)	to	investigate	the	nature	of	overlap	be-
tween	traits	(in	our	case,	EEG	features	and	psychiatric/neurological	
genetic	overlap).

4  | PR AC TIC AL ISSUES IN HARMONIZING 
EEG ANALYSES FOR GENETIC ANALYSES

To	optimize	 detection	 of	 genetic	 associations,	we	 can,	 in	 addition	
to	 increasing	 sample	 sizes,	 invest	 in	 harmonizing	 the	 phenotype	
and	 explore	 options	 for	multivariate	 analyses	 as	 EEG	 features	 are	
inherently multidimensional. In this article, we highlight our efforts 
to	extract	harmonized	EEG	features,	the	steps	we	have	taken,	and	
the	 future	 steps	 we	 would	 like	 to	 take.	 Equally	 important	 is	 the	
harmonized	 analyses	 of	 the	 genetic	 information.	 For	 genotyping,	

F I G U R E  2  Effect	of	reference	on	EEG	coherence	and	power.	We	calculated	power	and	coherence	in	the	alpha	band	(8–	12.5	Hz)	for	the	
128	channels	available	in	this	sample	of	39	subjects	(data	from	(Smit	et	al.,	2013)).	Data	were	initially	analyzed	with	average	reference.	(a)	
Changing	to	mastoid	reference	biases	alpha	power	upward	(left	inset	bar	graph).	The	correlation	between	mastoid	and	average	reference	
is	very	high	(>0.90).	Therefore,	a	GWAS	of	EEG	alpha	power	will	be	marginally	impacted	despite	the	large	bias.	(b)	Changing	to	mastoid	
reference	also	biases	channel	average	coherence	upward	(inset	bar	graph).	The	correlation	across	subjects	is	low	(r <	.30,	right	topoplot).	
This	will	substantially	affect	genetic	association	and	indicates	that	reference	needs	to	be	harmonized	across	studies.	(c)	Local	bipolar	
derivations	show	similar	low	correlation	with	the	average	reference	setup	(r <	.28).	(d)	A	selected	channel	pair	(C3,	C4)	showed	variable	
connectivity	between	the	reference	setups.	Markedly,	mastoid	reference	showed	negative	correlation	with	the	average	reference	and	local	
bipolar derivations
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imputation,	 and	 quality	 control	 of	 genetic	 data,	we	 closely	 follow	
the recommendations and pipelines from our colleagues in the 
ENIGMA	Genetics	working	group	described	online	 (http://enigma.
ini.usc.edu/proto	cols/genet	ics-	proto	cols/)	 (Grasby	 et	 al.,	 2018;	
Hibar	et	al.,	2015;	Stein	et	al.,	2012).	These	guidelines	and	protocols,	
which	we	consider	just	as	important	as	high-	quality	neurophysiologi-
cal	biomarker	extraction,	will	not	be	further	covered	in	the	current	
article,	since	there	is	a	large	specialized	body	of	literature	describing	
QC	and	methodology	for	genetic	association,	genetic	meta-	analysis,	
and	 polygenic	 score	 calculation	 (e.g.,	 Lam	 et	 al.,	 2020;	 Marees	
et	al.,	2018;	Privé	et	al.,	2020;	Ni	et	al.,	2021).

Genetic studies typically investigate how individual differences 
in	phenotypes	are	affected	by	genetic	variants—	specifically	for	our	
consortium,	individual	differences	in	EEG	parameters.	Therefore,	the	
quality	of	EEG	feature	extraction	needs	to	be	assessed	against	the	
background	of	the	variability	of	the	EEG	features	in	the	population	
being	measured.	This	means	that	apparatus,	data	quality	control,	and	
sampling/cohort characteristics must not greatly affect the individ-
ual	 participants'	 rank	ordering	on	 the	EEG	 features	 extracted	 and	
should	largely	capture	the	same	variation.	Some	aspects	of	record-
ing	are	not	likely	to	affect	the	variability	of	the	EEG	features,	that	is,	
when	they	cause	a	fixed	bias.	For	example,	the	recording	filter	set-
tings, with their mostly linear effects on oscillation power and when 
applied constantly across individuals, will not affect the relative 
score	between	individual	participants	on	EEG	power.	Other	aspects	
of	recording,	on	the	other	hand,	may	greatly	affect	the	rank	ordering	
of	 individual	data.	For	example,	 if	a	subset	of	participants	were	to	
fall asleep during the resting recordings, this would greatly affect 
their	average	power	of	oscillatory	activity	(Niedermeyer,	1999b).	To	
avoid such problems, strict protocols are needed to prevent partic-
ipants	from	falling	asleep.	Experience	teaches	us	that—	for	younger	

participants—	it	is	wise	to	record	shorter	intervals	in	the	eyes-	closed	
resting state, as they tend to fall asleep faster than adults. Many 
more	challenges	exist	in	the	creation	of	repeatable	recordings	within	
individuals	and	consistent	recordings	across	individuals.	This	has	led	
to the creation of guidelines for the application, recording, and anal-
ysis	 of	 EEG	data,	 often	with	 a	 special	 focus	 on	 clinical	 recordings	
(Babiloni	et	al.,	2020;	Flink	et	al.,	2002);	see	https://www.acns.org/
pract ice/guide lines.

