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KEY PO INT S

l Elevated epigenetic
age is associated with
an altered hemostatic
factor profile and
lower clotting time.

l DNA methylation age
is associatedwithmRNA
levels of fibrinogen in
multiple tissues.

Many hemostatic factors are associated with age and age-related diseases; however, much
remains unknown about the biological mechanisms linking aging and hemostatic factors.
DNAmethylation is a novelmeans bywhich to assess epigenetic aging, which is a measure of
age and the aging processes as determined by altered epigenetic states. We used a meta-
analysis approach to examine the association between measures of epigenetic aging and
hemostatic factors, as well as a clotting time measure. For fibrinogen, we performed Eu-
ropean andAfrican ancestry–specific meta-analyses whichwere then combined via a random
effects meta-analysis. For all other measures we could not estimate ancestry-specific effects
and used a single fixed effects meta-analysis. We found that 1-year higher extrinsic epi-
genetic age as compared with chronological age was associated with higher fibrinogen
(0.004 g/L/y; 95% confidence interval, 0.001-0.007; P 5 .01) and plasminogen activator

inhibitor 1 (PAI-1; 0.13 U/mL/y; 95% confidence interval, 0.07-0.20; P 5 6.6 3 1025) concentrations, as well as lower
activated partial thromboplastin time, a measure of clotting time.We replicated PAI-1 associations using an independent
cohort. To further elucidate potential functionalmechanisms,we associated epigenetic agingwith expression levels of the
PAI-1 protein encoding gene (SERPINE1) and the 3 fibrinogen subunit-encoding genes (FGA, FGG, and FGB) in both
peripheral blood and aorta intima-media samples. We observed associations between accelerated epigenetic aging and
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transcription of FGG in both tissues. Collectively, our results indicate that accelerated epigenetic aging is associated with
a procoagulation hemostatic profile, and that epigenetic aging may regulate hemostasis in part via gene tran-
scription. (Blood. 2018;132(17):1842-1850)

Introduction
Hemostatic factors are circulating proteins that are critical
factors in, or indicators of, the blood clotting/coagulation
process. They include, but are not limited to, fibrinogen, fac-
tor VII (FVII), factor VIII (FVIII), von Willebrand factor (vWF),
plasminogen activator-inhibitor 1 (PAI-1), and D-dimer. Dys-
regulation and/or deficiency of hemostatic factors can cause
bleeding events and thrombotic disorders,1-5 and elevated
levels of some hemostatic factors are associated with cardio-
vascular outcomes such as coronary heart disease,6,7 incident
and recurrent myocardial infarction,8-10 peripheral arterial
disease,9,11,12 and venous thrombosis.13,14

Advancing age is often associated with an altered hemostatic
factor profile typified by heightened plasma concentrations of
hemostatic factors such as fibrinogen and coagulation FVII.15-17

This age-associated “prothrombotic” hemostatic profile may
contribute to associations between age and cardiovascular
disease.18,19 Typically, studies of aging are performed by
comparing the hemostatic/clinical profiles of patients with their
chronological age. Although effective, this approach does not
inform on the underlying biological changes linking aging and
altered hemostatic profiles.

Biomarkers of molecular aging have been developed in recent
years, using epigenetic20,21 and transcriptomic22 data. In the case
of epigenetics, these biomarkers appear to be weakly correlated
with telomere length,23-25 a traditional molecular biomarker of
aging, and independently associated with both age and mor-
tality.24 Epigenetic age acceleration effects are often tissue
specific20,26 and associated with a number of clinical outcomes
including mortality,24,27 obesity,26 cancer,28,29 cardiovascular
disease,29 HIV-1 infection,30 and traumatic stress.31 However, the
association between epigenetic aging biomarkers and hemo-
static factors has yet to be investigated.

Here, we present the first study into the relationship between
epigenetic aging biomarkers and hemostatic factors. Accelerated
epigenetic aging may underlie the association between alter-
ations in the hemostatic profile and aging and reveal novel
mechanisms of hemostatic regulation.

