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Abstract
Oscillatory activity is crucial for information processing in the brain, and has a long history as a bio-

marker for psychopathology. Variation in oscillatory activity is highly heritable, but current

understanding of specific genetic influences remains limited. We performed the largest genome-

wide association study to date of oscillatory power during eyes-closed resting electroencephalo-

gram (EEG) across a range of frequencies (delta 1–3.75 Hz, theta 4–7.75 Hz, alpha 8–12.75 Hz,

and beta 13–30 Hz) in 8,425 subjects. Additionally, we performed KGG positional gene-based

analysis and brain-expression analyses. GABRA2—a known genetic marker for alcohol use disorder

and epilepsy—significantly affected beta power, consistent with the known relation between

GABAA interneuron activity and beta oscillations. Tissue-specific SNP-based imputation of gene-

expression levels based on the GTEx database revealed that hippocampal GABRA2 expression may

mediate this effect. Twenty-four genes at 3p21.1 were significant for alpha power (FDR q < .05).

SNPs in this region were linked to expression of GLYCTK in hippocampal tissue, and GNL3 and

ITIH4 in the frontal cortex–genes that were previously implicated in schizophrenia and bipolar dis-

order. In sum, we identified several novel genetic variants associated with oscillatory brain activity;

furthermore, we replicated and advanced understanding of previously known genes associated

with psychopathology (i.e., schizophrenia and alcohol use disorders). Importantly, these psychopa-

thological liability genes affect brain functioning, linking the genes’ expression to specific cortical/

subcortical brain regions.
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1 | INTRODUCTION

Oscillations in neuronal activity are known to play a crucial role in

information processing and cortical communication (Başar, 2012;

Buzs�aki, 2006; Cardin et al., 2009; Cho et al., 2015; Jokisch, & Jensen,

2007; and Marín, 2012; Pandey et al., 2016; Uhlhaas, & Singer, 2010).

Oscillations of different frequencies are thought to subserve different

roles in neural processing. The dominant alpha oscillations (8–10 Hz)

reflect the inhibition of cortical structures that are not needed for the

task at hand (Jensen & Mazaheri, 2010; Mazaheri et al., 2014), whereas

beta band oscillations (�20 Hz) may reflect a “hold” function, delaying

behavior when beta oscillations are present. For example, beta oscilla-

tions measured in human subthalamic nucleus during deep-brain elec-

trode implantations for the treatment of Parkinson’s Disease have a

movement-prohibitive role (Engel & Fries, 2010). Recently, a more

causal involvement of oscillations in driving behavior was shown (Cho

et al., 2015). In this study, restoring oscillatory activity via optogenetic

driving of GABA interneurons at gamma frequencies resulted in normal

behavioral flexibility in Dlx5/61/2 transgenic mice that are otherwise

affected in both frontal cortical oscillations as well as behavioral

flexibility.

These findings suggest that oscillations are not just biomarkers of,

but essential components in neural communication and computation.

Arguably, aberrant brain oscillations will result in deviant behavior.

Brain oscillations have therefore been widely investigated in the con-

text of psychopathology—including neuropsychiatric disorders—and

variation in normal human behavior (Başar & G€untekin, 2008; Skosnik,

Cortes-Briones, & Haj�os, 2016). This includes alpha oscillations related

to intelligence (Doppelmayr et al., 2002; Thatcher, North, & Biver,

2007), slow oscillations (4–8 Hz theta and 1–4 Hz delta oscillations) in

schizophrenia (Boutros et al., 2008; Sponheim, Clementz, Iacono, &

Beiser, 1994), theta and beta oscillations in attentional deficits (Clarke

et al., 1998; Snyder & Hall, 2006), and beta oscillations in substance

use (Rangaswamy et al., 2002; Struve, Straumanis, Patrick, & Price,

1989).

As one of the most heritable traits in humans (Anokhin et al.,

2001; Smit, Posthuma, Boomsma, & Geus, 2005; Smit et al., 2006;

Tang et al., 2007; Van Beijsterveldt, Molenaar, De Geus, & Boomsma,

1996; Zietsch et al., 2007), EEG oscillations may serve as an intermedi-

ate phenotype in the pathway from genes to behavior (de Geus, 2010;

Gottesman, & Gould, 2003; Loo et al., 2015). Despite the numerous

twin and family studies of the genetics of oscillations, studies linking

specific genetic variants such as Single Nucleotide Polymorphisms

(SNPs) to oscillation strength remain scarce. The first genome-wide

association study of EEG oscillation strength showed an association

between SGIP1 and theta oscillations in both Native American and

European Ancestry samples. Two recent studies from the Collaborative

Study on the Genetics of Alcoholism (COGA) associated several inter-

genic SNPs at 6q22 in a European sample (Meyers et al., 2017a), and at

3q26 in African American ancestry (Meyers et al., 2017b) for >20 Hz

fast beta oscillations.

Contrasting with these results, the largest study of EEG power and

peak frequency to date (Malone et al., 2014) did not yield genome-

wide significant hits. They did report, however, significant contribution

of common SNP variants to the heritability using random-effects mod-

eling (Yang et al., 2010). This suggests that statistical power to detect

genome-wide significant effects is limited, as the effects of single

genetic variants on complex, multifactorial phenotypes such as brain

activity are expected to be very small. Therefore, our first aim was to

extend previous studies by performing a meta-analysis of genome-

wide association studies (GWAS) of oscillatory power across standard

frequency bands, yielding the largest EEG GWAS study to date. To fur-

ther understand these findings, we also estimated SNP-based heritabil-

ity using LD score regression (Bulik-Sullivan et al., 2015b).

Possibly equally important is the functional annotation of GWAS

results by aggregating results and/or prioritizing SNPs based on recent

advances in bioinformatics and molecular knowledge of the genome.

This was performed by several means. SNP-based GWAS results were

followed up with gene-based analyses and expression-based enrich-

ment analyses, which further increases power to detect genes affecting

functional brain activity (Neale & Sham, 2004; Ripke et al., 2014; Wata-

nabe, Taskesen, Bochoven, & Posthuma, 2017). In addition, significant

results from gene-based tests were compared to known liability genes

for behavioral phenotypes including neuropsychiatric disorders by

searching GWAS results databases (ensembl.org, gwascentral.org). We

opted for this method of operation—that is, a full genome scan for

genetic variants, subsequent gene-based analyses, matching against

known GWAS results for psychiatric/behavioral phenotypes—rather

than preselecting liability genes to analyze for three reasons. First, can-

didate gene associations have proven much less successful in the past

than genome-wide scans, even with severe adjustments for multiple

testing in the latter. Second, genome-wide scans allow for the calcula-

tion of summed statistics such as SNP coheritability between EEG and

behavioral traits, without the need to preselect on genome-wide
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significant effects. Third, a GWAS of EEG traits can be used for com-

parison by future studies.

We then investigated enrichment for expression Quantitative Trait

Loci (eQTL) that have been shown to alter expression of specific genes.

These results allowed for the identification of likely target genes. These

links are based on empirical associations between SNPs and gene

expression rather than the clustering of SNPs based on genomic loca-

tions. This provides an important step in reducing the number of likely

target genes affecting the investigated trait. Finally, we analyzed

enrichment of significant genes in the available cerebral brain tissues of

the GTEx database (Lonsdale et al., 2013). Using the same database,

we examined how specific genes are expressed in specific brain tissues,

further elucidating the pathway from genetic variation to brain activity.

In linkage and candidate gene studies, the most consistent finding

has been the involvement of GABA functioning in �20 Hz beta oscilla-

tory activity. Porjesz et al. (2002) showed significant linkage between

beta oscillations on chromosome 4 and the GABRB1 microsatellite

marker, which was overlying a cluster of GABAA receptor genes:

GABRG1, GABRA2, GABRA4, and GABRB1. Regional SNP association

analysis subsequently pointed to SNPs intronic to GABRA2 as account-

ing for the signal (Edenberg et al., 2004). GABRA2 was subsequently

associated with both beta oscillations and alcohol use disorders (Eden-

berg et al., 2004; Lydall et al., 2011). Our second aim is to replicate

these findings and to investigate how genetic variation in GABRA2

affects expression in brain tissue.