4.1 | Apparatus

The	 actual	 recording	 of	 scalp	 potentials—	picking	 up	 the	 minute	
voltages—	may	be	one	of	the	lesser	worries	for	homogeneity	across	
participating	 cohorts,	 given	 today's	 high-	quality	 research	 EEG	
equipment.	 Large	 individual	 differences	 in	 oscillatory	 amplitudes	
and	other	biomarkers	exist	 in	EEG	signals	that	will	not	be	affected	
crucially	by	amplifier	quality,	especially	when	enough	data	are	avail-
able	 per	 subject	 for	 stable	 estimates.	 Likewise,	 active	 versus	 pas-
sive	electrodes—	the	use	of	which	is	generally	linked	to	the	choice	of	
apparatus—	is	not	expected	to	show	large	effects	on	EEG	parameters	
as	long	as	dry	electrodes	are	avoided	(Laszlo	et	al.,	2014;	Mathewson	
et	al.,	2017).

There	 are,	 however,	many	other	possible	 sources	of	heteroge-
neity	that	do	affect	individual	scores	on	EEG	features	differentially,	
affecting	 the	 rank	 ordering	 of	 individual	 subject	 data	 and,	 conse-
quently,	genetic	associations.	We	identified	several	sources	of	het-
erogeneity that could substantially affect the individual differences 
in	EEG	features.	These	range	from	methodological	systematicity,	to	
analytical systematicity, to sampling variability.

BOX 1 Data- driven frequency band definition for connectivity analysis of EEG

For	our	connectivity	analysis,	we	decided	to	follow	a	bottom-	up	approach	to	frequency	band	definitions.	For	a	full	description	of	the	
methodology,	we	refer	to	the	online	supplementary	information.	In	short,	the	cutoff	frequencies	separating	the	frequency	bands	
were	based	on	the	ability	of	the	bands	to	reproduce	the	relevant	features	of	the	unbanded	data	(in	this	specific	case,	the	coherence	
spectrum	at	full	0.5	Hz	resolution).	This	was	assessed	by	finding	a	vector	of	frequency	separation	points	such	that	a	linear	combina-
tion	of	the	banded	data	was	best	able	to	reconstruct	the	unbanded	data.	The	reconstruction	fit	was	measured	by	the	relative	matrix	
distance	(Frobenius	distance)	between	the	unbanded	data	and	the	reconstructed	data.
A	dataset	comprising	240	adult	subjects	from	the	COGA	cohort	(Table	1)	was	used	to	calculate	coherence	between	channel	pairs	at	
0.5	Hz	resolution	(Chorlian	et	al.,	2009).	The	coherence	spectra	were	limited	to	3–	28	Hz.	An	adapted	Nelder–	Mead	function	minimi-
zation	procedure	was	used	to	identify	optimal	separation	points	between	frequency	bands	using	the	above	criterion	of	providing	the	
best	reconstruction	of	individual	band	power,	which	was	then	averaged	over	subjects.	This	approach	yielded	separation	frequencies	
as specified in the table. Our empirically derived definition is very near the definitions for theta, lower alpha, upper alpha, lower beta, 
and	upper	beta	coherence,	although	specific	boundaries	deviated	slightly	from	those	used	regularly.	Note	that	a	six	band	definition	
was	also	calculated	which	provided	an	additional	beta	band	(see	supplement).	Only	the	five-	band	definition	is	shown	below.

http://enigma.ini.usc.edu/protocols/genetics-protocols/
http://enigma.ini.usc.edu/protocols/genetics-protocols/
https://www.acns.org/practice/guidelines
https://www.acns.org/practice/guidelines
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4.2 | Methodological issues

One	particular	methodological	challenge	for	our	meta-	analytic	ap-
proach is that not all cohorts use the same electrode layout and 
reference	electrode	during	recording.	From	the	1990s	onwards,	the	
number of recording channels has steadily increased, with the most 
recent cohorts measuring at least 30 channels or more. It is hardly 
debated that increased density provides highly valuable informa-
tion on individual differences in brain function, in both health and 
disease.	The	earlier	studies,	however,	recorded	with	5,	7,	14,	or	15	
channels.	Sparse	layouts	such	as	these	greatly	reduce	the	possibility	
to	provide	more	localized	brain	activity	measures.

Data cleaning may be a greater challenge, as methods such as 
independent	component	analysis	(ICA)	for	removing	eye	movement	
and	other	artifacts	from	the	EEG	signal	may	not	be	applicable	for	the	
sparsest	of	montages.	For	the	slightly	 less	sparse	montages,	sepa-
rating brain from nonbrain source signals in the recorded traces may 

be difficult. It often involves a comparison of loading patterns of in-
dependent components onto nearby electrodes: If source activity 
is	observed	on	a	single	EEG	electrode,	it	cannot	come	from	a	brain	
source	however	 close	 to	 the	 skull	 and	dura.	Brain	 sources	project	
their electrical activity to an area of the scalp which generally con-
tains several electrodes in a recording array of 30 channels or more, 
due	to	the	high	relative	impedance	of	the	skull	compared	to	the	brain	
and	scalp	tissues.	The	denser	the	electrode	layout,	the	better	it	can	
be evaluated whether a source signal stems from a brain source or 
outside.

Another	notable	 issue	 is	 the	sampling	 frequency	and	the	as-
sociated	 change	 in	 the	 low-	pass	 hardware	 filter.	 These	 filters	
are	 implemented	with	 specific	 hardware	 (rather	 than	 the	digital	
filtering	 applied	 in	 the	postacquisition	data	 cleaning	phase)	 and	
are	 required	 to	avoid	so-	called	aliasing	effects	 in	 the	analog-	to-	
digital	 conversion	 phase	 where	 high-	frequency	 oscillations	 can	
be	mistaken	for	low-	frequency	oscillations.	Unfortunately,	these	

TA B L E  1  Overview	of	ENIGMA-	EEG	GWAS	samples	with	eyes-	closed	resting	recordings

Cohort N
Age range 
(years)

Recorded time 
(eyes closed)