Methods
Participating cohorts
A total of 11 studies from the Cohorts for Heart & Aging Research
in Genomic Epidemiology (CHARGE) Hemostasis Working Group
participated in these analyses (supplemental Table 1, available
on the Blood Web site).32 The Framingham Heart Study (FHS)
and Cardiovascular Health Study (CHS) contributed multiple sets
of data that were analyzed separately. Data sets from CHS were
nonoverlapping in participants, whereas data from FHS were
longitudinal and collected over the course of 3 consecutive
examinations of the Offspring cohort (1991-1995, 1995-1998,

and 1998-2001). Plasma levels of 5 hemostatic factors and 1
measure of clotting time were examined (units used for analysis
are given in parentheses): fibrinogen (g/L), PAI-1 (U/mL), D-dimer
(ng/mL), FVII (%), vWF (%), and activated partial thromboplastin time
(aPTT; seconds), selected according to their availability in at least 3
independent cohorts. Fibrinogen and PAI-1 were also assessed in
an independent sample of 1427 individuals from the FHS Gener-
ation 3 (FHS Gen3) cohort, which were held out of discovery
analyses to be used for replication. These samples were treated
and analyzed in an identical manner as the discovery FHS
samples. A complete description of each study and the methods
used to measure each hemostatic factor are given in the sup-
plemental Methods.

Epigenetic aging assessment
All cohorts assessed DNA methylation via the Illumina Infinium
HumanMethylation450 array, using methods described in the
supplemental Materials. To assess epigenetic aging, an online
calculator was used (https://dnamage.genetics.ucla.edu/), which
takes as input methylation b values, chronological age, sex, and
tissue type and estimates multiple epigenetic aging measures.20

We primarily used 2 epigenetic measures for this analysis, both
of which assess deviations of epigenetic age from chronological
age: Extrinsic Epigenetic Age Acceleration Difference (EEAD)
and Intrinsic Epigenetic Age Acceleration Difference (IEAD).
IEAD is a blood-specific measure of aging that adjusts the
“standard” tissue agnostic measure20 for the following blood
immune cell counts imputed from methylation data: naive CD81

T cells, exhausted CD81 T cells, plasma B cells, CD41 T cells,
natural killer cells, monocytes, and granulocytes.33 EEAD is
calculated by weighting the global epigenetic age measure by
imputed blood immune cell counts, and is thus designed to track
aging of the immune system as assessed by DNA methylation
changes. The term “difference” in IEAD and EEAD refers to
taking the difference between the epigenetic aging measures
and chronological age. Differences between epigenetic and
chronological age are associated with outcomes such as mor-
tality34 and may indicate accelerated aging. Cell counts for IEAD
and EEAD were estimated on the basis of methylation data after
the Houseman35 and Horvath36 methods.

As EEAD and IEAD are blood-specific measures, we used age
acceleration difference (AAD) to assess differences between
epigenetic and chronological age in nonblood tissues (ie, aorta
intima-media). AAD is calculated as the difference between the
original, tissue agnostic DNA methylation age measure20 and
chronological age. AAD and IEAD are correlated in blood.27 For
AAD, EEAD, and IEAD, the cohorts performed a common fil-
tering approach used in previous meta-analyses of epigenetic
agingmeasures.27 This approach removed individuals whose sex
from their epigenetic profile differed from their reported sex,
samples in which the estimated cell type was not peripheral
blood, and samples whose correlation with internal standards
used by the online calculator was #0.80.
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Statistical analyses
We used 2 models to understand the relationship between our
measures of epigenetic aging and hemostatic factors. For each
model, the hemostatic factor was the outcome, whereas the
epigenetic agingmeasure was the predictor. The first model was
a basic model that adjusted for chronological age, chronological
age squared, and sex. The second (full) model adjusted for the
basic model terms plus body mass index (kg/m2), physical ac-
tivity (active vs inactive), and smoking status (current, former,
never). The terms in the full model were chosen to provide an
adjustment for potential confounders from lifestyle without in-
cluding alternative cardiovascular outcomes of interest, such as
blood pressure or history of cardiovascular disease, as including
these colliders could introduce bias.37 For studies that did not
have a specific variable (eg, physical activity), it was left out of the
model. The basic model was our primary model, and all cohorts
had the complete covariate information necessary for this model.