The current study describes results from the EEG workgroup of

the ENIGMA consortium (Thompson et al., 2014; Thompson et al.,

2017). We developed EEG processing protocols to extract common

measures for band power in standard frequency bands: delta (1–4 Hz),

theta (4–8 Hz), alpha (8–13 Hz) and beta (13–30 Hz) power at the ver-

tex (Cz) electrode, and occipital (O1, O2) alpha power and alpha peak

frequency consistent with (Malone et al., 2014). GWAS results of three

population-based twin and two (alcohol-dependence) ascertained fam-

ily cohorts from the Netherlands, Australia, and US were combined in a

meta-analysis for a total of 8,425 individuals (see also Thompson et al.,

2017). The combined meta-analyzed results were subsequently entered

into the post-GWAS pipeline of analyses. Given the importance of

oscillatory activity in neural communication and the large body of liter-

ature on deviant oscillatory activity in psychiatric traits, we expect that

genes identified in this study will also affect neuropsychiatric and

behavioral phenotypes. The subsequent expression analyses will

indicate via which pathways these genes may influence brain expres-

sion, and in turn, EEG oscillations.

2 | METHODS

2.1 | Subjects

Resting state EEG and genome-wide genotyping were available for a

total of 8,425 individuals from Australia, the Netherlands, and the USA.

All subjects were part of twin and family studies examining the genetics

of health, neuropsychiatric and behavioral traits with additional psycho-

physiological assessments: the Minnesota Twin Family Study (MTFS),

the Collaborative Study on the Genetics of Alcoholism (COGA), the

Brisbane Adolescent Twin Study (BATS), and the Netherlands Twin

Register (NTR). All sites excluded subjects with a history of neurological

problems, including tumor and head trauma. Alcohol dependence ascer-

tained samples (COGA European Ancestry Families and COGA Case-

Control) required acute alcohol screening prior to EEG recording. Table

1 provides a short summary of each cohort analyzed separately before

meta-analysis.

Although the age range of this sample was quite large, it is known

that individual differences relative to age-group averages are moder-

ately to highly stable, even over longer periods (Gasser et al., 1985;

Smit et al., 2005). In order to maximize sample size, subjects were not

excluded. However, age was carefully corrected for by including age

group and/or age and age2 as covariates. As a consequence, all SNP

effects in this study will mostly reflect the genetic effects that are sta-

ble across the lifespan. Full details on covariates and demographics for

each cohort are given in the Supporting Information Methods.

2.2 | EEG recording and preprocessing

For further details on EEG assessment by the individual groups, see

supplementary material. Recording methods differed between the five

included cohorts on sampling frequency, causal filter settings, and ref-

erence electrode (for COGA cohorts). Although these settings are likely

to affect the recorded power values, they are also very unlikely to

affect the rank ordering of power values between subjects. Since

cohorts were meta-analyzed using p-values rather than inverse var-

iance, these effects were automatically discarded, and therefore limit-

ing concern regarding the heterogeneity introduced by recording

differences across cohorts.

TABLE 1 Cohort summary

Abbreviation Study cohort name Cohort type Ages (years) Nsubjects Nfamilies

NTR Netherlands Twin Registry Population based EUR ancestry 5.2–70.9 834 (55.5% F) 423

COGA-EA COGA European Ancestry study Alcohol dependent probands1
pedigree EUR Ancestry

7.07–73.08 1492 (52.5% F) 117

COGA-CC COGA Case-Control study Alcohol dependent cases and Healthy
controls (unrelated)

13.8–69.8 660 (48.3% F) –

MTFS Minnesota Twin Family Study Population based EUR ancestry 17–60 4026 (48.9% F) 1612

QIMR Brisbane Adolescent
Twin Study (BATS)

Population based EUR ancestry 15.5–20.1 971 (51.3% F) 468
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2.3 | EEG power and peak frequency analysis

All groups analyzed the vertex recordings (Cz) and the average of Occi-

pital leads (O1, O2) in standard frequency bands. Cleaned data were

imported into MATLAB, epoched into 2 s epochs, and power spectra

calculated using Fast Fourier Transformation (FFT). Frequency bins

were defined as delta (1–3.75 Hz), theta (4–7.75 Hz), alpha (8–

12.75 Hz), and beta (13–30 Hz). Power was defined as the squared

radius of the orthogonal sine and cosine amplitudes averaged over win-

dow size, and the mean value taken for the frequency band to obtain

power density. Power values were log transformed to obtain approxi-

mate normality. Alpha peak frequency was determined using the

power-weighted method in accordance with (Malone et al., 2014)

between 7 and 14 Hz.

2.4 | QC and genome-wide association analysis

Groups used dosage based imputed SNP sets using CEU reference

panels hg19/build 37 from 1000 genomes phase1 or phase3. Imputa-

tion followed ENIGMA imputation protocols (Thompson et al., 2014;

http://enigma.usc.edu/wp-content/uploads/2012/07/ENIGMA2_

1KGP_cookbook_v3.pdf). Association analyses accounted for family

relatedness using various validated modeling techniques (Merlin, GEE,

RFGLS). Sex, Age and age2 and/or age-group/wave were used as cova-

riates plus ancestry Principal Components plus disease status (when

applicable). See supplementary materials for more group specific meth-

ods and/or deviance from these standard analyses protocols, and cova-

riate analysis results.

Pre-meta-analysis QC were performed using EasyQC (Winkler

et al., 2014). We filtered on sample MAF (0.03 for the largest dataset,

MTFS; 0.04 for the intermediate datasets, COGA case control and

QIMR BATS; and 0.05 for NTR and COGA EA), as well as EUR 1000

Genomes reference set MAF < 0.03, N < 200, HWE p < 1027,

INFO < 0.8, INFO > 1.05, imputation R2 < .4, invalid numbers (Inf,

NA), 0.2 difference between sample and reference set allele frequen-

cies. Further checks consisted of matching alleles, duplicates, and

strand flips. Meta-analyzed SNPs were filtered for combined

N > 6,000. The final datasets consisted of 4959085 to 4959521 SNPs

depending on phenotype. Supporting Information Table shows the

number of SNPs lost at each QC step for Cz alpha. Genome-wide sig-

nificance was set at 5 3 1028.

2.5 | SNP heritability

LD score regression (Bulik-Sullivan et al., 2015b) uses the natural

experiment present in the genome due to variable amounts of Linkage

Disequilibrium (LD) between SNPs. Causal variants will cause straight

slope decline in test statistics of nearby SNPs with decreasing levels of

LD to the causal variant in the case of additive genetic variation. The

slope of the regression line of the chi-square statistic against LD scores

across the genome reflects the heritability of the trait (Bulik-Sullivan

et al., 2015b). SNP heritability estimation using LD score regression has

the advantage of being insensitive to population stratification effects,

as these will result in an upward shift across all LD score bins, thus

affecting the intercept and not the slope of the LD-dependent

regression.

We used LD score regression to estimate the SNP-based heritabil-

ity of the six EEG phenotypes following the recommendations in Bulik-

Sullivan et al. (2015b), including pruning for Hapmap 3 SNPs. Next, the

LD-score regression intercept was used to assess quality of the GWAS

and removal of stratification effects by the population Principal Com-

ponents (see for example Okbay et al., 2016a). Finally, we used bivari-

ate LD-score regression to estimate genetic correlation rG, between

the EEG phenotypes and GWASs available in LD Hub (http://ldsc.

broadinstitute.org) (Bulik-Sullivan et al., 2015a; Zheng et al., 2017). This

includes GWASs on schizophrenia and alcohol use disorders. We addi-

tionally examined bipolar disorder, subjective wellbeing, neuroticism,

generalized epilepsy and educational attainment (ILAE Consortium,

2014; Okbay et al., 2016b), to explore the genetic association of oscil-

latory activity with these behavioral and neurological traits. Finally, we

investigated genetic correlations between our EEG GWAS results and

the ENIGMA GWAS results for subcortical volumes, intracranial vol-

ume, and brain volume. See Supporting Information Methods for a full

reference list.

3 | RESULTS

3.1 | Genome-wide association

Supporting Information Figure S1 shows the Manhattan plots for the

six EEG traits. Two SNPs reached genome-wide significance

(p < 5�31028Þ; for Cz alpha power : ðrs984924; p54:731028 and

rs10231372, p 5 2.9 3 1028); rs984924 on chromosome 4 is an

intronic variant within protein kinase cGMP-dependent Type II

(PRKG2), and rs10231372 on chromosome 7 is an intronic variant

within the long non-coding RNA gene LINC00996. Suggestive peaks

(p < 5 3 1027) were found for Cz delta power on chromosome 5

(rs6867021, p 5 1.1 3 1027), chromosome 6 (rs17055223,

p 5 3.1 3 1027), chromosome 2 (rs11677128, p 5 4.3 3 1027); Cz

alpha power on chromosome 1 (rs10910665, p 5 1.8 3 1027) and on

chromosome 13 (rs9514041, p 5 1.4 3 1027). Supporting Information

Table S1 shows the genome-wide significant SNPs, suggestive peaks,

and FDR significant discoveries. Note that no individual SNP effects

showed significant heterogeneity I2, (nominal p > .38); however, these

heterogeneity estimates are not best suited for a small number of

cohorts (von Hippel, 2015).