Number EEG 
channels

Sampling 
frequency

Population based/
case– control

Dominant 
ancestry

BATS 971 15.4– 19.2 5 min 15 500	Hz Population based EUR

COGA 2,835 10.4– 74.1 4.25 min 19/31/61 256	Hz Case–	control	(alcoholism) EUR/AFR

LIFE 3,138 41.0– 79.9 20 min 30 1,000	Hz Population based EUR

MTFS 5,319 16.6– 65.3 5 min 5/61 128	Hz Population based EUR

NORMENT 416 18– 86 5 min 64 2,048	Hz Case–	control	(psychotic) EUR

NTR 839 5.2– 70.9 3 min 14/19 250	Hz Population based EUR

TSSC 127 5 years– 46 2– 3 min 128 500	Hz Population based EUR

BENEPEG 1,166 ≥18	years 3 min 64 500	Hz Case–	control	(various	
psychiatric)

EUR

Abbreviations:	BATS,	Brisbane	Adolescent	Twin	Study;	BENEPEG,	Belgium-	Netherlands	study	of	Psychiatric	EEG	and	Genetics	cohort;	COGA,	
Collaborative	studies	on	the	genetics	of	alcoholism;	LIFE,	Leipzig	Research	Centre	for	Civilization	Diseases;	MTFS,	Minnesota	Twin	Family	Study;	
NORMENT,	Norwegian	Centre	for	Mental	Disorders	Research;	NTR,	Netherlands	Twin	Register;	TSSC,	Tennessee	Synchrony	&	Speech	Cohort.

F I G U R E  3  Spherical	interpolation	for	quality	control	of	a	dataset	of	765	subject	in	a	17	channel	montage	with	A1/A2	reference	using	
the	data	from	(Smit	et	al.,	2005),	eyes-	close	resting	condition,	and	cleaned	by	visual	inspection,	filtering	1–	30	Hz,	and	ICA	decomposition	
with	visual	rejection	(Pion-	Tonachini	et	al.,	2019).	Theta	power	(4–	8	Hz,	left),	beta	power	(13–	21	Hz,	middle),	and	theta–	beta	ratio	(right)	
were	calculated	for	channel	Cz.	Next,	the	same	power	values	are	calculated	for	a	spherical	interpolation	of	channel	Cz	using	16	remaining	
channels	(implemented	in	EEGLAB	(Delorme	&	Makeig,	2004)).	Even	at	this	low-	density	montage,	oscillatory	power	is	generally	quite	
well	imputed	(r	≥	.97),	and	outliers	easily	detected	by	statistical	methods	(false	discovery	rate).	For	theta	power,	ten	observations	were	
considered	suspect	at	FDR	q =	0.01.	For	beta	power,	three	observations	were	considered	suspect.	These	values	may	be	replaced	with	the	
imputed	values.	For	theta–	beta	ratio,	five	values	were	considered	suspect.	Retracing	the	subjects'	signals	revealed	that	three	of	these	were	
affected	by	some	residual	artifacts	in	channel	Cz,	and	their	values	replaced	by	the	interpolated	values.	It	shows	that	highly	automated	
algorithms	of	multichannel	EEG	data	can	produce	high-	quality	data	and	flag	errors	in	visual	cleaning
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anti-	aliasing	hardware	filters	also	affect	the	oscillatory	amplitude	
and phase of oscillations near the filter boundary, which is set in 
relation	to	the	sampling	frequency.	When	the	sampling	rate	is	too	
low	(e.g.,	256	Hz	with	an	anti-	aliasing	filter	at	64	Hz),	this	will	af-
fect	EEG	power	well	below	the	64	Hz	cutoff	frequency.	Moreover,	
causal filters substantially affect the phase of oscillations, which 
will	 subsequently	 affect	 cross-	frequency	 amplitude–	phase	 cou-
pling	 and	 phase-	locking	 values.	 These	 issues	 are	 easily	 avoided	
by	 increasing	 sampling	 frequency	 and	 the	 causal	 low-	pass	 filter	
settings.

Perhaps the most influential issue with regard to recording is 
the	choice	of	reference	electrode	(mastoids,	earlobe,	nose,	average	
reference,	 local	derivations,	dura	 imaging),	affecting	how	each	sig-
nal	represents	shallower	and	deeper	sources.	For	oscillation	power,	
the effects may be not as crucial, however, for connectivity mea-
sures	 like	 coherence,	 substantial	 effects	 are	 expected	 (Peterson	
et	al.,	2019).	Figure	2	shows	how	a	change	in	reference	from	aver-
age to mastoid affects oscillation power and coherence in the alpha 
band.	This	required	us	to	make	explicit	choices	in	the	reference	setup	
to	harmonize	the	results	across	cohorts	for	studying	the	genetics	of	
functional brain connectivity.

Finally,	it	is	widely	acknowledged	that	EEG	consists	of	a	myriad	
of	 oscillations	 at	 various	 frequencies	 that	 all	 serve	different	 func-
tional	 purposes	 (Akam	&	Kullmann,	2014;	Klimesch,	1996).	 EEG	 is	
generally	 separated	 into	 oscillation	 frequency	 bands	 that	 reflect	
these functional differences; however, the choice of cutoff fre-
quencies	separating	these	bands	is	generally	taken	for	granted	and	
reflects	commonly	accepted	 fixed	definitions.	For	example,	where	
many studies have captured alpha oscillations as a single entity to 
be	analyzed	across	the	8–	12	Hz	frequency	band	(Palva	et	al.,	2013;	
Smit	et	al.,	2013),	many	others	have	used	separate	upper	and	lower	
bands as they found these to be informative for the functional prop-
erties	investigated	(Doppelmayr	et	al.,	2002;	Klimesch	et	al.,	1997;	
Stam,	2000).	Arguably,	a	frequency	band	definition	can	be	performed	
in	a	more	bottom-	up	fashion,	using	the	data	to	optimize	information	
content	 in	 the	 frequency	band	definition.	 For	our	upcoming	 func-
tional	connectivity	project,	we	have	used	such	an	approach.	The	Box	
1	below	explicates	 how	 this	 analysis	was	performed,	with	 further	
specifics provided in the supplementary information. By using this 
approach, we decrease the heterogeneity induced by suboptimal 
frequency	band	definition,	while	 increasing	the	stability	of	our	es-
timates and power of our tests by averaging coherence across mul-
tiple	frequencies.

