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Heritability of liver enzyme levels estimated from
genome-wide SNP data

Jenny HDA van Beek*,1,2, Gitta H Lubke1,3, Marleen HM de Moor1,2, Gonneke Willemsen1,2,
Eco JC de Geus1,2,4, Jouke Jan Hottenga1,2,4, LivGen consortium6, Raymond K Walters3, Jan H Smit5,
Brenda WJH Penninx5 and Dorret I Boomsma1,2,4

Variation in the liver enzyme levels in humans is moderately heritable, as indicated by twin-family studies. At present, genome-

wide association studies have traced o2% of the variance back to genome-wide significant single-nucleotide polymorphisms

(SNPs). We estimated the SNP-based heritability of levels of three liver enzymes (gamma-glutamyl transferase (GGT); alanine

aminotransferase (ALT); and aspartate aminotransferase (AST)) using genome-wide SNP data in a sample of 5421 unrelated

Dutch individuals. Two estimation methods for SNP-based heritability were compared, one based on the distant genetic

relatedness among all subjects as summarized in a Genetic Relatedness Matrix (GRM), and the other one based on density

estimation (DE). The DE method was also applied to meta-analysis results on GGT and ALT. GRM-derived SNP-based heritability

estimates were significant for GGT (16%) and AST (11%), but not for ALT (6%). DE estimates in the same sample varied as a

function of pruning and were around 23% for all liver enzymes. Application of the DE approach to meta-analysis results for

GGT and ALT gave SNP-based heritability estimates of 6 and 3%. The significant results in the Dutch sample indicate that

genome-wide SNP platforms contain substantial information regarding the underlying genetic variation in the liver enzyme levels.

A major part of this genetic variation remains however undetected. SNP-based heritability estimates, based on meta-analysis

results, may point at substantial heterogeneity among cohorts contributing to the meta-analysis. This type of analysis may

provide useful information to guide future gene searches.
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INTRODUCTION

Concentrations of the liver enzymes gamma-glutamyl transferase
(GGT), alanine, and aspartate aminotransferase (ALT, AST) predict
liver disease and all-cause mortality.1,2 Clinically, these enzymes are
used as markers for liver injury.3

Variation in the liver enzyme levels can be partly explained by
genetic differences among individuals. Broad-sense heritability
estimates for liver enzyme levels from twin-family studies range
from 22–60%.4 Although genetic influences on liver enzyme levels
are substantial, most of the genes underlying the variation are still
unidentified. For GGT, adding the effects of all genome-wide
significant single-nucleotide polymorphisms (SNPs with P-values
o5×10− 8) explains 2% of the variation, for ALT and AST this
is o1%.5,6

Several explanations for this so-called ‘missing heritability’7 have
been put forward. The sample sizes of current genome-wide associa-
tion (GWA) studies might be too small to detect the effects of
individual SNPs under the stringent significance thresholds that are
used to correct for multiple testing.8 Alternatively, genetic variation
may be due to effects other than those captured by SNPs on current
genotyping platforms (eg, rare variants or copy number variants).9

These causes of missing heritability may well differ between
phenotypes.

To gain insight in the genetic architecture of the liver enzyme levels
and optimize the success of future gene-finding studies, it is important
to know to what extent missing heritability is due to inadequate power
to find small SNP effects, and to what extent it is due to SNP
platforms not containing relevant information. By examining the
proportion of the variation in liver enzyme concentrations that can be
explained by the joint effect of all measured and imputed genome-
wide SNPs, it can be tested to what extent the heritability is hidden
among existing SNP platforms instead of missing. The degree to which
this estimate is higher than the proportion of variance that is currently
explained by genome-wide significant SNPs most probably reflects
associations that have not yet been detected because of the multiple
testing burden.
The first aim of the current study is to apply two alternative

methods to study the aggregate effect of all SNPs on phenotypic
variability in GGT, ALT, and AST levels. The first method is a
two-step procedure where the first step consists of estimating the
genetic relatedness matrix (GRM) between all pairs of subjects. This
pair-wise genetic relatedness is similar to a correlation between two
individuals using all SNPs. In the second step, the pair-wise genetic
relatedness is used as a random effect in a linear mixed model to
estimate the proportion of variance attributable to additive genetic
effects. This method, denoted as the GRM method in this paper, is
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implemented in the software package Genome-wide Complex Trait
Analysis (GCTA).10,11