Q–Q plots for the meta-analysis are provided in Figure 1 (pink

dots). Full genome median lambdas ranged from 1.02 to 1.06. To test

for inflation, we calculated LD-score regression intercepts. These were

not significant for delta, theta, and alpha oscillations and alpha peak

frequency (abs(z) < 1.50); however, beta power did show significant

inflation (z 5 2.1). Correction of beta oscillation GWAS p-values using

the intercept had only minor effect and did not change any SNP or

gene-based results. Overall, LD score intercept results indicated that

there is no evidence of substantial inflation of statistics due to, for

example, residual population stratification effects.

4 | SMIT ET AL.4186 SMIT ET AL.



3.2 | Positional gene-based analysis

We performed gene-based analysis using KGG Extended Simes test for

each of the EEG traits, which combined the SNP p-values within genes

plus flanking regions 50k basepair extensions in 50 and 30 UTR direc-

tions while taking into account the LD structure. Q-Q plots are included

in Figure 1 (blue triangles). Plots showed inflation for gene p-values

compared to SNP p-values. Figure 2 shows the gene-based Manhattan

plots. FDR-corrected p-values showed significant genes for delta, theta,

and alpha power at the vertex. Supporting Information Table S2 shows

the statistically significant gene discoveries (FDR q 5 .05).

Consistent with the SNP-based findings, PRKG2 was significant for

Cz alpha power (p 5 .019). In addition, LOC101928942 reached

FIGURE 1 Quantile-quantile plots of observed versus expected –log10(p) for delta, theta, alpha, and beta EEG power at the vertex,
occipital alpha power, and occipital alpha peak frequency. Red line is the expected null, grey area is the 95% confidence interval. Dashed
red line is the Benjamini-Hochberg FDR q 5 .05 threshold. Pink dots are meta-analyzed SNP p values. FDR-corrected significance is reached
for alpha power at Cz. Blue triangles are KGG gene-based test p values combining SNP effects within gene regions plus 50k base pairs 30

and 50 UTR. Many genes reach FDR significance for alpha oscillation power (see Supporting Information Table S2) [Color figure can be
viewed at wileyonlinelibrary.com]

SMIT ET AL. | 5SMIT ET AL. 4187



significance (p < .019). This gene is an antisense noncoding RNA gene

embedded in PRKG2. Both Cz and occipital alpha power showed a clus-

ter of significant genes at 3p21 ranging from (hg19) basepair positions

52234203 to 52728499 (ALAS1 to GLT8D1). For Cz alpha power, 17

of these genes were significant discoveries at q 5 .05. For occipital

alpha power, 11 genes reached significance of which 4 overlapped

with Cz alpha. Supporting Information Figure S2 (top) shows the

regional Cz alpha LocusZoom plot of the chromosome 3 region reveal-

ing high LD from about 52.2–52.8 Mb (hg19). Variants within the same

region have been consistently associated with schizophrenia and bipo-

lar disorder (Ripke et al., 2013; Sklar et al., 2011). Supporting Informa-

tion Figure S2 (bottom) shows the regional association plot for the

FIGURE 2 KGG gene-based test results Manhattan plots for the six EEG traits measured at the vertex electrode (Cz) and occipital (O1/
O2). Dashed line is the threshold for genome-wide significance. Named genes are significant discoveries under FDR q 5 .05. Only peak find-

ings in the significant region marked with blue vertical lines are shown. A full listing of FDR significant genes is provided in Supporting
Information Table S2 [Color figure can be viewed at wileyonlinelibrary.com]
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second Psychiatric Genomics Consortium schizophrenia GWAS (Ripke

et al., 2014) for comparison. Top SNP in this region was rs7614727

(p 5 2.0 3 1026), which is intronic to WDR82—previously associated

with bipolar disorder and schizophrenia.

Further significant findings include a cluster of three genes

(METTL21C, TPP2, and CCDC168; FDR p 5 .033 for all) for Cz alpha

power. Of these, METTL21C has previously been associated to alpha

oscillation strength (Malone et al., 2014).

3.3 | eQTL expression analysis

To investigate which genes are likely to mediate phenotypic variation

in high LD regions and to elucidate mediating brain tissue expression

pathways, we performed eQTL analysis. A substantial percentage of

eQTLs affect the expression of genes at a distance, often including var-

iants close to a different gene in a different LD region (Ramasamy

et al., 2014). Cis-eQTLs are genetic variants within a 1 Mb region of a

gene that explain variability in the expression of the gene in a target

tissue (Gamazon et al., 2013; Gamazon et al., 2015; Lonsdale et al.,

2013). We selected eQTLs from eight brain tissues from the GTEx

database (Lonsdale et al., 2013). Cz alpha power associated p-values

resulted in inflated Q–Q plots for all tissues (Supporting Information

Figure S3). Benjamini-Hochberg FDR significant effects at q 5 .05

were observed for the Frontal Cortex and Anterior Cingulate Gyrus,

and the Hypothalamus. Occipital alpha power showed similar effects,

but for different brain regions (Caudate, Nucleus Accumbens, Hippo-

campus; Supporting Information Figure S4). The significant SNPs were

frontal cortical tissue eQTLs for MTERF4, GNL3, and ITIH4; the latter

two being schizophrenia/bipolar disorder liability genes at 3p21. Signifi-

cant SNPs for occipital power were cortical-tissue eQTLs for genes

IL1RL1, IL18R1, CLHC1, GLYCTK, and ITIH4. Supporting Information

Table S3 lists the eQTL effects.

To test for overall significance of gene-expression enrichment in

alpha oscillation power, we used the online tool FUMA (Watanabe

et al., 2017). We extracted the top 500 genes from the gene-based

association (Cz and occipital alpha), which were matched against genes

significantly up- or downregulated in each GTEx tissue compared to

the average of other tissues (i.e., differentially expressed genes deter-

mined by a Bonferroni-corrected t test). Significance of enrichment

was determined by the hypergeometric test with Bonferroni correction.

Figure 3 shows that brain derived tissues are almost invariably signifi-

cant, and much more so than other tissues. Other tissues—less clearly

related to brain oscillations—also show significant enrichment (heart,

whole blood, pancreas, tibial nerve, and liver). This is largely attributed

to pleiotropy. However, causal effects and spurious relations cannot be

excluded.

3.4 | Imputed gene-expression association of alpha

oscillations

To further elucidate the tissue-expression pathways of the specific

genes implicated in the eQTL analysis (MTERF4, GNL3, ITIH4, IL1RL1,

IL18R1, CLHC1, GLYCTK, and ITIH4) we applied MetaXcan using the all

GTEx cortical brain tissues (Barbeira et al., 2016; Gamazon et al., 2015).

MetaXcan may have increased power to detect significant gene/phe-

notype associations by combining genetic variants in a sparse elastic

net prediction model rather than focusing on association results from

single SNPs (eQTLs). All genes, excluding CLHC1, reached significance

in at least one tissue. Four genes near the 3p21 region showed at least

one FDR significant association (ITIH4, GNL3, GLYCTK, and TEX264 as

an additional gene within the region). Figure 4 shows the 2log10(p-

value) for all genes with FDR significant effects in at least one tissue

(indicated by the dot). ITIH4 showed a more widespread association

across tissues (significant in hypothalamus), whereas GLYTCK showed a

rather specific hippocampal expression for both occipital and Cz alpha

power. Immune genes IL1RL1 and IL18R1 on chromosome 2 also

reached the threshold for significance in the significant association

with cortical and subcortical expression with alpha oscillations (see Fig-

ure 4). Note that the positional gene-based test pointed to MTERF4

expression in the putamen reached significance for Cz alpha power.

FIGURE 3 FUMA (Watanabe et al., 2017) enrichment analysis. The top 500 genes in the occipital alpha analysis are significantly enriched for
genes that are up or down regulated in all cortical and subcortical brain tissues from the GTEx database, save cerebellar hemisphere. Other
significantly enriched tissues are heart, whole blood, pancreas, tibial nerve, and liver [Color figure can be viewed at wileyonlinelibrary.com]
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3.5 | GABAA receptor genes

Planned comparisons for two GABAA receptor genes at 4p12 were

made in relation to beta power. The results from the KGG GATES posi-

tional gene-based analysis showed significant results for GABRA2

(p 5 .024) and GABRB1 (p 5 .15). After removing the results from the

COGA sample—on which the previous findings were based—the p

value increased to p 5 .052 for GABRA2, just missing the .05 mark.