4.3 | Analytic consistency

At	 ENIGMA-	EEG,	 our	 efforts	 to	 produce	 homogenous	 results	 for	
meta-	analysis	were	mostly	focused	on	analytic	techniques	and	post-
processing	of	the	EEG	data.	Our	customized	scripts	for	extraction	of	
the	EEG	features	were	written	in	MATLAB,	passed	to	participating	
cohorts,	and	then	applied	to	the	cleaned	EEG	data.	These	protocols	
are	available	on	Github	(dirkjasmit/ENIGMA-	EEG).

We	are	 currently	extending	 the	EEG	 feature	extraction	proce-
dures	 by	 providing	 techniques	 for	 postextraction	 quality	 control.	
Although	 EEG	 is	 known	 for	 the	 relative	 high	 time	 investment	 re-
quired	to	produce	clean,	artifact-	free	stretches	of	data,	it	is	also	quite	
unique	for	applying	quality	checks	because	of	the	large	number	of	
signals	 that	are	recorded	from	each	subject.	Each	of	 these	signals'	
extracted	parameters	can	be	matched	against	those	of	neighboring	
signals.	Using	spherical interpolation, signals can be recreated based 
on	a	fixed	weighted	average	of	all	remaining	electrodes,	the	EEG	fea-
ture	in	question	recalculated	and	matched	against	the	original	value	
(Junghöfer	et	al.,	2000).	Alternatively,	machine	learning	can	be	used	
to establish an empirically estimated relation between the highly 
correlated values across the electrode locations and compare the 
actually obtained values to the values the model imputes from the 
data.	Values	with	a	deviance	greater	than	expected	may	be	removed	
or	replaced	by	the	imputed	value.	Figure	3	shows	an	example	of	how	
interpolation was used to detect rogue data points in the theta– beta 
ratio.

Artifact	removal	from	the	EEG	traces	is	a	constant	focus	for	many	
EEG	 researchers.	 Trained	 researchers	 are	 consistent	 among	 each	
other	with	an	 ICC	above	0.80	 for	 the	extraction	of	 certain	power	
values	(Hatz	et	al.,	2015).	With	the	increasingly	expanding	number	of	
datasets, much effort is being put into automated detection and re-
moval	of	artifacts.	There	are	a	variety	of	algorithms,	based	on	either	
statistical	 thresholding,	either	 fixed	or	adaptive,	or	using	Bayesian	
approaches.	 Individual	 level	 ICA	based	on	Blind	Source	Separation	
(BSS)	seems	to	have	established	a	dominant	position	for	removal	of	
various	types	of	fixed-	source	artifacts	(Delorme	et	al.,	2007;	Nolan	
et	al.,	2010),	with	several	methods	for	automated	artifact	IC	detec-
tion	(Nolan	et	al.,	2010;	Pion-	Tonachini	et	al.,	2019).	Recent	comple-
mentary	methods	such	as	Artifact	Subspace	Reconstruction	 (ASR)	
propose solutions to remove transient large amplitude noise from the 
data	(Chang	et	al.,	2019).	Although	many	automated	artifact	removal	
techniques	 still	 require	 visual	 confirmation,	 fully	 automated	 algo-
rithms may actually be in good agreement with visual inspection for 
high	density	recordings	(Hatz	et	al.,	2015).	This	opens	up	possibilities	
for	large-	scale	endeavors	such	as	ENIGMA-	EEG	to	implement	fully	
automated	pipelines	such	as	the	one	implemented	by	one	of	us	(SJB)	
(https://github.com/sjbur	well/eeg_comma	nder)	and	others	(https://
www.front iersin.org/artic les/10.3389/fnins.2018.00097/ full; 
https://www.front iersin.org/artic les/10.3389/fninf.2015.00016/ 
full).	We	note,	however,	that	there	is	no	agreed	upon	gold	standard	
for automated artifact removal yet.

Finally,	our	 large	datasets	allow	us	to	quantitatively	investigate	
the	effect	of	data	quality	on	some	of	the	phenotypes	that	were	col-
lected	 in	 the	 population-	based	 and	 clinically	 ascertained	 samples.	
Meta-	data	about	the	cleaning	process—	for	example,	data	recording	
length, number of channels lost, or the number of epochs rejected 
after	visual	cleaning—	could	all	be	used	to	predict,	for	example,	the	
age	of	the	subject,	or	any	psychiatric	or	behavioral	outcome.	As	such	
variables	of	recording	and	processing	quality	may	be	associated	with	
phenotypes, this information could be invaluable to the whole field 
of	EEG	and	possibly	result	in	specific	thresholds	for	acceptable	data.

https://github.com/sjburwell/eeg_commander
https://www.frontiersin.org/articles/10.3389/fnins.2018.00097/full
https://www.frontiersin.org/articles/10.3389/fnins.2018.00097/full
https://www.frontiersin.org/articles/10.3389/fninf.2015.00016/full
https://www.frontiersin.org/articles/10.3389/fninf.2015.00016/full
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4.4 | Cohort sampling consistency