In FHS, CHS, and ARIC, the epigenetic age measures were
based on methylation assessed at a different examination than
the hemostatic factor measurement; thus, an age difference term
was calculated as the difference between the chronological age
at methylation assessment and chronological age when the
hemostatic factors were assessed. Linear and quadratic age
difference terms were added to the models. We evaluated the
effect of this approach on the observed associations by com-
paring the association between epigenetic age at a single point
and the same hemostatic factor assessed over multiple points in
FHS. Because FHS had hemostatic measures taken at multiple
points but DNA methylation data only at a single point (FHS
exam 8), we used the assessment closest to the methylation
assessment. For CHS and ARIC, there was a single assessment of
DNA methylation and a single assessment of the hemostatic
factors available, each performed at a different point. For cohorts
with family data only, independent probands were used. The
exception to this is the French-Canadian Family study on Factor
V Leiden Thrombophilia (F5L), which is a study sample com-
posed of 5 large multigenerational families. For this cohort,
family structure was adjusted for in the models via a variance
components model implemented in the pedigreemm package
in R.38

We used themetafor package39 in R40 to performmeta-analyses.
We required that hemostatic factors have at least 3 cohorts
reporting for the meta-analysis. For all outcomes except PAI-1,
we had both European ancestry and African ancestry cohorts
(supplemental Table 1); however, fibrinogen was the only out-
come with at least 3 cohorts reporting for both ethnicities. Thus,
fibrinogen was the only hemostatic factor for which we per-
formed race-specific meta-analyses. Initial analyses suggested
there was some heterogeneity in the European ancestry fibrin-
ogen estimates (Cochran’s Q P value , .05); thus, for fibrinogen,
we used a random-effects meta-analysis for the European
ancestry and combined ethnicity meta-analyses. For all other
analyses, a fixed effects meta-analysis was used, as little evi-
dence of heterogeneity was observed. To facilitate compari-
son with the fixed effects models for other outcomes, we also
performed a fixed effects meta-analysis for fibrinogen as a
sensitivity analysis. We considered associations statistically
significant after a Bonferroni correction but also report asso-
ciations that achieved a nominal statistical significance level of

P, .05, as these may also be of interest. Previous analyses have
observed sex-specific associations with epigenetic aging.27 We
used a multiplicative interaction model to determine whether
there was an interaction between sex and epigenetic aging
measures.

Associations with peripheral blood
gene expression
To better understand the role of transcriptional regulation in our
associations, we used data from the Cooperative Health Re-
search in the Region of Augsburg S4 examination (KORA S4) and
the Rotterdam Study (RS) to examine the association between
our epigenetic aging measures and the peripheral blood ex-
pression of genes for the significant hemostatic factors. For
KORA41 and RS, gene expression was assessed on the Illumina
HumanHT-12v3 and Illumina HT-12v4 Expression BeadChip
arrays, respectively. Both studies isolated RNA from whole
blood, using PAXGene Blood RNA kits (Qiagen, Hilden, Ger-
many). For both cohorts, samples with a RNA quality score lower
than 7 were excluded from amplification and analysis, and the
final gene expression values were log2-transformed. A total of
731 gene expression samples passed quality control and had
epigenetic aging assessed in RS, whereas 439 samples were
included in the analysis for KORA S4. Full details are available in
the supplemental Materials. In addition to the cross-sectional
gene expression analyses performed using gene expression
from KORA S4 and RS, we performed a prospective gene
expression analysis using KORA F4, as prospective analyses are
less influenced by reverse confounding. In this analysis, we
examined the association between epigenetic aging measures
assessed in KORA S4 samples and gene expression from the
same individuals measured during the follow-up KORA F4
study.

We used the same variables for confounder adjustment, in
basic and full models, as previously described for all gene
expression analyses, and as included terms for RNA integrity
number and amplification plate. The log2-transformed gene
expression was the outcome in all models. For the cross-
sectional analyses in KORA S4 and RS, we examined the re-
sults from a fixed-effects meta-analysis. Given the limited
number of genes assessed and the high correlation between
probes for the same gene, associations were considered signif-
icant at the P, .05 level. We refer to the gene expression results
according to the study in which the gene expression was
assessed; thus, KORA F4 gene expression results refer exclusively
to the prospective gene expression analyses, whereas KORA S4
gene expression results refer exclusively to the cross-sectional
analyses, using KORA S4 gene expression and epigenetic aging
measures.