MetaXcan analysis, however, showed that imputed himppocampal

expression of GABRA2 was significantly associated with beta power

for hippocampal expression of GABRA2 (p 5 .0024). This effect

remained significant after removal of the COGA samples (p 5 .0050).

GABRA2 expression in other tissues was not significantly associated

with beta power (p > .2).

3.6 | SNP-based heritability

LD score regression for Hapmap 3 annotated SNPs (NSNP>819k) was

carried out for SNP effects from the meta-analysis. Heritability esti-

mates (ranging from 0.11 to 0.27; Supporting Information Figure S5)

were lower than estimates from twin and family studies of EEG power

(ranging from 0.45 to 0.9; e.g., see Smit et al., 2005), but are in line

with the GCTA random-effects modeling on common SNPs for the

same EEG measures (Malone et al., 2014), as well as other neuro-

psychiatric and behavioral traits.

3.7 | Genetic correlation analysis

Bivariate LD score regression was used to calculate genetic correlation

rG between traits. Supporting Information Figure S6 shows the genetic

correlations between the EEG phenotypes. Strong and positive genetic

correlations were observed among the EEG power phenotypes. Occipi-

tal and Cz alpha power correlated 1.0 (p < 1E-80), and correlated

highly with Cz beta power (rG 5 .67, p < 3.3E–5; and rG 5 .71,

p < 2.8E-9 respectively). Slow oscillatory power (delta and theta) also

correlated near 1.0 (p < 1E-20). Only the theta with beta power

genetic correlation was modest and not statistically significant

(p 5 .16). Negative correlations between peak alpha frequency and the

slow oscillation power phenotypes were observed (significant for peak

alpha with theta power, rG 5 –.73, p < 7.5E–5), and a nonsignificant

positive correlation with beta power.

LD score regression based genetic correlations with a wide range

of psychopathological and behavioral phenotypes with published

GWAS results are shown in Supporting Information Figure S7. Signifi-

cant effects were observed but failed to survive multiple testing correc-

tion (FDR or Bonferroni). Top effects included rG 5 –.35 (uncorrected

p 5 .0094, FDR p > .10) between theta power and autism spectrum

disorder, and rG 5 .55 (uncorrected p 5 .014, FDR p > .10) between

beta power and generalized epilepsy. Also, a nominally significant

genetic correlation between heart rate and alpha power was observed

(rG 5 .22, p 5 .019).

4 | DISCUSSION

We have presented results from the first international consortium for

investigating the molecular genetic basis of brain functional activity as

measured by resting EEG. The results revealed two genome-wide sig-

nificant associations for Cz alpha power: on chromosome 4, a SNP

intronic to PRKG2 (rs984924), and on chromosome 7, a SNP intronic to

LINC00996 (rs10231372). FDR correction yielded 68 significant SNPs

in the same PRKG2 and LINC00996 regions, plus intronic variants

within PCNX2 and METTL21C. Gene-based analyses identified multiple

genes significantly associated with Cz and occipital alpha power, includ-

ing PRKG2, METTL21C, and several genes in a region on chromosome

3. PRKG2 influences anthropometric and blood pressure-related traits

(Sung et al., 2015; Wood et al., 2014) and also affects multiple pheno-

types in mice, including skeletal and adipose tissues. Humans with

4q21 microdeletion syndrome—which includes PRKG2 and flanking

genes—show similar skeletal symptoms, including facial bone and

growth retardations, but also neuropsychological symptoms, including

speech and mental retardation (Bonnet et al., 2010; Dukes-Rimsky

et al., 2011).

FIGURE 4 MetaXcan gene-expression results for chromosomes 2 and 3 indicate which positional gene-based discoveries and which brain
tissues may be involved in affecting alpha oscillation power. Uncorrected p-values are shown, FDR significant discoveries are marked with a
dot. Out of the 24 significant genes in region 3p21, GLYCTK associated with alpha power via hippocampal expression, TEX264 via general
cortical expression, GNL3 and ITIH4 via hypothalamic expression. Furthermore, IL18R1, IL1RL1, and MTERF4 on chromosome 2 were not dis-
covered in the positional analysis. These genes affected alpha oscillations via the Putamen and Hippocampus, but IL1RL1 and IL18R1 expres-
sion in many other tissues just failed to reach the FDR threshold. Note that FDR correction was performed within tissue [Color figure can
be viewed at wileyonlinelibrary.com]
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KGG gene-based analyses implicated a high-LD region on chromo-

some 3 that included many significant genes associated with Cz and

occipital alpha power. Variants in this region have been associated with

schizophrenia and bipolar disorder. Significant brain-tissue eQTLs

pointed to ITIH4, GNL3, and GLYCTK as genes with altered expression.

MetaXcan significantly associated widespread brain expression for

ITIH4, with hypothalamic expression reaching significance. For GNL3,

hypothalamic and cerebellar tissues significantly associated with alpha

oscillations. Hippocampal GLYCTK expression associated with Cz and

occipital alpha. MetaXcan further associated cortical TEX264 expres-

sion to alpha oscillations. By using expression analyses, we were able

to strongly reduce the number of target genes in the chromosome 3

region from twenty-four to four, and localize their effects to hypothala-

mic and hippocampal expression as most strongly associated with alpha

oscillations.

The association schizophrenia liability genes with oscillatory brain

activity and the specific tissues with significantly altered expression

highlights where oscillatory brain activity changes with increased dis-

ease risk. Altered expression of ITIH4 in the frontal cortex in the con-

text of schizophrenia has recently been reported (Ohi et al., 2016), and

is consistent with reduced alpha oscillatory activity in the frontal cortex

observed in schizophrenia (Iacono, 1982; Itil, Saletu, Davis, & Allen,

1974; Klimesch, Sauseng, & Hanslmayr, 2007; Sponheim et al., 1994;

Sponheim, Clementz, Iacono, & Beiser, 2000). FDR significant SNPs

were eQTLs for ITIH4, GLN3, and MTERF4 in the frontal cortex for Cz

alpha oscillations. Our results indicate that schizophrenia liability gene

ITIH4 affects oscillatory brain function and adds GNL3 and MTERF4 as

possible target genes. Brain eQTLs further pointed to cytokine receptor

genes IL1RL1 and IL18R1, which are immune system genes linked to

asthma, celiac disease, IBS, and atopic dermatitis (Barreto-Luis et al.,

2016; Dubois et al., 2010; Liu et al., 2015; Paternoster et al., 2015).

MetaXcan imputed expression analysis indicated that these genes are

also brain expressed and associated with alpha oscillation power for

widespread cortical and subcortical tissues, reaching significance for

the Hippocampus and Putamen. The association of IL18R1 expression

with schizophrenia was reported recently (Xu et al., 2016). Our results

indicate that these immunological liability genes also affect oscillatory

brain function by altering widespread expression in the brain.

The results confirmed GABAA signaling as being involved in fast

oscillatory (beta) activity in the full meta-analysis (p 5 .024); however,

it failed to reach significance after removing COGA, the discovery sam-

ple (p 5 .052). Interestingly, the Metaxcan expression analysis signifi-

cantly associated hippocampal GABRA2 expression to beta oscillations

(p 5 .0024 and p 5 .0050 without COGA). This latter result fits well

with observations that beta oscillations are influenced by GABAA

receptor\alpha 2 agonists such as benzodiapines (van Lier et al., 2004;

Manmaru & Matsuura, 1989; Montagu, 1972), and the crucial role of

GABAA interneurons for synchronized fast rhythms in the brain

(Buzs�aki & Chrobak, 1995). In our view, there is now evidence that hip-

pocampal GABA functioning mediates the relation between resting-

state EEG beta power and alcohol dependence (Dick et al., 2006; Eden-

berg et al., 2004; Rangaswamy et al., 2002). The selective hippocampal

expression association suggests that the genetic variants affecting beta

oscillations also affect hippocampal GABAA receptor’s sensitivity to

interneuron inhibition. Together, these results indicate that the associa-

tion between GABRA2 and beta oscillations is more difficult to detect

in population-based samples compared to samples ascertained for alco-

hol use disorder. In addition, it demonstrates that eQTL based expres-

sion analysis increases power to detect associations.