Age,	ancestry,	ascertainment,	and	disease	status	all	play	major	roles	
in	heterogeneity	across	our	cohorts.	Table	1	shows	an	overview	of	
the	cohorts	currently	contributing	to	ENIGMA-	EEG.	Sampling	vari-
ability	arguably	leads	to	problems	when	meta-	analyzing	results	and	
could	lead	to	reduced	power.	EEG	features	change	substantially	with	
age	(Niedermeyer,	1999b).	The	power	of	oscillations	at	specific	fre-
quencies	may	reduce	by	as	much	as	10	dB	(i.e.,	a	67%	decrease	 in	
amplitude)	on average	 from	 childhood	 to	 adulthood	 (Vandenbosch	
et	al.,	2019).	Theta	band	oscillations	show	the	most	extreme	change,	
but alpha, beta, and gamma changes are observed as well as changes 
in	alpha	peak	frequency	(Benninger	et	al.,	1984;	Gasser	et	al.,	1988;	
Marshall	et	al.,	2002;	Vandenbosch	et	al.,	2019).	Concurrent	changes	
are	seen	for	other	derived	EEG	features,	such	as	sensor-	level	con-
nectivity	 and	 graph	 parameters	 (Boersma	 et	 al.,	 2011;	 Smit	 &	
Anokhin,	2016;	Smit	et	al.,	2010,	2012,	2016).

Developmental	 and	 age-	related	 changes	 do	 not	 necessar-
ily mean that different genes determine individual differences at 
different	 ages.	However,	 participants	 differ	 in	 the	 speed	 in	which	
their functional brain activity matures, and this difference is her-
itable	 (Vandenbosch	 et	 al.,	 2019).	 It	 is	 also	 evident	 that	 devel-
opmental changes occur with variable rate across time and space 
(Niedermeyer,	1999b).	For	example,	communication	between	brain	
areas	changes	such	that	qualitatively	different	patterns	in	the	func-
tional	connectivity	network	appear,	changing	from	a	relatively	ran-
dom	to	a	more	ordered	network	structure	(Boersma	et	al.,	2011;	Smit	
&	Anokhin,	2016).	During	the	same	developmental	period,	the	net-
work	topology	changes	in	the	minimum	spanning	tree	parameters	of	
graph	diameter	and	maximum	centrality	(Tewarie	et	al.,	2015).

In	 addition,	 it	 has	 become	 clear	 that	 gene	 expression	 changes	
drastically during development, possibly to promote appropriate 
maturation	of	the	brain	and	other	tissues.	One	of	the	gene-	regulating	
processes,	 methylation,	 shows	 well-	timed	 changes	 that	 allow	
the	 prediction	 of	 a	 subject's	 age	 (Bocklandt	 et	 al.,	 2011;	 Dongen	
et	al.,	2016;	Hannum	et	al.,	2013;	Simpkin	et	al.,	2017);	recent	work	
by	 ENIGMA's	 Epigenetics	 group	 has	 linked	 ongoing	 methylation	
to hippocampal volume and other features of brain morphometry 
(Jia	 et	 al.,	 2019).	 Such	 changes	 imply	 that	 different	 genes	 play	 a	
role	across	developmental	age	groups.	These	observations	indicate	
that	 age	 is	 likely	 to	 induce	heterogeneity	 across	 cohorts	with	 age	
differences	and	that	particular	care	must	be	taken	when	 including	
childhood	 samples.	 Additionally,	 sex	 differences	 in	 developmental	
genetic	association	studies	of	both	resting-	state	EEG	coherence	and	
event-	related	oscillations	have	been	reported	(Chorlian	et	al.,	2017;	
Meyers	et	 al.,	 2019),	 consonant	with	other	developmental	 genetic	
studies	 (Cousminer	et	 al.,	 2014).	 EEG	 features	may	also	be	modu-
lated by different stages of neurological and psychiatric diseases, 
and	these	may	impact	the	comparability	of	EEG	recordings	obtained	
from patients with the same disorder at different stages of disease 
progression	(Douw	et	al.,	2019).

Some	cohorts	in	ENIGMA-	EEG	have	multiple	recordings	of	their	
subjects	in	partial	longitudinal	study	designs.	Combined	longitudinal/

cross-	sectional	designs	allow	investigation	of	age	modulation	of	ge-
netic	risk.	For	example,	the	detrimental	effect	of	the	apolipoprotein	
E	epsilon	4	(APOE4)	allele	and	the	protective	effect	of	the	epsilon	2	
(APOE2)	allele	on	the	brain	can	be	investigated	using	such	age	mod-
ulation models. Multiple observations per subject increases power 
and	reduces	confounding.	However,	the	numbers	do	not	quite	reach	
those	 required	 to	perform	genome-	wide	 longitudinal	 genetic	 test-
ing.	Consistent	with	other	genome-	wide	studies,	we	therefore	opted	
to start out by selecting a single observation per individual for the 
first	runs	of	analyses.	We	hope	and	expect	that	with	the	increased	
availability	 of	 EEG	 data	 in	 people	 with	 genetic	 profiles,	 this	 will	
change in the future.

Large	 genetic	 studies	 have	 mainly	 focused	 on	 cohorts	 of	
European	 descent.	 This	 European	 Ancestry	 bias	 is	 not	 unique	 to	
many	of	the	cohorts	in	ENIGMA-	EEG,	but	systemic	within	the	GWAS	
literature	(Peterson	et	al.,	2019).	Although	the	proportion	of	studies	
including individuals of diverse ancestry has been increasing with 
several	 ENIGMA-	EEG	 cohorts	 including	 non-	European	 individuals	
(Meyers	et	al.,	2017),	this	remains	a	critical	issue	that	the	field	must	
address	(Popejoy	et	al.,	2020).

