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BACKGROUND
Observation
Behavioural traits, as opposed to physical traits, often lack 
a standard unit of measurement and are consequently 
suboptimally measured, using behavioural counts or a 
limited set of items. 

Problem
• Behaviour is often best described in probabilistic terms: individuals with a high true 

latent score generally have a high probability of exhibiting a particular behaviour. 
• When this probabilistic aspect is ignored when analysing observed raw scores, 

correlations may be seriously attenuated.

Consequences
Correlations are underestimated, leading to poor statistical power and wrong 
conclusions.

Not including a measurement model may lead to 
a) Underestimated sibling correlations, with implications for heritability estimates and 

linkage results 
b) Underestimated genotype-behaviour correlations, with implications for association 

results

SIMULATION OF ATTENUATION EFFECTS
Continuous bivariate normally distributed individual differences were simulated and behavioural sum scores are generated using a 
probabilistic model with varying degree of precision. For example, counting the number of times that genetically related mice press a 
lever with a max. of 5, 10, 20, or 50 opportunities (average probability of a response is 50% in the population). Or counting the 
number of different types of aggressive behaviours in identical twins during the preceding six months, from a total of either 5, 10, 20 
or 50 descriptions of medium aggressive behaviour (average probability of showing a particular behaviour is 50% in the population). 

SOLUTION
To correct for attenuation, include a probabilistic measurement model of how observed data relates to an unobserved 
trait. Estimate this measurement model concurrently with the actual structural model (e.g., variance decomposition,
association model, etc.) to obtain parameter estimates corrected for attenuation.

APPLICATION WITH 

DEPRESSION DATA
Method

Depressive symptoms were assessed thru self-reports in a non-clinical sample of 1370 
identical (monozygotic) twin pairs and 1517 fraternal (dizygotic) twin pairs from the 
Netherlands Twin Register. We used the 17-item Anxious Depression scale from the 
Young Adult Self-Report (Achenbach, 1997).

Results

Variance of θ was concurrently decomposed into additive genetic variance and non-
shared environmental variance while correcting for a sex effect on the latent trait. 
Inference is based on the posterior marginal distributions using an MCMC algorithm 
implemented in WinBUGS. Heritability was estimated at 55% (48-61%).

Conclusion: When you include a measurement model for your behavioural phenotype in 
the genetic modelling, you remedy attenuation effects and you boost your statistical 
power. This is even the case with 17 polytomous items. The fewer the items (i.e. the less 
precise your measurement) the greater the effect of employing a measurement model.

θβ

Prob(Y = yes) = .84

RASCH (1960) MODEL Based on raw scores, MZ twin correlation was 
.49, DZ twin correlation .20, suggesting a 
heritability estimate of 48%

When however liability θ was modelled using 
a Rasch model, correlations on the latent trait 
were estimated at .59 and .24, respectively, 
suggesting a heritability of 58%
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For example, use a Rasch measurement model to model binary 
responses (yes, no) to particular items that may differ in prevalence
e.g. “Exhibits behaviour A”  (yes, no) , “Exhibits behaviour B”, (yes, 
no),  etc.

The Rasch model assumes that every individual j has a score on a 
latent variable, θi. Whether a behavioural item is scored yes or no, 
depends on a subject parameter θ and a parameter for the particular 
behaviour β:

Prob( Yij = ‘yes’ | θi, βj ) = exp(θi – βj) / (1 + exp(θi – βj))

The higher the subject parameter, and the lower the behaviour 
parameter, the more likely the subject shows this particular 
behaviour.

The Rasch model can be extended to include graded responses 
(‘not at all’, ‘a little’, ‘a lot’), differential factor loadings, covariates, 
repeated measures, hierarchical structures (e.g., family data), 
modelling of missing data, and multidimensionality.