An alternative approach to estimate the proportion of variance that
can be ascribed to SNP effects is the density estimation (DE) method
proposed by So et al.12 As the DE method uses summary statistics
from a GWA analysis, it does not require raw SNP data. Therefore, it
can also be applied to regression coefficients or P-values obtained in
meta-analyses. The DE method compares the distribution of observed
effect sizes of SNPs that resulted from a GWA study (or meta-analysis
of GWA studies) to the distribution expected under the null
hypothesis of zero effects. The extent to which the distribution of
observed effect sizes has thicker tails than the distribution under the
null reflects the proportion of phenotypic variance that is captured by
SNPs. Specifically, the proportion of phenotypic variance explained is
estimated from ‘true’ effect sizes computed using a correction for
sampling variation suggested by Efron3 To avoid inflated estimates
due to SNPs with non-zero effects that are in linkage disequilibrium
(LD), the SNP data need to be pruned to obtain independent SNP
signals. The phenotypic variance of continuous phenotypes due to
SNPs is calculated using a sums of squares approach similar to
ANOVA.12

Application of the two methods to a range of phenotypes shows that
about 30–50% of the classic heritability estimated from twin-family
data is recovered.14,15 Less well-known is what proportion of variation
is recovered if the DE approach is applied to meta-analysis results of
GWAs. Therefore, the second aim of the study is to compare DE
estimates on the SNP-based heritability for a single sample (data from
the Netherlands Twin Register (NTR) and Netherlands Study on
Depression and Anxiety (NESDA)) with DE estimates based on GWA
meta-analysis results. Note that the GRM method can only be used for
meta-analyses if raw SNP data are available for all cohorts, which is
rarely the case. The GCTA package provides meta-analysis methods
related to DE, but at the moment does not include Efron’s correction
for sampling variation and assumes that LD among SNPs can be
accurately estimated.13

Data for this study originate from (a) participants of the NTR study
(N= 3309 unrelated subjects),16 (b) participants of the NESDA study
(N= 2212 unrelated subjects),17 and (c) available summary statistics
from a meta-analysis on GGT and ALT (N= 61 089) by an interna-
tional consortium.5 To compare the performance of the DE method,
SNP-based heritability estimates were also estimated for BMI. BMI
served as a bench-mark trait as its additive genetic variance explained
by SNPs has been studied before.18

MATERIALS AND METHODS

Participants
Data came from 5421 unrelated individuals from European descent who
participated in the NTR biobank19 or NESDA17 study and for whom valid
genotype data and data on one or more liver enzyme concentrations were
available (NTR: N= 3309; 60.6% females; year of birth 1914–1987; NESDA:
N= 2112; 66.6% females; 1939–1988). See the Supplementary Materials for a
full description of inclusion and exclusion criteria. Permission for the biobank
studies was obtained from the Central Ethics Committee on Research Involving
Human Subjects of the VU University Medical Center Amsterdam, and
informed consent was obtained from all participants.17,19

Meta-analysis summary statistics (z-scores and P-values) for GGT and ALT
levels originated from a large meta-analysis on data from 52 350 individuals
with Caucasian ethnicity, including 1721 NTR and 1724 NESDA participants;
and 8739 participants with an Indian-Asian background.5

For NTR/NESDA participants, data on BMI (N= 5406) were assessed at the
same time as their liver enzyme data. Meta-analysis summary statistics
(P-values) from large GWA studies on BMI20 (N= 249 796) were downloaded

from http://www.broadinstitute.org/collaboration/giant/index.php/GIANT_
consortium_data_files. Supplementary Table S1 gives a summary of all data
available for each phenotype.