In	 summary,	 to	 allow	 reliable	 meta-	analysis	 of	 EEG	 genetic	
association	 study	data	 in	ENIGMA,	we	encourage	 researchers	 to	
use	64	 lead	 recordings	or	more,	use	automated	cleaning	and	QC	
procedures, and perform sensitivity analyses to recording/analy-
sis	choices	in	EEG	parameter	extraction	to	safeguard	homogeneity	
across	cohorts.	Additional	phenotyping	in	the	form	of	(family)	his-
tory of neurological disorders, psychiatric disorders, and substance 
use	as	well	as	measures	of	social-	economic	status	and	educational	
attainment	 (Abdellaoui	et	al.,	2019)	would	greatly	help	 in	provid-
ing	additional	covariates	for	the	association	analyses.	EEG	should	
be measured in sufficient duration to yield reliable estimates. But 
since many oscillatory parameters, even when measured over rel-
atively	 short	 periods,	 are	 strongly	 heritable	 (Linkenkaer-	Hansen	
et	al.,	2007;	Smit	et	al.,	2005,	Smit	et	al.,	2012),	this	indicates	that	
they generally are reliably estimated. We note, however, that for 
measures dependent on dynamics changes in oscillatory activity, 
such as vigilance, longer periods are needed to establish reliable 
estimates	(Jawinski	et	al.,	2018).

5  | NE X T STEPS FOR ENIGMA- EEG

There	 is	 renewed	 interest	 in	 collecting	 EEG	 in	 large	 cohort	 stud-
ies.	 Several	 cohort	 studies	within	ENIGMA-	EEG	have	 initiated	 the	
collection	of	EEG	recordings	in	samples	of	over	1,000	participants,	
using	newer	EEG	equipment	and	higher	density	electrode	montages.	
These	include	cohorts	from	Germany	(LIFE	cohort)	and	the	United	
States	 (The	 Tennessee	 Synchrony	 &	 Speech	 Cohort).	 These	 high-	
quality,	high-	density	recordings	provide	additional	opportunities	to	
investigate	 the	 relation	between	EEG	and	psychiatric/neurological	
disorders.	Most	of	the	ENIGMA-	EEG	cohorts	are	population-	based	
samples, while some are samples ascertained for psychiatric disor-
ders or epilepsy.
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5.1 | Future measures

EEG	 research	 is	 increasingly	 mapping	 oscillatory	 function	 to	 bio-
logical	 and	 neurological	 mechanisms,	 with	 complex	 interactions	
across	space	and	frequency	that	subserve	the	 integration	of	 infor-
mation	 in	a	hierarchically	organized	brain	 (Bonnefond	et	al.,	2017;	
Canolty	&	Knight,	2010;	Jensen	&	Colgin,	2007;	Tingley	et	al.,	2018).	
Oscillations	 at	 different	 frequencies	 are	 increasingly	 under-
stood	not	 to	have	a	one-	to-	one	mapping	with	 function	 (Wolfgang	
Klimesch,	1999).	Multiple	 functions	may	be	present	 in	oscillations,	
such	as	the	multiple	function	linked	to	alpha	oscillations:	inhibition	
of	sensory	information	during	visual	processing	(Jensen	et	al.,	2012;	
Jensen	&	Mazaheri,	2010;	Klimesch	et	al.,	2007;	Yao	et	al.,	2019),	
default	mode	function	(Laufs	et	al.,	2003;	Mantini	et	al.,	2007),	and	
cortico-	subcortical	communication	(Horschig	et	al.,	2015).

Oscillatory	 activity	 may	 be	 more	 directly	 linked	 to	 synap-
tic function than more indirect measures from imaging modal-
ities	 based	 on	 energy	 expenditure,	 such	 as	 functional	 MRI	 or	
18F-	fluorodeoxyglucose	(FDG)	PET.	As	indicated	above,	prior	studies	
have	linked	beta	oscillations	to	GABA	alpha	receptor	subunit	genes	
in	alcohol	use	disorders	(Edenberg	et	al.,	2004;	Porjesz	et	al.,	2002).	
Other	 studies	 have	 highlighted	 the	 role	 of	 GABA	 interneurons	
for	 various	 EEG	 oscillations	 in	 schizophrenia	 (Edden	 et	 al.,	 2009;	
Rowland	et	al.,	2013).	Investigating	the	ties	between	oscillations	and	
synaptic	function	may	complete	the	circle,	linking	genetic	variants	to	
behavioral disorders to brain function.

Among	our	 next	 endeavors	 are	 genome-	wide	 scans	of	measures	
of	 oscillation-	based	 communication	 between	 distant	 brain	 areas	
(Fries,	2005;	Stam,	2014)	and	oscillation	dynamics	(Linkenkaer-	Hansen	
et	 al.,	 2001).	 The	 importance	 of	 neural	 communication	 for	 behav-
ior	 and	 behavioral	 disorders	 is	 well	 documented	 (Paus	 et	 al.,	 2008;	
Uhlhaas	&	Singer,	2010).	EEG	is	widely	used	for	establishing	functional	
connectivity and yields a wealth of information on the synchrony be-
tween	distant	brain	areas	(Lobier	et	al.,	2014;	Nolte	et	al.,	2004;	Stam	
&	van	Dijk,	2002;	Stam	et	al.,	2007).	The	brain	 is	a	highly	organized,	
nonrandom	 network	 that	 balances	 substantial	 wiring	 costs	with	 en-
hanced	 communication	 capacities	 (Bullmore	 &	 Sporns,	 2009,	 2012;	
Stam,	 2014).	 This	 optimization	 is	 obtained	 by	 a	modular	 community	
structure with an uneven importance distribution across the nodes 
(van	den	Heuvel	&	Sporns,	2013).	Areas	of	high	importance	(“hubs,”	or	
highly	central	nodes)	are	particularly	vulnerable	to	impairments	causing	
large	dysfunctions	(Heuvel	et	al.,	2013;	Stam	et	al.,	2009).	The	goal	of	
ENIGMA-	EEG	is	to	elucidate	how	genetic	variants	influence	communi-
cation between brain areas and the connectivity patterns of the net-
work,	matching	those	variants	to	neurological	and	psychiatric	disorders.