Twin and family studies have consistently indicated that EEG alpha

power is one of the most heritable traits in humans at up to 96% for

frontal alpha power in young adult samples (Anokhin et al., 2001; van

Beijsterveldt, & van Baal, 2002; Smit et al., 2005; Zietsch et al., 2007).

The SNP heritability observed here using LD score regression was only

able to retrieve a relatively small proportion of variance of the often

highly heritable EEG traits. This pattern of high twin/family heritability

with a relatively low SNP heritability has recently been observed across

a range of complex, neuropsychiatric traits (Bulik-Sullivan et al., 2015a).

This discrepancy could be caused by a relative large contribution of

rare SNPs that are poorly tagged by the common SNP arrays used

here. The SNP-based genetic correlation analysis was more consistent

with twin/family studies. Strong genetic correlations (>.70) were

observed among the slower (delta theta) and among faster oscillations

(alpha beta). Results from twin studies generally ranged from 0.50 to

0.90, although the twin-based rG between theta and delta oscillation

power is generally not as strong as the SNP rG observed here. This

inconsistency between twin/family and SNP coheritability could per-

haps be explained by the restricted scalp locations tested in the current

analysis and/or the sample heterogeneity (e.g., COGA families ascer-

tained through alcohol use disorders), but also the fact that only com-

mon variants were used.

Coheritability analysis showed nominally significant genetic corre-

lations, which were no longer significant after FDR correction. This

may be expected due to the relatively low sample size of this GWAS. A

nominally significant genetic correlation (rG 5 .55) was observed

between beta oscillations and generalized epilepsy. This is consistent

with the putative role of fast beta/gamma oscillations in ictogenesis (in

the present sample only nonaffected individuals were used). The largest

epilepsy GWAS to date found suggestive evidence for the involvement

of GABRA2 (ILAE Consortium, 2014), which we found to be related to

beta oscillation power. GABA is a main antiepileptic drug target, and is

known to affect (motor) beta EEG via GABAergic modulation of pyram-

idal cells (Gaetz et al., 2011; Hall et al., 2010; Rowland et al., 2013;

Yamawaki, Stanford, Hall, & Woodhall, 2008). We additionally

observed a significant genetic correlation between autism and theta

oscillations (rG 5 –.35, p 5 .009). Although deviant brain function in

autism is most consistently found in the lower gamma band due to

altered GABA inhibitory neuronal action (Blatt & Fatemi, 2011; Gandal

et al., 2010; Nelson & Valakh, 2015; Rojas & Wilson, 2014), cortical

and hippocampal theta/lower alpha are known to show phase-

amplitude coupling with fast oscillations (gamma; Canolty et al., 2006;

Khan et al., 2013; Lisman & Jensen, 2013). The significant genetic cor-

relation (rG 5 .22, p 5 .019) between heart rate and alpha power is

consistent with observations in concurrent EEG and ECG recordings

(de Munck et al., 2008).
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Inherent in meta-analyses is variation in study design and ascer-

tainment methods used across studies. Although we have homogenized

the analyses as much as possible, study cohorts have used different

age groups, EEG apparatus and settings during recording, different gen-

otyping platforms and biological sampling (saliva, blood), QC protocols,

as well as different imputation algorithms. Spurious relations will largely

be cancelled out by the meta-analysis, and the consistent use of PCs,

sex, age (group) and disease status covariates will have reduced these

effects. However, remaining effects cannot be fully excluded, and may

have decreased the power to detect associations. We acknowledge

this limitation of our study.

In sum, we showed how genetic analyses can aid in explaining how

known liability genes influence complex measures of brain functioning.

We found evidence that hippocampal expression of the GABA receptor

alpha 2 subunit is involved in altering beta power—consistent with its

relation to epilepsy and alcohol dependence that are both well known

for the involvement of GABAA (Edenberg et al., 2004; Jurkiewicz,

Gaetz, Bostan, & Cheyne, 2006). This result provides a new perspective

on how GABA genes affect both beta oscillations and alcohol use dis-

orders, with a central role for the hippocampus. Schizophrenia liability

genes on chromosome 3 affected alpha oscillation power, resulting in

24 significant genes in the positional gene-based analysis. These SNPs

were brain-expression eQTLs for ITIH4, GNL3, and GLYCTK, thus

greatly reducing the number of genes that are likely to be involved.

Moreover, the significant eQTLs were tissue specific, including the

frontal cortex, anterior cingulate cortex, hypothalamus, and hippocam-

pus. These results prioritize genes and brain regions for investigating

how schizophrenia liability genes are expressed and influence brain

activity on a systems level. Expression analysis further implicated

immune system genes IL1RL1 and IL18R1 with altered expression in

putamen and hippocampus, which highlights the role of immune sys-

tem genes on brain functioning (Arion et al., 2007; Latiano et al., 2013).

These genes specifically targeted subcortical structures, which in turn

may influence cortical brain activity as measured with scalp-recorded

EEG.

GWAS is dependent on very large sample sizes, as the effects of

individual genetic variants (SNPs) are quite small, even for brain endo-

phenotypes (Hibar et al., 2015; Stein et al., 2012). Our analyses show

that prioritizing SNPs on tissue-specific expression and machine-

learning approaches are useful to reveal significant genetic associations

and pathways for the expression of psychiatric liability in the brain.

This bodes well for future GWAS of additional EEG parameters. For

example, two recently published GWASs of bipolar EEG from families

of African and European ancestry reported genome-wide signal at

3q26 and 6q22, respectively (Meyers et al., 2017a; Meyers et al.,

2017b). Bipolar EEG derivations show more localized activity than

other EEG derivations and remove volume conduction effects, and

have been particularly successful as a biomarker of alcohol depend-

ence. Other EEG parameters of high interest are functional connectiv-

ity as biomarkers for various neurodevelopmental and psychiatric

disorders. The current results indicate that finding specific molecular

genetic variants related to EEG parameters is entirely feasible.

ACKNOWLEDGMENTS

This research was carried out under the auspices of the Enhancing

Imaging Genetics through Meta-Analysis (ENIGMA) consortium. The

ENIGMA-EEG Working Group gratefully acknowledges support from

the NIH Big Data to Knowledge (BD2K) award (U54 EB020403 to

Paul Thompson). The Collaborative Study of the Genetics of Alco-

holism (COGA) continues to be inspired by our memories of Henri

Begleiter and Theodore Reich, founding PI and Co-PI of COGA, and

acknowledges all participating centers (see supplementary note). We

gratefully acknowledge the following funding sources: University of

Minnesota: Funding by National Institutes of Health (NIH) DA

05147, DA 36216, DA 024417. COGA: NIH NIAAA U10AA00840,

NIH GEI U01HG004438, HHSN268200782096C. Vrije Universiteit:

NOW/ZonMW 904-61-090, 985-10-002, 912-10-020, 904-61-

193,480-04-004, 463-06-001, 451-04-034, 400-05-717, Addiction-

31160008, Middelgroot-911-09-032, Spinozapremie 56–464-14192,

BBMRI–NL, 184.021.007, NWO-Groot 480-15-001/674. ERC FP7/

2007–2013), ENGAGE HEALTH-F4–2007-201413, ERC Advanced

230374, Starting 284167), NIMH U24 MH068457-06, NIH

R01D0042157-01A, MH081802, R01 DK092127-04, Grand Oppor-

tunity grants 1RC2 MH089951 and 1RC2 MH089995. Personal

funding: NWO 480-04- 004, NWO/SPI 56–464-14192, and NWO

911-09- 032 to D.B., NWO/MagW VENI-451-08-026 to D.S.; ERC-

230374 to D.B.; BBR Foundation (NARSAD) 21668 to D.S.; VU-USF

96/22 to D.B.; HFSP RG0154/1998-B to D.B. and E.d.G.; KNAW

PAH/6635 to D.B.; Australian Research Council A79600334,

A79906588, A79801419, DP0212016 to N.M. and M.W.; NHMRC

389891 to N.M.; Fellowship APP1103623 to S.M.; NIH

K01DA037914 to J.L.M. The Genotype-Tissue Expression (GTEx)

Project was supported by the Common Fund of the Office of the

Director of the National Institutes of Health, and by NCI, NHGRI,

NHLBI, NIDA, NIMH, and NINDS. The data used for the analyses

described in this manuscript were obtained from the GTEx Portal on

October 20, 2016. See Supporting Information for a full

acknowledgement.

ORCID

Dirk Ja Smit http://orcid.org/0000-0001-8301-8860

REFERENCES

Anokhin, A. P., Van Baal, G., Van Beijsterveldt, C., De Geus, E., Grant, J.,

& Boomsma, D. (2001). Genetic correlation between the P300 event-

related brain potential and the EEG power spectrum. Behavior Genet-

ics, 31(6), 545–554.