Genotyping and quality control
Genotyping in the combined NTR/NESDA sample was performed on five
platforms: Affymetrix 6.0, Affymetrix 5.0-Perlegen (Affymetrix, Santa Clara CA,
USA), Illumina 660, Illumina Omni Express 1M, and Illumina 370 (Illumina,
San Diego, CA, USA). The final data set after SNP imputation and data quality
control (described in the Supplementary Materials) consisted of 5 994 956
autosomal SNPs.

Phenotypes
Liver enzymes were determined in heparin plasma (see Supplementary
Materials) collected after overnight fasting. Before the start of the blood sample
collection, the NTR and NESDA biobank protocols for processing and storage
of blood samples were harmonized.21

Statistical analyses
Creating sample of unrelated individuals. To create a sample of independent
individuals, a GRM was first estimated (option - -make-grm) for all NTR and
NESDA individuals with valid liver enzyme level and genotype data, using the
free software package GCTA (v1.24.2).11 This GRM matrix was then pruned for
relatedness at a level of 0.025 (option - -grm-cutoff 0.025), resulting in a set of
5421 individuals with estimated pair-wise relatedness o0.025.

Fixed effects of source and sex. Liver enzyme values were log-transformed to
approximate normality. Differences in liver enzyme levels were examined with
respect to source (NTR, NESDA) and sex (male, female) by independent
samples t-tests. On the basis of these analyses, regression analyses were carried
out (see Supplementary Materials, for a list of predictors) in SPSS 19.0.22 The
residuals from these regression analyses were used in all subsequent analyses.

GWA. In the NESDA/NTR data set, SNP associations were tested in a linear
model assuming additive SNP effects using Plink (v1.07).23 GWA results are the
input for the methods to estimate heritability and were inspected by QQ and
Manhattan plots.

SNP heritability based on the NTR/NESDA sample
GRM method. A linear mixed model was used to estimate the phenotypic
variance that is due to the genetic relatedness captured by the GRM using
GCTA (v1.24.2).11 Estimation was performed using restricted maximum
likelihood (option - -reml). In additional analyses, the variance that can be
explained by SNPs on each individual chromosome was estimated by genetic
relatedness matrices that were estimated for each chromosome separately.

DE method. Analyses with the DE method were performed in R3.0.224 with
the script for continuous traits obtained from the developer’s website: https://
sites.google.com/site/honcheongso/software/total-vg. See the Supplementary
Materials for a detailed description of the DE method. To obtain independent
SNP signals, the data set was pruned at a level of r2 0.25 as suggested by So
et al12 (- -indep-pairwise 100, 25, 0.25), resulting in a set of 226 243 SNPs. As
the DE method does not provide standard errors, we obtained an indication of
the stability/variability of the heritability estimates across different sets of SNPs.
To this end, the NTR/NESDA data set was pruned 10 times using the same
pruning parameters. The analysis was carried out on each pruned set, and
results were then averaged. Note that the variability across 10 pruned sets
should not be interpreted as a standard error.

SNP heritability in the single sample compared with meta-analysis results
DE method. To compare SNP heritability for a single sample (NTR/NESDA)
with that for the consortium GWA meta-analysis results, the same pruned set
was used to calculate DE estimates for both data sets. This pruned set consisted
of SNPs that were present in the GGT and ALT meta-analyses as well as in the
NTR/NESDA data set. Pruning was based on the LD pattern among SNPs in
the NTR/NESDA data set, and was performed at a level of r2 0.25 as suggested
by So et al12 (Plink options - -indep-pairwise 100, 25, 0.25), resulting in a
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pruned set of 111 995 SNPs. Note that the size of this pruned set differed from
that described above, as here a data set of ~ 2.7M SNPs was pruned at r2 0.25;
whereas for the comparison with GRM-based estimates, the entire data set
(containing ~ 6M SNPs) was pruned at r2 0.25. SNP markers in the GWA
meta-analyses were imputed against build 36 (HG18) of the Human reference
genome,5,20 and lifted over to build 37 (HG19). The latter was the reference for
NTR/NESDA (see Supplementary Materials). To verify that the DE estimates
did not depend on a specific pruned set of SNPs, the NTR/NESDA SNP
data set was pruned 10 times, and DE estimates were averaged over these
10 pruned sets.