Our ongoing investigation of functional connectivity is based on 
detecting	statistical	patterns	across	a	selection	of	EEG	signals	using	
coherence.	Since	coherence	is	well	known	to	show	spurious	connec-
tivity	 due	 to	 volume	 conduction	 effect	 (i.e.,	 high	 coherence	 is	 ex-
pected	for	subjects	with	strong,	deep	oscillatory	sources),	we	used	
local	bipolar	derivations	as	a	means	to	reduce	this	effect.	Similar	to	
current	 source	density	 (Babiloni	 et	 al.,	 2001;	Hjorth,	1975;	Nunez	
&	Westdorp,	1994),	 local	bipolar	derivations	are	proportional	only	

to	local	currents	(Yao	et	al.,	2019).	Our	procedure	closely	follows	a	
recent	GWAS	by	one	of	our	groups	(Meyers	et	al.,	2020),	approxi-
mately	doubling	the	sample	size.

Temporal	dynamics	of	oscillatory	activity	are	a	window	into	a	brain	
that	keeps	 itself	 in	an	equilibrated	state	where	activity	neither	dies	
out	quickly	over	time	nor	avalanches	into	uncontrolled	spiking	activ-
ity.	Such	states	are	generally	obtained	via	self-	organization,	balancing	
excitatory	and	inhibitory	neuronal	activity	(Atallah	&	Scanziani,	2009;	
Bak	et	 al.,	1987;	Ferguson	&	Gao,	2018;	Levina	et	 al.,	2007;	Selten	
et	 al.,	 2018).	 It	 has	 been	 shown	 that	 this	 balancing	 leads	 to	 maxi-
mal	 representational	 capacity	 of	 the	 neural	 network	 (Kinouchi	 &	
Copelli,	2006).	Temporal	correlations	in	the	oscillatory	activity	of	the	
brain	reflect	this	balanced	state	(Linkenkaer-	Hansen	et	al.,	2001;	Poil	
et	al.,	2012),	but	also	show	quite	some	variation	in	the	particular	tun-
ing	 that	 result	 in	variable	 levels	 in	 the	signal	autocorrelation.	These	
variable	levels	reflect	the	brain's	tendency	for	faster	or	slower	state	
switching,	with	consequences	for	behavior	(Palva	et	al.,	2013;	Prent	
&	 Smit,	 2019;	 Smit	 et	 al.,	 2013)	 and	 psychopathology	 (Linkenkaer-	
Hansen,	 2005;	 Montez	 et	 al.,	 2009;	 Moran	 et	 al.,	 2019;	 Nikulin	
et	al.,	2012).	These	 fast	or	 slow	decaying	 temporal	 correlations	are	
measurable	in	EEG,	show	large	individual	variation,	and	are	heritable	
(Linkenkaer-	Hansen	et	al.,	2007).	Our	goal	will	be	 to	elucidate	how	
genetic variants affect this oscillatory balance and determine whether 
these	variants	are	part	of	excitatory	and	inhibitory	synaptic	function-
ing	(such	as	glutamate	and	GABA	receptor	genes).	We	will	investigate	
whether temporal dynamics vary for participants with a high genetic 
liability for neurological disorders such as epilepsy, but also for par-
ticipants	 with	 high	 sensory	 sensitivity	 complaints	 in,	 for	 example,	
autism	 spectrum	 disorder	 (American	 Psychiatric	 Association,	 2013;	
Robertson	&	Baron-	Cohen,	2017)	and	tinnitus	(Hébert	et	al.,	2013).

Our	 very	 large	 EEG	 database	 allows	 us	 to	 not	 just	 investigate	
the	genetics	of	EEG	parameters,	but	also	 to	plot	normative	devel-
opmental curves across the wide age range available in our data-
sets	(Table	1),	possibly	extended	with	other	developmental	samples	
(Anokhin	et	al.,	2017;	Obeid	&	Picone,	2016;	Smit	&	Anokhin,	2016).	
These	 data	 are	 valuable	 to	 investigate	 neurodevelopmental	 disor-
ders	 and	 deviant	 brain	 development,	 such	 as	 ADHD	 and	 autism,	
with	 ample	 power	 to	 detect	 differences.	 Further,	 polygenic	 risk	
scores	based	on	the	ENIGMA-	EEG	discovery	genome-	wide	associ-
ation	meta-	analysis	(GWAMA)	can	be	constructed	to	provide	liabil-
ity indices that may be associated with mental disorders, individual 
differences in cognition, brain development, and connectivity pat-
terns.	The	advantage	of	such	an	approach	is	that	the	subjects	reflect	
the	 full	 range	of	 individual	variation	across	 the	population	 (Martin	
et	al.,	2018;	Simmons	&	Quinn,	2014).