Arion, D., Unger, T., Lewis, D. A., Levitt, P., & Mirnics, K. (2007). Molecu-

lar evidence for increased expression of genes related to immune

and chaperone function in the prefrontal cortex in schizophrenia. Bio-

logical Psychiatry, 62(7), 711–721.

Barbeira, A., Shah, K. P., Torres, J. M., Wheeler, H. E., Torstenson, E. S.,

Edwards, T., Garcia, T., Bell, G. I., Nicolae, D., Cox, N. J., & Im, H. K.

(2016). MetaXcan: Summary statistics based gene-level association

method infers accurate PrediXcan results. bioRxiv, 045260.

Barreto-Luis, A., Pino-Yanes, M., Corrales, A., Campo, P., Callero, A.,

Acosta-Herrera, M., . . . Flores, C. (2016). Genome-wide association

10 | SMIT ET AL.4192 SMIT ET AL.



study in Spanish identifies ADAM metallopeptidase with thrombo-

spondin type 1 motif, 9 (ADAMTS9), as a novel asthma susceptibility

gene. Journal of Allergy and Clinical Immunology, 137(3), 964–966.

Başar, E. (2012). A review of alpha activity in integrative brain function:

Fundamental physiology, sensory coding, cognition and pathology.

International Journal of Psychophysiology: Official Journal of the Interna-

tional Organization of Psychophysiology, 86(1), 1–24.

Başar, E., & G€untekin, B. (2008). A review of brain oscillations in cogni-

tive disorders and the role of neurotransmitters. Brain Research,

1235, 172–193.

Blatt, G. J., & Fatemi, S. H. (2011). Alterations in GABAergic biomarkers

in the autism brain: Research findings and clinical implications. The

Anatomical Record: Advances in Integrative Anatomy and Evolutionary

Biology, 294(10), 1646–1652. (2007).

Bonnet, C., Andrieux, J., B�eri-Dexheimer, M., Leheup, B., Boute, O., Man-

ouvrier, S., . . . Sanlaville, D. (2010). Microdeletion at chromosome

4q21 defines a new emerging syndrome with marked growth restric-

tion, mental retardation and absent or severely delayed speech. Jour-

nal of Medical Genetics, 47(6), 377–384.

Boutros, N. N., Arfken, C., Galderisi, S., Warrick, J., Pratt, G., & Iacono,

W. (2008). The status of spectral EEG abnormality as a diagnostic

test for schizophrenia. Schizophrenia Research, 99(1–3), 225–237.

Bulik-Sullivan, B., Finucane, H. K., Anttila, V., Gusev, A., Day, F. R., &

Loh, P.-R. ReproGen Consortium, Psychiatric Genomics Consortium,

Genetic Consortium for Anorexia Nervosa of the Wellcome Trust

Case Control Consortium 3, Duncan L, Perry JRB, Patterson N, Rob-

inson EB, Daly MJ, Price AL, Neale BM (2015a): An atlas of genetic

correlations across human diseases and traits. Nature Genetics, 47,

1236–1241.

Bulik-Sullivan, B. K., Loh, P.-R., Finucane, H. K., Ripke, S., Yang, J., Schiz-

ophrenia Working Group of the Psychiatric Genomics Consortium,

Patterson, N., Daly, M. J., Price, A. L., & Neale, B. M. (2015b). LD

Score regression distinguishes confounding from polygenicity in

genome-wide association studies. Nature Genetics, 47, 291–295.

Buzs�aki, G. (2006). Rhythms of the brain. New York: Oxford University

Press.

Buzs�aki, G., & Chrobak, J. J. (1995). Temporal structure in spatially

organized neuronal ensembles: A role for interneuronal networks.

Current Opinion in Neurobiology, 5(4), 504–510.

Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S.,

Kirsch, H. E., . . . Knight, R. T. (2006). High gamma power is phase-

locked to theta oscillations in human neocortex. Science (New York,

N.Y.), 313(5793), 1626–1628.

Cardin, J. A., Carl�en, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth,

K., . . . Moore, C. I. (2009). Driving fast-spiking cells induces gamma

rhythm and controls sensory responses. Nature, 459(7247), 663–667.

Cho, K. K. A., Hoch, R., Lee, A. T., Patel, T., Rubenstein, J. L. R., & Sohal,

V. S. (2015). Gamma rhythms link prefrontal interneuron dysfunction

with cognitive inflexibility in Dlx5/61/2 Mice. Neuron, 85(6), 1332–
1343.

Clarke, A. R., Barry, R. J., McCarthy, R., & Selikowitz, M. (1998). EEG

analysis in attention-deficit/hyperactivity disorder: A comparative

study of two subtypes. Psychiatry Research, 81(1), 19–29.

de Geus, E. (2010). From genotype to EEG endophenotype: A route for

post-genomic understanding of complex psychiatric disease? Genome

Medicine, 2(9), 63–64.

de Munck, J. C., Gonçalves, S. I., Faes, T. J. C., Kuijer, J. P. A., Pouwels,

P. J. W., Heethaar, R. M., & Lopes da Silva, F. H. (2008). A study of

the brain’s resting state based on alpha band power, heart rate and

fMRI. NeuroImage, 42(1), 112–121.

Dick, D. M., Bierut, L., Hinrichs, A., Fox, L., Bucholz, K. K., Kramer, J., . . .

Foroud, T. (2006). The role of GABRA2 in risk for conduct disorder

and alcohol and drug dependence across developmental stages.

Behavior Genetics, 36(4), 577–590.

Doppelmayr, M., Klimesch, W., Stadler, W., P€ollhuber, D., & Heine, C.

(2002). EEG alpha power and intelligence. Intelligence, 30(3), 289–302.

Dubois, P. C. A., Trynka, G., Franke, L., Hunt, K. A., Romanos, J., Curtotti, A.,

. . . van Heel, D. A. (2010). Multiple common variants for celiac disease

influencing immune gene expression. Nature Genetics, 42(4), 295–302.

Dukes-Rimsky, L., Guzauskas, G. F., Holden, K. R., Griggs, R., Ladd, S., del

Carmen Montoya, M., . . . Srivastava, A. K. (2011). Microdeletion at

4q21.3 is associated with intellectual disability, dysmorphic facies,

hypotonia, and short stature. American Journal of Medical Genetics

Part A, 155(9), 2146–2153.

Edenberg, H. J., Dick, D. M., Xuei, X., Tian, H., Almasy, L., Bauer, L. O.,

. . . Begleiter, H. (2004). Variations in GABRA2, encoding the a2 sub-

unit of the GABAA receptor, are associated with alcohol dependence

and with brain oscillations. American Journal of Human Genetics, 74

(4), 705–714.

Engel, A. K., & Fries, P. (2010). Beta-band oscillations—Signalling the sta-

tus quo? Current Opinion in Neurobiology, 20(2), 156–165. Cognitive
neuroscience:

Gaetz, W., Edgar, J. C., Wang, D. J., & Roberts, T. P. L. (2011). Relating

MEG measured motor cortical oscillations to resting g-Aminobutyric

acid (GABA) concentration. NeuroImage, 55(2), 616–621.

Gamazon, E. R., Badner, J. A., Cheng, L., Zhang, C., Zhang, D., Cox, N. J.,

. . . Liu, C. (2013). Enrichment of cis-regulatory gene expression SNPs

and methylation quantitative trait loci among bipolar disorder suscep-

tibility variants. Molecular Psychiatry, 18(3), 340–346.

Gamazon, E. R., Wheeler, H. E., Shah, K. P., Mozaffari, S. V., Aquino-

Michaels, K., Carroll, R. J., . . . Im, H. K. (2015). A gene-based associa-

tion method for mapping traits using reference transcriptome data.

Nature Genetics, 47(9), 1091–1098.

Gandal, M. J., Edgar, J. C., Ehrlichman, R. S., Mehta, M., Roberts, T. P. L.,

& Siegel, S. J. (2010). Validating g oscillations and delayed auditory

responses as translational biomarkers of autism. Biological Psychiatry,

68(12), 1100–1106.

Gasser, T., Bächer, P., & Steinberg, H. (1985). Test-retest reliability of

spectral parameters of the EEG. Electroencephalography and Clinical

Neurophysiology, 60(4), 312–319.

Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in

psychiatry: Etymology and strategic intentions. The American Journal

of Psychiatry, 160(4), 636–645.

Hall, S. D., Barnes, G. R., Furlong, P. L., Seri, S., & Hillebrand, A. (2010).