An overview of all analyses is included in Supplementary Table S1. SNP
heritability estimates, obtained with the GRM method, were considered to be
significant if P-values o0.05. In the case that GRM- and DE-based estimates
differed, we applied a conservative approach by focusing on the lower of the
two estimates as Walters25 has shown that DE-based heritability estimates could
be overestimated when sample size is small.

RESULTS

Table 1 summarizes the mean (with standard error) and median liver
enzyme levels (with range) for NTR and NESDA, separately over sex.
Mean liver enzyme levels were higher for men than women. For both
sexes, GGT levels were higher in NTR than in NESDA participants,
whereas for ALT and AST, the reverse was observed (see Table 1).
Supplementary Table S2 shows the correlations among liver enzyme
levels, by source and sex. There were positive correlations among the
three liver enzyme levels ranging from 0.26 to 0.66. The correlation
between GGT and ALT was higher for NESDA than NTR participants
in males (0.53 vs 0.26) and females (0.53 vs 0.30). Correlations of
AST with GGT and ALT were similar in NTR and NESDA (~0.33 and
~ 0.60 respectively, for both sexes).
Supplementary Figures S1A–4A show the QQ plots with P-values

for the SNP associations for liver enzyme levels and BMI that resulted
from GWA analyses performed on the NTR/NESDA data set.
Supplementary Figures S1C–4C show the QQ plots for the down-
loaded meta-analysis results for GGT, ALT, and BMI. In line with the
published results, these show that the observed P-values strongly
deviated from the line with expected P-values, indicating large
polygenic variation for GGT, ALT, and BMI (Supplementary Figures
S1C, S2C, and S4C, respectively). For the NTR/NESDA data, observed
P-values for GGT and BMI also show a strong deviation from the line
with expected P-values (Supplementary Figures S1A and S4A) whereas
this deviation was much weaker for ALT and AST (Supplementary
Figures S2A and S3A). Manhattan plots for the NTR/NESDA data set
and the GWA meta-analysis data for these phenotypes are shown in
Supplementary Figures S1–4B and S1–4D.

SNP heritability based on the NTR/NESDA sample
GRM and DE method. Table 2 shows the GRM- and DE-based
estimates for the variance explained by SNPs for liver enzyme levels.

BMI is included for comparison. A significant proportion of GGT
(16%; P= 0.002), AST (11%; P= 0.018), and BMI (15%; P= 0.003)
was explained by SNPs according to the GRM method. For ALT, this
was 6% (NS). Results obtained with the DE method were significantly
higher (38%, 38%, 34%, and 38% for GGT, ALT, AST, and BMI,
respectively; falling outside the two standard error range of the GRM-
based estimates using GRM standard errors). These estimates were
somewhat higher than the narrow-sense heritability estimates from
twin-family studies for these phenotypes4,26 (see Table 2). Noting the
potential bias in DE-based estimates at small sample sizes,25 we
conservatively focus on the lower GRM-derived estimates. These
GRM-derived estimates of SNP heritability were lower than twin-
family-based estimates of narrow-sense heritability. The difference is at
least in part due to imperfect LD between causal SNPs and the SNPs
included in the analysis.10 Additional analyses with the GRM method
showed that for GGT, chromosomes 2, 3, 10, 20, and 22; and for AST,
chromosomes 2 and 6 explained a significant part of the variance of
the variance at Po0.05 (see Supplementary Table S3). After correction
for multiple testing (Po0.002; 0.05 divided by 22 chromosomes),
none of the chromosomes separately explained a significant part of the
variance of liver enzyme levels. After correction for multiple testing
(Po0.002; 0.05 divided by 22 chromosomes), none of the chromo-
somes separately explained a significant part of the variance of liver
enzyme levels.
One explanation for the high DE estimates is that the level of SNP