5.2 | Future methods

Multiple	aspects	of	these	new	scientific	ventures	with	EEG	recordings	
may prove useful for clinical purposes. With the advent of big data and 
the	 successful	 application	 of	 machine	 learning	 techniques,	 EEG	 re-
search can start measuring up with other imaging modalities to perform 
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disease	classification	and	treatment	outcomes.	These	predictive	tech-
niques	 are	maturing	 quickly	 (Janssen	 et	 al.,	 2018).	 In	 fMRI	 research,	
imaging the activity of the brain pretreatment can successfully predict 
electroconvulsive	treatment	 (ECT)	outcome	for	otherwise	treatment-	
refractory	 depressed	 patients	 (Waarde	 et	 al.,	 2015).	 Bridging	 such	
findings	to	EEG	research	will	 require	novel	designs	 in	artificial	neural	
networks	tuned	to	the	specific	spatio-	temporal	aspects	of	EEG	oscilla-
tions	(Schirrmeister	et	al.,	2017).	These	have	so	far	largely	been	devel-
oped	for	detecting	epileptic	seizures,	sleep	staging,	and	brain	computer	
interfacing	(BCI	(Ding	et	al.,	2015)).	We	foresee	an	expansion	of	such	
models	to	many	other	areas	of	behavioral	(dys)function.

Pharmaco-	EEG	can	be	used	to	evaluate	drug	targets	and	for	drug	
repurposing.	For	example,	mecamylamine	has	recently	been	used	as	
an	Alzheimer's	disease	model	(Simpraga	et	al.,	2018).	The	described	
changes	in	behavior—	as	well	as	changes	in	EEG	oscillations	induced	
by	mecamylamine—	are	 highly	 reminiscent	 of	 AD,	 but	 are	 fully	 re-
versible.	Although	the	effectiveness	of	drugs	reversing	the	effects	
of	such	models	is	debatable,	the	systematic	use	of	EEG	during	Phase	
II	clinical	trials	could	help	in	establishing	a	database	that	marks	neu-
ronal	changes	induced	by	drugs.	This,	in	turn,	could	help	in	repurpos-
ing drugs for neurological and psychiatric disorders by investigating 
how	changes	in	EEG	patterns	are	resolved	(Jobert	et	al.,	2012).

5.3 | Future- omics

Genomics	of	human	complex	trait	variation	may	be	a	first	step	in	un-
derstanding the genetics underlying human trait variation. In the fu-
ture,	we	wish	to	explore	other	types	of	variation,	for	example,	due	to	
rare variants or to other types of structural variants, affecting brain 
function. Genetic studies addressing these traits are increasingly con-
sidering	 other	 -	omics	 levels	 to	 address	 variation	 and	 the	 pathways	
between genotype and phenotype. Methylation studies for cognition 
and	educational	attainment	(Dongen	et	al.,	2018;	Linnér	et	al.,	2017)	
have	 uncovered	 multiple	 genome-	wide	 significant	 differences	 in	
methylation	at	CpG	sites.	Genome-	wide	testing	of	epigenetic	marks	
has	been	explored	within	ENIGMA	for	subcortical	volumes;	differen-
tially methylated regions in the genome were suggested to be associ-
ated	with	hippocampal	volume	(Jia	et	al.,	2019).	DNA	methylation	at	
these	loci	affected	expression	of	proximal	genes	among	other	traits	in	
learning	and	memory	(Jia	et	al.,	2019).	Other	-	omics	that	are	promising	
include	transcriptomics	and	metabolomics	(van	der	Lee	et	al.,	2018),	
possibly	combined	into	multi-	omics	approaches	(Wu	et	al.,	2018).	We	
feel	that	these	techniques	are	especially	suitable	for	the	investigation	
of changes in brain maturation, behavioral, development, and decline 
or resilience to decline in older age.

6  | CONCLUSION

In	ENIGMA-	EEG,	we	expect	that	large-	scale	studies	of	EEG	data	will	
help to elucidate the causal mechanisms of liability genes affecting 
the	 functioning	brain,	by	 identifying	 the	genetics	of	EEG	features.	

Given	 the	wealth	of	EEG	data	available	worldwide,	and	 the	prom-
ise of other imaging modalities such as structural measures of fMRI 
in	 massive	 data	 collections	 such	 as	 available	 in	 the	 UK	 Biobank	
(Manolio	et	al.,	2012),	 there	 is	 still	 a	huge	 incentive	 to	collaborate	
across	cohorts	that	have	collected	EEG	and	genetic	data	to	combine	
their	efforts	and	reach	ever	increasing	sample	sizes	that	have	proven	
so	useful	for	other	fields	(Sullivan,	2010;	Sullivan	et	al.,	2017).	Such	
multisite and international alliances can boost power and may also 
help in avoiding the small sample pitfalls that sometimes may have 
stalled	progress	in	areas	of	human	neuroscience	(Button	et	al.,	2013).

What	 ENIGMA-	EEG	will	 be	 doing	 in	 the	 near	 future	 is	 to	 ex-
pand	the	investigations	to	increasingly	complex	EEG	biomarkers	and	
diving	ever	more	deeply	into	the	functioning	brain.	Ever	increasing	
sample	sizes	will	help	us	 in	finding	more	genetic	variants	affecting	
brain	activity—	most	likely	a	growing	set	that	includes	both	common	
and	rare	variants,	as	well	as	structural	variation.	The	growing	sample	
sizes,	analyzed	using	harmonized	protocols,	should	also	increase	our	
power to find significant genetic correlations with behavioral traits, 
and further our understanding of the effect of neurological, psychi-
atric, and other liability genes on brain function. We therefore call 
on	additional	cohorts	with	EEG	and	whole-	genome	scans	to	join	our	
effort.	This	can	be	done	by	simply	emailing	the	first	author	(D.S.)	or	
via	 the	 ENIGMA-	EEG	 website	 (http://enigma.ini.usc.edu/ongoi	ng/
enigm	a-	eeg-	worki	ng-	group/).
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