Neuronal network pharmacodynamics of GABAergic modulation in

the human cortex determined using pharmaco-magnetoencephalogra-

phy. Human Brain Mapping, 31(4), 581–594.

Hibar, D. P., Stein, J. L., Renteria, M. E., Arias-Vasquez, A., Desrivières, S.,

Jahanshad, N., . . . Medland, S. E. (2015). Common genetic variants

influence human subcortical brain structures. Nature, 520(7546),

224–229.

Iacono, W. G. (1982). Bilateral electrodermal habituation-dishabituation

and resting EEG in remitted schizophrenics. The Journal of Nervous

and Mental Disease, 170(2), 91–101.

ILAE Consortium (2014). Genetic determinants of common epilepsies: A

meta-analysis of genome-wide association studies. Lancet Neurology,

13(9), 893–903.

Itil, T. M., Saletu, B., Davis, S., & Allen, M. (1974). Stability studies in

schizophrenics and normals using computer-analyzed EEG. Biological

Psychiatry, 8(3), 321–335.

SMIT ET AL. | 11SMIT ET AL. 4193



Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by

oscillatory alpha activity: Gating by inhibition. Frontiers in Human

Neuroscience, 4, 186.

Jokisch, D., & Jensen, O. (2007). Modulation of gamma and alpha activity

during a working memory task engaging the dorsal or ventral stream.

The Journal of Neuroscience: The Official Journal of the Society for Neu-

roscience, 27(12), 3244–3251.

Jurkiewicz, M. T., Gaetz, W. C., Bostan, A. C., & Cheyne, D. (2006). Post-

movement beta rebound is generated in motor cortex: Evidence from

neuromagnetic recordings. NeuroImage, 32(3), 1281–1289.

Khan, S., Gramfort, A., Shetty, N. R., Kitzbichler, M. G., Ganesan, S.,

Moran, J. M., . . . Kenet, T. (2013). Local and long-range functional

connectivity is reduced in concert in autism spectrum disorders. Pro-

ceedings of the National Academy of Sciences, 110(8), 3107–3112.

Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations:

The inhibition–timing hypothesis. Brain Research Reviews, 53(1), 63–
88.

Latiano, A., Palmieri, O., Pastorelli, L., Vecchi, M., Pizarro, T. T., Bossa, F.,

. . . Andriulli, A. (2013). Associations between genetic polymorphisms

in IL-33, IL1R1 and risk for inflammatory bowel disease. Plos One, 8

(4), e62144.

Lisman, J. E., & Jensen, O. (2013). The theta-gamma neural code. Neuron,

77(6), 1002–1016.

Liu, J. Z., van Sommeren, S., Huang, H., Ng, S. C., Alberts, R., Takahashi,

A., . . . Weersma, R. K. (2015). Association analyses identify 38 sus-

ceptibility loci for inflammatory bowel disease and highlight shared

genetic risk across populations. Nature Genetics, 47(9), 979–986.

Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., Shad, S., . . .

Moore, H. F. (2013). The Genotype-Tissue Expression (GTEx) project.

Nature Genetics, 45(6), 580–585.

Loo, S. K., Lenartowicz, A., & Makeig, S. (2015). Use of EEG biomarkers

in child psychiatry research: Current state and future directions. Jour-

nal of Child Psychology and Psychiatry, 57(1), 4. https://www.ncbi.nlm.

nih.gov/pmc/articles/PMC4689673/.

Lydall, G. J., Saini, J., Ruparelia, K., Montagnese, S., McQuillin, A., Guer-

rini, I., . . . Gurling, H. M. D. (2011). Genetic association study of

GABRA2 single nucleotide polymorphisms and electroencephalogra-

phy in alcohol dependence. Neuroscience Letters, 500(3), 162–166.

Malone, S. M., Burwell, S. J., Vaidyanathan, U., Miller, M. B., Mcgue, M.,

& Iacono, W. G. (2014). Heritability and molecular-genetic basis of

resting EEG activity: A genome-wide association study. Psychophysiol-

ogy, 51(12), 1225–1245.

Manmaru, S., & Matsuura, M. (1989). Quantification of benzodiazepine-

induced topographic EEG changes by a computerized wave form rec-

ognition method: Application of a principal component analysis. Elec-

troencephalography and Clinical Neurophysiology, 72(2), 126–132.

Marín, O. (2012). Interneuron dysfunction in psychiatric disorders. Nature

Reviews. Neuroscience, 13(2), 107.

Mazaheri, A., van Schouwenburg, M. R., Dimitrijevic, A., Denys, D., Cools,

R., & Jensen, O. (2014). Region-specific modulations in oscillatory

alpha activity serve to facilitate processing in the visual and auditory

modalities. NeuroImage, 87, 356–362.

Meyers, J. L., Zhang, J., Manz, N., Rangaswamy, M., Kamarajan, C.,

Wetherill, L., . . . Porjesz, B. (2017). A genome wide association study

of fast beta EEG in families of European ancestry. International Jour-

nal of Psychophysiology 115. The Genetics of Brain Function and Psy-

chophysiology, 115, 74–85.

Meyers, J. L., Zhang, J., Wang, J. C., Su, J., Kuo, S. I., Kapoor, M., . . . Por-

jesz, B. (2017a). An endophenotype approach to the genetics of alco-

hol dependence: A genome wide association study of fast beta EEG

in families of African ancestry. Molecular Psychiatry, http://www.

nature.com/mp/journal/vaop/ncurrent/full/mp2016239a.html.

Montagu, J. D. (1972). Effects of diazepam on the EEG in man. European

Journal of Pharmacology, 17(1), 167–170.

Neale, B. M., & Sham, P. C. (2004). The future of association studies:

Gene-based analysis and replication. American Journal of Human

Genetics, 75(3), 353–362.

Nelson, S. B., & Valakh, V. (2015). Excitatory/inhibitory balance and circuit

homeostasis in autism spectrum disorders. Neuron, 87(4), 684–698.

Ohi, K., Shimada, T., Nitta, Y., Kihara, H., Okubo, H., Uehara, T., & Kawa-

saki, Y. (2016). Schizophrenia risk variants in ITIH4 and CALN1 regu-

late gene expression in the dorsolateral prefrontal cortex. Psychiatric

Genetics, 26(3), 142–143.

Okbay, A., Baselmans, B. M. L., De Neve, J.-E., Turley, P., Nivard, M. G.,

Fontana, M. A., . . . Cesarini, D. (2016). Genetic variants associated

with subjective well-being, depressive symptoms, and neuroticism

identified through genome-wide analyses. Nature Genetics, 48(6),

624–633.

Okbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H., Riet-

veld, C. A., . . . Benjamin, D. J. (2016). Genome-wide association study

identifies 74 loci associated with educational attainment. Nature, 533

(7604), 539–542.

Pandey, A. K., Kamarajan, C., Manz, N., Chorlian, D. B., Stimus, A., & Por-

jesz, B. (2016). Delta, theta, and alpha event-related oscillations in

alcoholics during Go/NoGo task: Neurocognitive deficits in execu-

tion, inhibition, and attention processing. Progress in Neuro-

Psychopharmacology & Biological Psychiatry, 65, 158–171.

Paternoster, L., Standl, M., Waage, J., Baurecht, H., Hotze, M., Strachan,

D. P., . . . Weidinger, S. (2015). Multi-ethnic genome-wide association

study of 21,000 cases and 95,000 controls identifies new risk loci for

atopic dermatitis. Nature Genetics, 47(12), 1449–1456.

Porjesz, B., Almasy, L., Edenberg, H. J., Wang, K., Chorlian, D. B., Foroud,

T., . . . Begleiter, H. (2002). Linkage disequilibrium between the beta

frequency of the human EEG and a GABAA receptor gene locus. Pro-

ceedings of the National Academy of Sciences, 99(6), 3729–3733.

Ramasamy, A., Trabzuni, D., Guelfi, S., Varghese, V., Smith, C., Walker, R.,

. . . Weale, M. E. (2014). Genetic variability in the regulation of gene

expression in ten regions of the human brain. Nature Neuroscience,

17(10), 1418–1428.

Rangaswamy, M., Porjesz, B., Chorlian, D. B., Wang, K., Jones, K. A.,

Bauer, L. O., . . . Begleiter, H. (2002). Beta power in the EEG of alco-

holics. Biological Psychiatry, 52(8), 831–842.

Ripke, S., Neale, B. M., Corvin, A., Walters, J. T., Farh, K.-H., Holmans, P.

A., . . . O’Donovan, M. C. (2014). Biological insights from 108

schizophrenia-associated genetic loci. Nature, 511, 421–427.