pruning necessary to obtain independent SNP signals, is dependent on
SNP density in the genotype set. Then, the level of pruning
recommended by So et al12 (r2 0.25), which was based on data sets
containing ≤ 2.7M SNPs, would not be appropriate for the NTR/
NESDA data set (containing ~ 6M SNPs). Additional analyses
indicated that DE estimates were lower when the number of SNPs
in the data set was in line with those studied by So et al12 and/or when
the pruning threshold was lower. When pruning a data set of 2.7M
SNPs at r2 0.25, resulting in a pruned set of 111 995 SNPs, DE
estimates were ~ 23% (see Table 3). When pruning the entire data
set (containing ~ 6M SNPs) at a very stringent level of SNP pruning
(r2 0.001; resulting in a set of nearly independent SNPs), DE estimates
were 13, 11, and 15% for GGT, ALT, and AST, respectively. These
more conservative estimates agree rather well with the GRM-based
estimates given above (estimates fell within two standard error range
around the GRM estimates) giving further support for the GRM-based
estimates.

SNP heritability in the single sample compared with meta-analysis
results
For both GGT and ALT, DE-derived SNP-based heritability was 23%
in the NTR/NESDA sample, when using a set of 2.7M SNPs pruned
at r2 0.25. Estimates based on the consortium data were 6% for GGT

Table 1 Descriptive statistics of liver enzyme levelsa BMI, and age, split over source (NTR and NESDA) and sex

NTR NESDA

Males Females Males Females

Mean (SE) Median (range) Mean (SE) Median (range) Mean (SE) Median (range) Mean (SE) Median (range)

GGT 41.1 (1.20) 31 (10–917) 28.3 (0.73) 21 (9–867) 36.2 (1.42) 24.2 (7–285) 20.4 (0.65) 15 (2–563)

ALT 11.6 (0.20) 10 (3–107) 9.3 (0.14) 8 (3–100) 30.9 (0.72) 26 (1–218) 19.8 (0.32) 17 (4–248)

AST 23.4 (0.24) 22 (7–122) 20.1 (0.16) 19 (7–142) 29.4 (0.45) 26.8 (10–112) 23.5 (0.22) 22 (8–94)

BMI 26.0 (0.10) 25.7 (17.3–40.5) 25.5 (0.10) 24.6 (15.7–46.5) 26.3 (0.17) 25.9 (16.0–50.2) 25.2 (0.14) 24.1 (14.7–53.3)

Age 51.0 (0.40) 56 (18–86) 47.0 (0.31) 50.0 (20–90) 44.4 (0.47) 46 (18–64) 41.7 (0.35) 43 (18–65)

aThis table shows untransformed liver enzyme levels; statistical analyses were performed on log-transformed levels of liver enzymes.
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and 3% for ALT when using the same pruned set; see Table 3. The DE
estimate based on the meta-analysis results for BMI was 8% vs 28% in
the NTR/NESDA sample. Thus, DE-based estimates for the GWA
meta-analysis results for GGT, ALT, and BMI were much lower than
those on GWA results based on the single NTR/NESDA sample.
A potential cause for the low estimates using meta-analysis effect sizes
in the DE method is heterogeneity across the individual cohorts in the
GWA meta-analysis. However, it should be noted that the meta-
analysis estimates are within the confidence intervals of the single
sample GRM estimates for GGT, ALT, and BMI.