Aortic intima-media expression
We also examined the association between epigenetic aging
and gene expression in aortic intima-media samples to both
validate peripheral blood associations and evaluate tissue-
specific associations. We used samples from 22 patients with
overlapping methylation and gene expression from the Ad-
vanced Study of Aortic Pathology biobank. Methylation was
assessed on the Illumina Infinium HumanMethylation450
array, and gene expression was assayed using the Affymetrix
GeneChip Human Exon 1.0 ST array from RNA isolated using the
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RNeasy Mini Kit (QIAGEN).42 Full details for the Advanced Study
of Aortic Pathology biobank are available in the supplemental
Materials. The same adjustmentmodels as beforewere used, with
the exception that amplification plate and RNA Integrity Number
were not included; smoking was assessed as current, former, or
never; and physical activity was assessed as the number of days
exercised per week. Smoking and physical activity were included
as linear variables. Clinical covariates for all gene expression
analyses are given in supplemental Table 2.

Results
Baseline characteristics of all studies are given in supplemental
Table 1. For the discovery analyses, for each of the 5 hemostatic
factors examined, we had between 3 and 11 cohorts partici-
pating in themeta-analyses. PAI-1 was the only hemostatic factor
not measured in any of the African ancestry studies. Distributions
of the hemostatic factors were comparable across the ances-
tries except for the African Americans in ARIC, who had higher
D-dimer values and lower FVII values. The age range of par-
ticipating studies was from 36.9 to 79.1 years, and studies varied
from 28.6 to 60.7 in percentage of male participants. The sample
size for each of the assessed outcomes ranged from 3875 (aPTT)
to 16 545 (fibrinogen). For the replication in the 3rd Generation
Framingham Heart Study (FHS Gen3), the mean age was 45.5
years, and 48.6% of the cohort were men. The 2 hemostatic
factors assessed in FHS Gen3 were fibrinogen (n5 1388) and PAI-1
(n 5 1402). In using FHS to evaluate the assessment of epigenetic

age at different points from the hemostatic factor, exam closest in
time to the hemostatic measurement had the strongest (by mag-
nitude of the effect estimate) association, but the confidence in-
tervals for all estimates largely overlapped (supplemental Figure 1).

Associations between epigenetic aging and
hemostasis measures
Weexamined 6 outcomes and 2measures of epigenetic aging in
the analyses; thus, the Bonferroni cutoff was set at P , .0042
(0.05/12). Results for all outcomes are given in supplemental
Tables 3 and 4, which also contain summary statistics of re-
gressions of the hemostatic factors on AAD for reference pur-
poses. The basic model was considered the primary model on
which we based determinations of statistical significance.

PAI-1 was significantly associated with epigenetic age acceler-
ation measures in both the basic and full models (Table 1;
Figure 1). Fibrinogen was the most widely available hemostatic
factor, with both European ancestry (8 cohorts, n 5 13 183) and
African ancestry (3 cohorts, n 5 3362) cohorts represented. We
observed significant associations between both measures of
blood DNA methylation age and fibrinogen in the African an-
cestry cohorts (supplemental Tables 3 and 4). In the combined-
ethnicity analyses, we observed a significant association for
EEAD and fibrinogen in the basic model, which was attenuated
slightly in the full model (Figure 2; Table 1). To facilitate
comparison with fixed-effects models used for the other hemo-
static factors, we also performed fixed-effects meta-analysis for

F5L (201)

MARTHA (337)

KORA F3 (229)

FE Meta-Analysis

-0.40 0.00

Estimate Estimate
0.40 -0.20 0.20 0.60

FE Meta-Analysis0.12 [-0.01, 0.26] 0.14 [ 0.04, 0.23]

F5L (201)

MARTHA (337)

KORA F3 (229)

0.07 [-0.29, 0.44]

Estimate [95% CI]PAI-1, IEAD PAI-1, EEAD Estimate [95% CI]

0.10 [-0.09, 0.28]

0.19 [-0.05, 0.43]

0.37 [ 0.12, 0.62]

0.05 [-0.09, 0.19]

0.16 [ 0.01, 0.32]

Figure 1. Association between epigenetic aging and
PAI-1. Sample sizes are given in parentheses next to the
abbreviated cohort names. Effect estimates (Estimate)
represent the association per 1 year higher epigenetic
age as compared with chronological age, as observed in
the full model. FE, fixed effects.