Ripke, S., O’Dushlaine, C., Chambert, K., Moran, J. L., Kähler, A. K.,

Akterin, S., . . . Sullivan, P. F. (2013). Genome-wide association analy-

sis identifies 13 new risk loci for schizophrenia. Nature Genetics, 45

(10), 1150–1159.

Rojas, D. C., & Wilson, L. B. (2014). Gamma-band abnormalities as

markers of autism spectrum disorders. Biomarkers in Medicine, 8(3),

353–368.

Rowland, L. M., Edden, R. A. E., Kontson, K., Zhu, H., Barker, P. B., &

Hong, L. E. (2013). GABA predicts inhibition of frequency-specific

oscillations in schizophrenia. The Journal of Neuropsychiatry and Clini-

cal Neurosciences, 25(1), 83–87.

Sklar, P., Ripke, S., Scott, L. J., Andreassen, O. A., Cichon, S., Craddock,

N., . . . Purcell, S. M. (2011). Large-scale genome-wide association

analysis of bipolar disorder identifies a new susceptibility locus near

ODZ4. Nature Genetics, 43, 977–983.

12 | SMIT ET AL.4194 SMIT ET AL.



Skosnik, P. D., Cortes-Briones, J. A., & Haj�os, M. (2016). It’s all in the

rhythm: The role of cannabinoids in neural oscillations and psychosis.

Biological Psychiatry, 79(7), 568–577.

Smit, D., Posthuma, D., Boomsma, D., & Geus, E. J. C. (2005). Heritability

of background EEG across the power spectrum. Psychophysiology, 42

(6), 691–697.

Smit, C. M., Wright, M. J., Hansell, N. K., Geffen, G. M., & Martin, N. G.

(2006). Genetic variation of individual alpha frequency (IAF) and

alpha power in a large adolescent twin sample. International Journal

of Psychophysiology: Official Journal of the International Organization of

Psychophysiology, 61(2), 235–243.

Snyder, S. M., & Hall, J. R. (2006). A meta-analysis of quantitative EEG

power associated with attention-deficit hyperactivity disorder. Journal

of Clinical Neurophysiology: Official Publication of American Electroen-

cephalographic Society, 23(5), 441–455.

Sponheim, S. R., Clementz, B. A., Iacono, W. G., & Beiser, M. (1994).

Resting EEG in first-episode and chronic schizophrenia. Psychophysiol-

ogy, 31(1), 37–43.

Sponheim, S. R., Clementz, B. A., Iacono, W. G., & Beiser, M. (2000). Clinical

and biological concomitants of resting state EEG power abnormalities

in schizophrenia. Biological Psychiatry, 48(11), 1088–1097.

Stein, J. L., Medland, S. E., Vasquez, A. A., Hibar, D. P., Senstad, R. E.,

Winkler, A. M., . . . Seshadri, S. Consortium C for H and AR in GE

(CHARGE), Consortium the ENIG through M-A (ENIGMA) (2012).

Identification of common variants associated with human hippocam-

pal and intracranial volumes. Nature Genetics, 44(5), 552–561.

Struve, F. A., Straumanis, J. J., Patrick, G., & Price, L. (1989). Topographic

mapping of quantitative EEG variables in chronic heavy marihuana

users: Empirical findings with psychiatric patients. Clinical EEG (Elec-

troencephalography), 20(1), 6–23.

Sung, Y. J., de las Fuentes, L., Schwander, K. L., Simino, J., & Rao, D. C.

(2015). Gene–Smoking interactions identify several novel blood pres-

sure loci in the Framingham heart study. American Journal of Hyper-

tension, 28(3), 343–354.

Tang, Y., Chorlian, D. B., Rangaswamy, M., Porjesz, B., Bauer, L., Kuper-

man, S., . . . Begleiter, H. (2007). Genetic influences on bipolar EEG

power spectra. International Journal of Psychophysiology: Official Jour-

nal of the International Organization of Psychophysiology, 65(1), 2–9.

Thatcher, R. W., North, D., & Biver, C. (2007). Intelligence and EEG cur-

rent density using low-resolution electromagnetic tomography (LOR-

ETA). Human Brain Mapping, 28(2), 118–133.

Thompson, P. M., Andreassen, O. A., Arias-Vasquez, A., Bearden, C. E.,

Boedhoe, P. S., Brouwer, R. M., . . . Ye, J. (2017). ENIGMA and the

individual: Predicting factors that affect the brain in 35 countries

worldwide. NeuroImage 145, Part B. Individual Subject Prediction, 145,

389–408.

Thompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez, A. A.,

Renteria, M. E., . . . Consortium, I. Group SYS (SYS) (2014). The

ENIGMA Consortium: Large-scale collaborative analyses of neuroi-

maging and genetic data. Brain Imaging and Behavior, 8(2), 153–182.

Uhlhaas, P. J., & Singer, W. (2010). Abnormal neural oscillations and syn-

chrony in schizophrenia. Nature Reviews. Neuroscience, 11(2), 100–
113.

van Beijsterveldt, C. E. M., & van Baal, G. C. M. (2002). Twin and family

studies of the human electroencephalogram: A review and a meta-

analysis. Biological Psychology, 61(1–2), 111–138.

Van Beijsterveldt, C., Molenaar, P., De Geus, E., & Boomsma, D. (1996).

Heritability of human brain functioning as assessed by electroence-

phalography. American Journal of Human Genetics, 58(3), 562.

van Lier, H., Drinkenburg, W. H. I. M., van Eeten, Y. J. W., & Coenen, A.

M. L. (2004). Effects of diazepam and zolpidem on EEG beta frequen-

cies are behavior-specific in rats. Neuropharmacology, 47(2), 163–174.

von Hippel, P. T. (2015). The heterogeneity statistic I2 can be biased in

small meta-analyses. BMC Medical Research Methodology, 15(1),

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410499/.

Watanabe, K., Taskesen, E., Bochoven, A. V., & Posthuma, D. (2017).

FUMA: Functional mapping and annotation of genetic associations.

bioRxiv, 110023.

Winkler, T. W., Day, F. R., Croteau-Chonka, D. C., Wood, A. R., Locke, A.

E., Mägi, R., . . . Loos, R. J. F. The Genetic Investigation of Anthropo-

metric Traits (GIANT) Consortium (2014). Quality control and con-

duct of genome-wide association meta-analyses. Nature Protocols, 9

(5), 1192–1212.

Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, . . . Fray-

ling TM (2014). Defining the role of common variation in the

genomic and biological architecture of adult human height. Nature

Genetics, 46,1173–1186.

Xu, Y., Yue, W., Shugart, Y. Y., Yuan, J., Wang, G., Wang, H. Z., . . .

Zhang, D. (2016). Potential involvement of the interleukin-18 path-

way in schizophrenia. Journal of Psychiatric Research, 74, 10–16.

Yamawaki, N., Stanford, I. M., Hall, S. D., & Woodhall, G. L. (2008). Phar-

macologically induced and stimulus evoked rhythmic neuronal oscilla-

tory activity in the primary motor cortex in vitro. Neuroscience, 151

(2), 386–395.

Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt,

D. R., . . . Visscher, P. M. (2010). Common SNPs explain a large pro-

portion of the heritability for human height. Nature Genetics, 42(7),

565–569.

Zheng, J., Erzurumluoglu, A. M., Elsworth, B. L., Kemp, J. P., Howe, L.,

Haycock, P. C., . . . Neale, B. M. (2017). LD Hub: A centralized data-

base and web interface to perform LD score regression that maxi-

mizes the potential of summary level GWAS data for SNP heritability

and genetic correlation analysis. Bioinformatics (Oxford, England), 33

(2), 272–279.

Zietsch, B. P., Hansen, J. L., Hansell, N. K., Geffen, G. M., Martin, N. G.,

& Wright, M. J. (2007). Common and specific genetic influences on

EEG power bands delta, theta, alpha, and beta. Biological Psychology,

75(2), 154–164.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the sup-

porting information tab for this article.

How to cite this article: Smit DJA, Wright MJ, Meyers JL, et al.

Genome-wide association analysis links multiple psychiatric

liability genes to oscillatory brain activity. Hum Brain Mapp.

2018;00:1–13. https://doi.org/10.1002/hbm.24238

SMIT ET AL. | 13

liability genes to oscillatory brain activity. Hum Brain Mapp.
2018;39:4183–4195. https://doi.org/10.1002/hbm.24238

SMIT ET AL. 4195

https://doi.org/10.1002/hbm.24238