DISCUSSION

The current study aimed at estimating the proportion of variance of
liver enzyme concentrations that can be explained by measured and
imputed genome-wide SNPs in a single Dutch sample, and second, to
compare this estimate to SNP-based heritability using GWA meta-
analysis samples.
A significant proportion of the phenotypic variance of GGT (16%)

and AST (11%) in the NTR/NESDA sample can be explained by
additive SNP effects, based on the GRM method. For ALT, the GRM-
based estimate on SNP heritability of 6% did not reach statistical
significance. These GRM-based estimates of SNP heritability were
lower than additive genetic variance estimated in twin and family
studies. This was expected, and is at least partially due to imperfect LD
and allelic frequency differences between causal SNPs and SNPs used

in the analyses.10 The difference might also partially be due to current
SNP platforms missing some of the relevant information. However,
our significant findings underline the usefulness of SNP data in genetic
analyses.
DE-based estimates for the NTR/NESDA sample (when pruning the

entire ~ 6M SNP set) were 38%, 38%, and 34% for GGT, ALT, and
AST, respectively. These estimates were higher than GRM-based
estimates, and also somewhat higher than narrow-sense heritability
estimates based on twin-family studies.4 Most likely, these high DE
estimates can be explained by the fact that the appropriate level of SNP
pruning is dependent on SNP density. On the one hand, the DE
method requires a set of approximately independent SNPs. On the
other hand, very conservative pruning increases the probability of
removing tagging SNPs that are in LD with causal SNPs, thus resulting
in a SNP density that is too low to obtain a correct estimate.
To illustrate this trade-off, pruning the NTR/NESDA data set
(containing ~ 6M SNPs) at an r2 level of 0.001 (instead of r2 0.25)
resulted in a set of 37 389 nearly independent SNPs. The resulting DE
estimates in the NTR/NESDA sample were 13%, 11%, and 15% for
GGT, ALT, and AST, respectively. These estimates agreed relatively
well with the GRM-based estimates for the same phenotypes. Ongoing
work with simulated data confirms the impact of the pruning
threshold (Walters & Lubke, in preparation).
SNP-based heritability estimates using GWA meta-analysis statistics

were higher than the amount of phenotypic variance of GGT and ALT

Table 2 GRM-based estimates (with standard errors) and DE-based estimatesa on the proportion variance explained by all SNPs for liver

enzyme levels and BMI

GGT ALT AST BMI

GRM DE GRM DE GRM DE GRM DE

NTR+NESDA 0.155** (0.056) 0.376 0.055 (0.055) 0.377 0.111* (0.055) 0.337 0.149** (0.056) 0.379

% variance explained by GWAs 2%b o1%b o1%b 1.5%b

Narrow-sense h2 twin-family studyc 0.30 (0.24–0.37) 0.29 (0.24–0.33) 0.28 (0.23–0.34) 0.40 (0.37–0.43)

Broad-sense h2 twin-family studyc 0.30 (0.05) (males)

0.60 (0.03) (females)

0.40 (0.05) (males)

0.22 (0.03) (females)

0.43 (0.03)

(males+females)

0.85 (0.01) (males)

0.75 (0.01) (females)

*/**GRM estimates that were significant at Po0.05 (*) and Po0.01 (**). Significance was not calculated for DE estimates as the DE method does not provide standard errors.
aDE-derived estimates were based on the NTR/NESDA data set containing ~6M SNPs that was pruned at an r2 level of.25 (recommended by So et al12). As pruning the dense NTR/NESDA data set
(~6M SNPs) at r2 0.25 resulted in an overestimation of the SNP-based heritability (when compared with narrow-sense heritability estimates), we also calculated the DE-based estimates on SNP
heritability, by pruning the NTR/NESDA data set (containing ~6M SNPs) at r20.001, resulting in a set of nearly independent SNPs. These more conservative DE estimates are 0.129, 0.112,
0.148, and 0.126 for GGT, ALT, AST, and BMI, respectively. See Supplementary Materials and text for details.
bEstimates based on Chambers et al,5 Kamatani et al,6 and Speliotes et al,20 respectively.
cHeritability of liver enzyme levels that can be ascribed to additive genetic effects (narrow-sense heritability) and additive+non-additive genetic effects (broad-sense heritability) as estimated in ACDE
(GGT), AE (ALT), and ADE (AST, BMI) models in twin-family data on liver enzyme levels (Van Beek et al)4 and BMI in the NTR biobank sample. For reasons of clarity, narrow-sense heritability
estimates are constrained to be equal over sex in this table.