Table 1. Significant meta-analysis associations between accelerated epigenetic aging and hemostatic factors

Outcome
Aging

measure, y

Basic Full

b SE CI P P(Q) b SE CI P P(Q)

PAI-1, U/mL EEAD 0.18 0.04 0.11-0.25 2.4 3 1027 0.10 0.13 0.03 0.07-0.20 6.6 3 1025 .18

PAI-1, U/mL IEAD 0.18 0.05 0.09-0.27 1.4 3 1024 0.78 0.16 0.04 0.07-0.25 2.6 3 1024 .79

Fibrinogen, g/L* EEAD 0.01 0.002 0.002-0.009 .002 0.004 0.004 0.002 9.5E-04 to 0.007 .01 .03

aPTT, s EEAD 20.02 0.01 20.04 to 20.007 .003 0.08 20.02 0.01 20.03 to 20.006 .005 .12

Basic and full model associations for hemostatic factor – epigenetic aging associations that were Bonferroni significant, P, 4.163 1023, in the basic model associations. Effect estimates (b) are
given per 1 year higher epigenetic age as compared with chronological age. Basic model adjusted for age, age squared, and sex. Full model adjusted for age, age squared, sex, body mass
index, physical activity, and smoking. For fibrinogen estimates are given for the random effects meta-analysis.

b, effect estimate; CI, 95% confidence interval; EA, European ancestry population; P(Q), heterogeneity (Cochran’s Q) P value; SE, standard error.

*Combined-race meta-analysis
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fibrinogen for both EEAD and IEAD (supplemental Table 5).
Results mirrored the random effects meta analyses with slightly
smaller standard errors and evidence of heterogeneity in some
models. The clotting time measure aPTT was significantly asso-
ciated with EEAD in the basic model. This association was
somewhat attenuated in the full model (Table 1).

A summary of all associations is given in Table 2. Overall,
accelerated epigenetic aging was associated with higher clotting
factor concentration (fibrinogen and PAI-1) and decreased clotting
time (aPTT). For fibrinogen and aPTT, associationswere attenuated
in the confounder-adjusted full model. As a sensitivity analysis, we
removed all cohorts with hemostatic measures and DNA meth-
ylation arrays not performed on the same sample. This restriction
removed all the African American ancestry cohorts and left 7
European ancestry cohorts with fibrinogen measured (N 5 6461)
and 3 European ancestry cohorts with PAI-1 measured (N 5 767).
The results were basically unchanged in this sensitivity analysis
(supplemental Figures 2 and 3). Despite ARIC having higher values
of D-dimer and lower values of FVII than the other cohorts, little to
no heterogeneitywas seen in themeta-analyses of these outcomes
(supplemental Tables 3 and 4). Although all epigenetic aging
measures were strongly associated with sex (supplemental
Table 6), there were no significant sex interactions in the meta-
analysis after a multiple test correction (supplemental Table 7).

Replication in FHS Gen3
Weused an independent cohort of individuals from FHSGen3 to
attempt to replicate associations with PAI-1 and fibrinogen. We
successfully replicated the PAI-1 associations with IEAD and
EEAD, but fibrinogen was not associated with epigenetic aging
in FHS Gen3 (Table 3).

Gene expression analyses
Given the observed associations with fibrinogen and PAI-1, we
examined associations between epigenetic aging measures and

whole-blood gene expression for the 3 genes (FGA, FGB, FGG)
that encode the fibrinogen subunits, as well as SERPINE1,
which encodes PAI-1. In a meta-analysis of cross-sectional
associations from KORA S4 and RS, we observed associa-
tions for FGA and SERPINE1. EEAD was associated with FGA
gene expression for both the basic and full models, whereas
SERPINE1 was negatively associated with IEAD in the basic
model (Table 4).

Given the potential for reverse causation when examining epi-
genetics and gene expression, we examined, in a prospective
model, the association between epigenetic aging assessed
in KORA S4 with gene expression measured in KORA F4, a

European Ancestry

Fibrinogen, IEAD Diff (Full) Fibrinogen, EEAD Diff (Full)

NTR (2821) -0.000 [-0.007, 0.006]

Esimate [95% CI] Esimate [95% CI]

-0.011 [-0.026, 0.004]

-0.005 [-0.018, 0.007]

-0.002 [-0.007, 0.003]
0.002 [-0.015, 0.018]
0.007 [-0.004, 0.019]

0.007 [-0.008, 0.022]

0.007 [ 0.002, 0.011]

0.001 [-0.002, 0.004]
0.002 [-0.001, 0.004]

0.004 [ 0.001, 0.007]
0.004 [0.003, 0.006]

-0.003 [-0.015, 0.010]

0.000 [-0.003, 0.003]
0.000 [-0.003, 0.003]