Table 3 Comparison of DE-derived estimates (with estimates of variabilitya) of explained variance based on GWA results for a single sample

(NTR/NESDA) vs GWA meta-analysis results based on multiple samples, for liver enzyme levels, and BMI

DE estimates explained variance

Selection

SNPs from

No. of SNPs

entire set

pruning

level (r2)

No. of SNPs

pruned set GGT ALT AST BMI

NTR+NESDA 1000 Genomes b37 ~6M 0.25 226243 0.376 (0.039) 0.377 (0.042) 0.337 (0.035) 0.379 (0.038)

NTR+NESDA Hapmap b36 ~2.7M 0.25 111995 0.234 (0.023) 0.229 (0.015) 0.234 (0.027) 0.277 (0.033)

Consortium meta-analysisb Hapmap b36 ~2.7M 0.25 111995 0.060 (0.003) 0.028 (0.002) 0.079 (0.001)

aNote that this estimate of variability should not be interpreted as a standard error (see Supplementary Materials for details). bThe SNP-based heritability estimate (7.9%) for BMI was obtained by
pruning the NTR/NESDA data set filtering on SNPs that were included in the GWA meta-analysis by Chambers et al5 on GGT and ALT. When pruning the NTR/NESDA SNP data set after filtering on
SNPs that were included in the GWA meta-analysis on BMI by Speliotes et al20 (resulting in a pruned set of 109 120 SNPs), SNP-based heritability was 8.4%. DE-based estimates were slightly
higher when using the (pruned) Hapmap b36 data set obtained from the Plink website http://pngu.mgh.harvard.edu/ ~purcell/plink/res.shtml#hapmap. For GGT and ALT, this was 7.9% and 4.7%,
respectively (based on a pruned set of ~215 000 SNPs). For BMI, this was 9.9% (based on a pruned set of ~190 000 SNPs).
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that is currently explained by genome-wide significant SNPs (o2%).5

DE-derived estimates of SNP heritability based on GWA meta-analysis
were lower than those for GWA results based on a single sample
(NTR/NESDA) (GGT 6% and ALT 3% vs 23% and 23%, respectively).
This underestimation when using meta-analysis data was also found
for BMI (8% vs 28% in the NTR/NESDA sample and 16% in previous
research18). It should be noted, however, that the DE estimates using
meta-analysis data fall within the confidence intervals of the GRM
estimates for GGT, and ALT in the NTR/NESDA sample.
The large difference between meta-analysis DE estimates and single

sample results remained when pruning was based on the LD pattern in
the Hapmap 2 reference set (CEU sample; used for imputation in the
individuals cohorts in the GWA meta-analyses; see footnote Table 3).
Allelic differences between the NTR/NESDA data set and those in the
GWA meta-analysis sets, thus, cannot explain the large difference
between the single sample DE estimates and those based on the GWA
meta-analysis.
A first explanation for the low SNP heritability estimates based on

GWA meta-analysis results is heterogeneity among the samples
included in the meta-analysis. If not taken into account, this will lead
to a lower amount of variance that can be explained by SNPs.27 In the
case of genetic heterogeneity, if SNP x has an effect in sample 1 (eg,
standardized beta, b= 0.4) but not in sample 2 (standardized b= 0),
the meta-analysis (average) effect size of this SNP is halved (standar-
dized b= 0.2). When the effect size of SNP x is halved, its explained
variance is reduced to one quarter (0.42 when b= 0.4; 0.22 when
b= 0.2), as the standardized beta is equal to the square root of the total
explained variance. Thus, 75% of the variance due to SNP x is lost in
the case of heterogeneity between sample 1 and 2 (when the meta-
analysis effect size is analyzed instead of that based on sample 1)
(PC Sham, personal communication). Genetic heterogeneity will thus
decrease the proportion of effects in the extreme upper and lower tails
of the distribution. The distribution of effects (expressed in z-scores) is
the input for the DE method and this will thus lead to lower
DE estimates of explained variance.
It might be argued that the heterogeneity explanation of low