0.006 [0.001, 0.010]

0.001 [-0.005, 0.007]

0.004 [-0.002, 0.010]

0.009 [ 0.004, 0.014]
-0.003 [-0.014, 0.009]

-0.009 [-0.019, 0.001]

0.003 [-0.001, 0.007]
0.004 [-0.007, 0.015]
0.009 [-0.002, 0.021]

0.011 [-0.002, 0.024]

0.008 [ 0.004, 0.011]
0.007 [-0.004, 0.017]

0.003 [0.001, 0.005]
0.002 [-0.001, 0.006]

0.008 [0.004, 0.011]

0.001 [-0.003, 0.006]

0.000 [-0.005, 0.006]
MARTHA (240)
LBC (1936) (899)
LBC (1921) (408)
KORA S4 (1475)
FHS Gen7 (2297)
F5L (210)
CHS (EA) (312)

African Ancestry
GENOA (408)
CHS (AA) (318)
ARIC (2636)

Combined (RE) Meta-Analysis
Combined (FE) Meta-Analysis

-0.030 -0.010 0.010

Estimate
0.030

Combined (RE) Meta-Analysis
Combined (FE) Meta-Analysis

FE Meta-Analysis

FE Meta-Analysis

RE Meta-Analysis

European Ancestry
NTR (2821)
MARTHA (240)
LBC (1936) (899)
LBC (1921) (408)
KORA S4 (1475)
FHS Gen7 (2297)
F5L (210)
CHS (EA) (312)

African Ancestry
GENOA (408)
CHS (AA) (318)
ARIC (2636)

FE Meta-Analysis

FE Meta-Analysis

RE Meta-Analysis

-0.020 0.000 0.020

Estimate

Figure 2. Association between epigenetic aging and fibrinogen. Sample sizes are given in parentheses next to the abbreviated cohort names. Effect estimates (Estimate)
represent the association per 1 year higher epigenetic age as compared with chronological age, as observed in the full model. RE, random effects.

Table 2. Summary of associations with P < .05

Basic Full

EEAD IEAD EEAD IEAD

Fibrinogen* 11 1

PAI-1 11 11 11 11

D-dimer

FVII

vWF

aPTT 22 2

Overall summary of associations with those Bonferroni significant in either the basic or full
model marked. Blank cells indicate outcomes that did not achieve Bonferroni significance in
either the basic or full model. Associations that were Bonferroni significant in the basic
model but only nominally (P, .05) significant in the full model are marked with a single “1”

or “2”. A blank cell indicates that the observed association had P . .05. Effect estimates
and P values for all associations are given in supplemental Tables 3 and 4.

AA, African ancestry population; 11(22), Bonferroni significant positive (negative)
association. 1(2), nominal (P , .05) significant positive (negative) association.

*Combined race random effects meta-analysis.

1846 blood® 25 OCTOBER 2018 | VOLUME 132, NUMBER 17 WARD-CAVINESS et al

For personal use only.on November 21, 2018. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


follow-up survey of KORA S4 participants. We did not observe
associations with FGA or SERPINE1 in the prospective model,
but did observe an association between IEAD and FGG (Table 4).

To understand the tissue specificity of the associations, we ex-
amined associations between gene expression and epigenetic
aging in aortic intima-media, a second tissue type we had access
to that had the necessary DNAmethylation and hemostatic factor
measurements. All the genes considered are primarily expressed
in tissues other than whole blood, as indicated by data from the
human genotype tissue expression consortium43,44 (supplemental
Figure 4). We only examined AAD in these tissue samples, as
EEAD and IEAD are blood-specific measures because of their
dependence on blood immune cell counts. We observed an as-
sociation between AAD and both FGG and FGB gene expres-
sion, although the association with FGB was negative. The FGG

association was similar to prospective KORA F4 associations
with IEAD (Table 4).

Discussion
Hemostatic factors, such as fibrinogen and PAI-1, are risk factors
for multiple adverse cardiovascular outcomes.7,9,10,14 As hemo-
static factor measures are associated with age, it is possible that
age-related biological mechanisms influence the regulation, and
thus concentration, of hemostatic factors. Here, our results show
that higher epigenetic age as compared with chronological age
is associated with higher concentrations of fibrinogen and PAI-1,
as well as decreased clotting time. These associations mirror
the alterations in the hemostatic profile seen with advancing
age. Although coagulation and thrombosis is a balance between
pro- and anti-coagulation, as well as pro- and anti-thrombolysis,

Table 3. Results from replication of fibrinogen and PAI-1 in FHS Gen3 cohort.

Aging
measure

Hemostatic
factor Model b SE LCI UCI P

EEAD Fibrinogen Basic 6.4 3 1023 3.4 3 1023 23.0 3 1024 1.3 3 1022 .06

IEAD Fibrinogen Basic 4.0 3 1023 4.5 3 1023 24.7 3 1023 1.3 3 1022 .37

EEAD Fibrinogen Full 28.6 3 1025 3.2 3 1023 26.4 3 1023 6.2 3 1023 .98

IEAD Fibrinogen Full 28.6 3 1025 4.2 3 1023 28.3 3 1023 8.1 3 1023 .98

EEAD PAI-1 Basic 0.17 0.05 0.07 0.28 .001

IEAD PAI-1 Basic 0.16 0.07 0.03 0.29 .01

EEAD PAI-1 Full 0.05 0.05 20.04 0.14 .27

IEAD PAI-1 Full 0.09 0.06 20.03 0.20 .16

All aging measures were assessed in years while fibrinogen was measured in g/L and PAI-1 in U/mL. Replicated associations are given in bold. Basic model adjusted for age, age squared, and
sex. Full model adjusted for age, age squared, sex, body mass index, smoking, and physical activity (where available). Additional linear and quadratic time difference terms were included in
both models to represent the time between sample collection for the hemostatic factor assessment and assessment of DNA methylation. Effect estimates (b) are given per 1 year higher
epigenetic age as compared with chronological age.

LCI, lower 95% confidence interval; UCI, upper 95% confidence interval.

Table 4. Association between epigenetic aging and gene expression

Gene Aging measure Estimate SE P Adjustment P(Q)

Cross-sectional meta-analysis
(KORA F4 1 RS)*

FGA EEAD 0.002 0.001 .05 Full 0.10
SERPINE1 IEAD 20.002 0.001 .04 Full 0.57

Prospective associations
(KORA S4)†

FGG IEAD 0.004 0.002 .04 Full

Aorta intima-media (ASAP)
FGG AAD 0.009 0.004 .046 Full

We examined the association between epigenetic age acceleration and gene expression using both cross-sectional and prospective models in both peripheral blood and aorta intima-media
samples. Participating cohort abbreviated names are given in parentheses.

*Estimates from the meta-analysis of the cross-sectional associations between epigenetic age acceleration and log2-transformed gene expression for KORA and RS. Both cohorts used
different version of the same gene expression microarray, which contained identical gene expression probe designs allowing for direct comparisons.

†For the prospective associations, accelerated epigenetic aging was estimated in baseline (KORA S4) samples and gene expression measured in samples collected during follow-up 4 to
5 years later (KORA F4). Only associations with P, .05 in the full (age, age squared, sex, body mass index, smoking, and physical activity) adjusted model are shown. Effect estimates (b) are
given per 1 year higher epigenetic age as compared with chronological age. ASAP, Advanced Study of Aortic Pathology biobank.
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higher fibrinogen and PAI-1, along with lower clotting time, may
indicate a shift toward a “prothrombotic” hemostatic profile.

PAI-1
PAI-1 is a serine protease inhibitor that slows the cleavage of
plasminogen to plasmin by inhibiting urokinase plasminogen ac-
tivator. PAI-1 is a risk factor for cardiovascular disease and
thrombosis.45 In mice, PAI-1 deficiencies are protective against
liver fibrosis and carotid artery atherosclerosis progression.46,47

However, in humans, individuals homozygous for a PAI-1 frame-
shift mutation experienced abnormal bleeding, but no other
abnormalities. Heterozygous individuals did not experience ab-
normal bleeding events.48 Similar to other hemostatic factors, PAI-1
is strongly associatedwith age andmaypartly underlie associations
between advanced age and cardiovascular outcomes.18 All epi-
genetic biomarkers of accelerated aging we examined were as-
sociated with higher PAI-1 concentrations. We did not find
evidence that the epigenetic regulation of PAI-1 is influenced by
the regulation of mRNA levels of SERPINE1, its coding gene, as
none of the accelerated epigenetic aging measures were associ-
ated with SERPINE1 gene expression in peripheral blood or in
aortic intima-media. However, this may be a result of SERPINE1
being onlymoderately expressed in blood as compared with other
tissues such as endothelial cells, and arteries, and thus blood
transcriptomic levels may not properly reflect PAI-1 regulation.