heritability estimates when using meta-analysis data is not consistent
with the large polygenic variation that is evident from the QQ plots for
these meta-analysis samples (Supplementary Figures S1–4C). How-
ever, the deviation of observed P-values in these QQ plots is reflecting
both effect size and sample size, meaning that large deviations can
reflect small effect sizes if sample size is large enough. In contrast, DE
estimates are based on observed effects that are corrected for sampling
fluctuation to get ‘true’ effect sizes. Thus, the deviation of observed
P-values that is evident in the QQ plots will only to some extent be
picked up by the DE method.
Simulation studies suggested that the lower DE estimates for the

meta-analysis samples could not be attributed to the DE method being
dependent on sample size or sensitive to the distribution of effect
sizes.25 When the true population was simulated to consist of 30 000
individuals, drawing samples of 3000 individuals each did not result in
overestimated proportions of variance explained by SNPs. Simulating
data under the assumption that the distribution of SNP effect sizes was
exponential with small effects for SNPs, which are relatively common
and large effects for SNPs with low MAF, did not lead to distorted
DE-based estimates.25 Given the results from this simulation study,
our low DE-based estimates for the GWA meta-analyses are strongly
suggestive of effects of genetic/phenotypic heterogeneity.
An additional explanation that DE estimates based on GWA meta-

analysis results are downward biased is that genomic control correc-
tion affected the SNP associations. In most meta-analyses, P-values are

corrected for the genomic control inflation factor (λGC), and often
double corrected (eg, see Speliotes et al20). As P-values are the direct
input for the DE method, downwards adjustment of the P-values will
result in lower DE estimates. For the current study, the DE estimates
based on the meta-analysis results are based on P-values that were
uncorrected for the overall genomic inflation factor correction
(see Supplementary Materials). Nevertheless, to the extent that the
first study-specific genomic control correction has affected the SNP
associations, the DE estimates for meta-analysis data will be
underestimated.
The GRM and DE methods to estimate SNP heritability are

constantly being extended and improved.28 One weakness of the DE
method is the lack of standard errors. In this study, an indication of
the stability/variability of the DE estimates across different sets of SNPs
was obtained by repeating the DE method on 10 different pruned sets.
However, this should not be regarded as an approximation of a
standard error, but rather as an indication that the DE results do not
depend much on which SNPs are used in the estimation of heritability.
Ongoing research by some of the co-authors focuses on obtaining
standard errors for the DE method.
Future research should explore how the results on the low SNP

heritability estimates based on GWA meta-analysis results can inform
future GWA studies. If the low DE estimates for GWA meta-analysis
results can be accounted for by genetic heterogeneity, this calls for
taking genetic heterogeneity into account when combining data from
several studies.
Additional work is also needed to explore the merits and limitations

of the GRM and DE methods. With regard to the DE method, the
level of SNP pruning that was suggested by So et al12 seems to be
dependent on SNP density, and future research should explore
whether the performance of the DE method can be further improved
when the optimal level of pruning is considered to be a meta
parameter whose value needs to be set through cross validation guided
by the prediction error. The performance of the DE and GRM method
can be compared with newly developed methods to estimate the
amount of variance explained by SNPs, such as those that incorporate
improvements on the GRM method,28,29 other means to estimate and
sum ‘true’ effect sizes for SNPs in pruned SNP sets,30 and methods
using a Bayesian approach.31

CONCLUSION

To conclude, our results show that genome-wide SNP platforms
contain substantial information regarding the underlying genetic
variation in liver enzyme levels. Adequate sample sizes may therefore
lead to the detection of new susceptibility loci, which in turn
may elucidate new biological pathways underlying liver enzyme
concentrations.
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