Fibrinogen
Fibrinogen is an essential hemostatic factor and primary phase
inflammation marker. As such, fibrinogen dysregulation plays
a causal role in multiple bleeding disorders,49 is a risk factor
for cardiovascular disease,6,7 and is associated with mortality.7,50

Fibrinogen was associated with multiple measures of accelerated
epigenetic aging,most strongly and consistently with EEAD, which
strongly correlates with epigenetic aging of the immune system.
We also found evidence that accelerated epigenetic aging was
associated with transcription of the fibrinogen gene cluster (FGA,
FGB, FGG). As with PAI-1, the associations observed here would
be proxies, as fibrinogen is primarily expressed in the liver (sup-
plemental Figure 4). In a study of liver biopsy samples fromGerman
individuals with nonalcoholic fatty liver disease and controls
(biopsy samples from exclusion of liver malignancy), there was no
association between FGA, FGB, or FGG gene expression and
Horvath epigenetic age acceleration.26 However, this should still
be examined in a population free of disease, as nonalcoholic fatty
liver disease is known to affect hemostasis.51,52 In a prospective
analysis, higher baseline IEAD was associated with higher levels of
FGG transcription at follow-up. This association mirrored cross-
sectional associations in aortic tissue where higher AAD, a tissue
agnostic epigenetic aging measure correlated with IEAD, was also
associated with higher FGG transcription. Given that mortality and
other health outcomes have associations with both accelerated
epigenetic aging and fibrinogen, future studies should evaluate
whether associations between epigenetic aging and health out-
comes are partially mediated by fibrinogen.

Strengths and limitations
A strength of these analyses is the large sample size of the
discovery data sets. For the analysis of fibrinogen, 11 cohorts
participated, including both European- and African-ancestry
cohorts, allowing us to estimate ancestry-specific associations.
For the other outcomes, we were limited and could not estimate
ancestry-specific effects. Future meta-analyses should include

cohorts representing a diverse array of ethnicities, particularly
underrepresented ancestry groups. Another limitation is the
cross-sectional design, which is not robust to reverse con-
founding as a prospective design would be. However, we
demonstrated associations between epigenetic aging and the
transcription of FGG using a prospective design that is robust to
reverse confounding, suggesting that our observations are not
entirely driven by bias introduced from reverse confounding
effects. Estimates of the association between epigenetic aging
and the hemostatic factors were in many cases modest. This is to
be expected, given other modest associations between DNA
methylation age and outcomes such as mortality,27 although it
does not eliminate the possibility of substantial increased
population health burden from modest individual effects, or
large individual effects for persons with severe epigenetic aging.

Another strength of this study was our ability to evaluate associ-
ations between accelerated epigenetic aging and gene expres-
sion in multiple human tissues. This yielded important clues into
the links betweenaccelerated epigenetic aging and transcriptomic
regulation of the genes for PAI-1 and fibrinogen. Notably, wewere
also able to use prospective analyses, which are robust to reverse
confounding, to show that associations in blood are similar to
those observed in aortic intima-media tissue. We were limited in
our analysis of epigenetic aging in aorta intima-media tissue, as we
had only a few samples (N 5 22). Expanding both the number of
samples and thediversity of tissues should be a key focus for future
studies, particularly given the tissue-specific nature of both DNA
methylation and gene expression. These studies should particu-
larly collect tissue samples in which the hemostatic measures are
primarily expressed, such as liver for fibrinogen.

In conclusion, we observed multiple associations between epige-
netic markers of accelerated aging and hemostatic factors, which
together suggest that accelerated epigenetic aging is associated
with a prothrombotic hemostatic profile. Advanced age has long
been associated with a prothrombotic state, which may underlie
associations between age and clinical outcomes, and these anal-
yses suggest that DNA methylation may play an important role in
understanding associations between aging, hemodynamics, and
clinical outcomes. In the case of fibrinogen, we found evidence that
accelerated aging drives gene transcription inmultiple tissue types.
Given these observations, as the overlap between the outcomes
associated with hemostatic factors and those associated with
epigenetic aging increase, researchers should evaluate whether
altered hemostatic regulation is ameans bywhich epigenetic aging
associates with adverse health outcomes.
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