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Abstract
The human brain shows remarkable development of functional brain activity from childhood to

adolescence. Here, we investigated whether electroencephalogram (EEG) recordings are suitable

for predicting the age of children and adolescents. Moreover, we investigated whether overesti-

mation or underestimation of age was stable over longer time periods, as stable prediction error

can be interpreted as reflecting individual brain maturational level. Finally, we established

whether the age-prediction error was genetically determined. Then, 3 min eyes-closed resting-

state EEG data from the longitudinal EEG studies of Netherlands Twin Register (NTR; n = 836)

and Washington University in St. Louis (n = 702) were used at ages 5, 7, 12, 14, 16, and 18. Lon-

gitudinal data were available within childhood (5–7 years) and adolescence (16–18 years). We

calculated power in 1 Hz wide bins (1–24 Hz). Random forest (RF) regression and relevance vec-

tor machine with sixfold cross-validation were applied. The best mean absolute prediction error

was obtained with RF (1.22 years). Classification of childhood versus puberty/adolescence

reached over 94% accuracy. Prediction errors were moderately to highly stable over periods of

1.5–2.1 years (0.53 < r < 0.74) and signifcantly affected by genetic factors (heritability between

42 and 79%). Our results show that age prediction from low-cost EEG recordings is comparable

in accuracy to those obtained with magnetic resonance imaging. Children and adolescents

showed stable overestimation or underestimation of their age, which means that some partici-

pants have stable brain activity patterns that reflect those of an older or younger age, and could

therefore reflect individual brain maturational level. This prediction error is heritable, suggesting

that genes underlie maturational level of functional brain activity. We propose that age predic-

tion based on EEG recordings can be used for tracking neurodevelopment in typically develop-

ing children, in preterm children, and in children with neurodevelopmental disorders.
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1 | INTRODUCTION

The neural tissue of the brain shows remarkable development from

childhood to adolescence, which includes changes in dendritic arbori-

zation, synaptogenesis, and myelination, and synaptic pruning

(Anderson, Northam, Hendy, & Wrennall, 2001; Huttenlocher, 1979).

These neuronal-level processes result in brain volume increases and

gray matter changes (Giedd et al., 2009; Hedman, van Haren, Schnack,

Kahn, & Hulshoff Pol, 2012; Lenroot & Giedd, 2006; Mills & Tamnes,

2014). These anatomical changes are accompanied by changes in

brain function as reflected in electrophysiological brain activity. One

of the most striking features is the change in oscillatory patterns in
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the electroencephalogram (EEG) (Niedermeyer & Lopes Da Silva,

2005; Smit et al., 2012). During childhood, temporal and posterior

theta rhythm (4–7 Hz) dominates (Benniger, Matthis, & Scheffner,

1984; Puligheddu et al., 2005), but strongly decreases over the years.

The alpha rhythm increases in frequency from 8 Hz in childhood to

10 Hz in adolescence (Smit et al., 2012). Maturation of alpha rhythms

begins in posterior regions and ends in anterior regions while the beta

frequency (12–30 Hz) matures from central to lateral and finally to

frontal regions (Barriga-Paulino, Flores, & Gomez, 2011; Benniger

et al., 1984; Bresnahan, Anderson, & Barry, 1999; Gasser, Jennen-

Steinmetz, Sroka, Verleger, & Mocks, 1988; Gasser, Verleger,

Bächer, & Sroka, 1988; Matousek & Petersen, 1973a, 1973b; Nieder-

meyer & Lopes Da Silva, 2005).

During maturation, children and adolescents show marked devel-

opment of behavioral skills and cognition (Mills & Tamnes, 2014; Wal-

hovd, Tamnes, & Fjell, 2014). Interestingly, they also show large

differences in developmental speed. (Fischer & Silvern, 1985; Philip

Shaw et al., 2006). One of the challenges of neurodevelopmental

research is to investigate how these differences in behavioral develop-

ment can be explained by underlying changes in neural function

(Durston & Casey, 2006). Several studies have attempted to create

measures of brain maturation by using brain imaging data for predict-

ing calendar age—often using machine learning. These studies have

largely focused on brain anatomy derived from magnetic resonance

imaging (MRI). For example, Franke, Luders, May, Wilke, and Gaser

(2012) computed the so-called brain age in children and adolescents

and obtained an average prediction error of 1.1 years (defined as the

average absolute difference between the subjects' ages and the ages

estimated by the machine learning model. Brown et al. (2012) pre-

dicted calendar age using the multidimensional nature of brain anat-

omy. At age 3, they obtained an average prediction error of

0.66 years. The prediction error increased with age until an average of

1.42 years at age 20.

These studies show that anatomical brain maturation in childhood

and adolescence can be estimated using expensive MRI scanning,

which may result in limited availability. By contrast, EEG is inexpen-

sive, and EEG units can be flexibly deployed in the field including edu-

cational and medical institutions. Moreover, the brain activity

measured with EEG is known to show large developmental changes

within the critical developmental periods of school-aged children

(e.g., Smit et al., 2012). Our aim is to investigate whether EEG can be

used to estimate the participants' age with the same level of accuracy

as obtained with MRI. To this end, we applied machine learning with

cross-validation to predict age from resting-state EEG in a large sam-

ple of children and adolescents (5–18 years).

The previous studies also have shown that predicting calendar

age is not perfect, and always results in (sometimes substantial) resid-

ual error. It has been suggested that this error is a biomarker of brain

maturation (or brain age, Franke et al., 2012), since it indicates that

some participants have brain patterns that are more appropriate for a

different age than their own. Moreover, it has been suggested that

the estimated brain maturation reflects the behavioral changes

observed at an individual level, or correlates with neurodevelopmental

disorders. However, this is arguably only the case if the prediction

error is stable, and is not the result of model misspecification or

measurement noise. Our second aim was therefore to use longitudinal

data present in our large EEG databases to establish the relatively lon-

ger term (>1 year) stability of the prediction error.

As a final aim, we investigated the genetic etiology of the EEG-

based predicted age. If the prediction error is stable (i.e., some sub-

jects show systematic overestimation or underestimation of calendar

age), and if this is to be predictive of behavioral outcomes that are

known to be heritable—such as the reaching of cognitive milestones

or neurodevelopmental disorders like Attention Deficit Hyperactivity

Disorder (ADHD)—then the age-prediction error should also be herita-

ble (Derks et al., 2008; de Geus, 2010; Philip Shaw et al., 2006; Smit,

De Geus, Boersma, Boomsma, & Stam, 2016). Our final aim was there-

fore to assess the heritability of age-prediction error by using longitu-

dinal twin EEG data sets of children and adolescents (Boomsma,

Busjahn, & Peltonen, 2002).

2 | METHODS

2.1 | Participants and procedure

In this study, two large developmental twin-family data sets with EEG

recordings were used (see Table S2, Supporting Information for

details). The first data set was from the NTR (N = 836) collected as

part of a study into the genetics of brain development and cognition

(Boomsma et al., 2002). The EEG recordings were obtained in four

waves divided into two groups. The first group of participants was

measured at ages 5 and 7 and a different group of participants at ages

16 and 18 (van Beijsterveldt et al., 2013). The second data set con-

sisted of participants taking part in a longitudinal study of Genetics,

Neurocognition and Adolescence Substance Abuse (GNASA) of

Washington University in St. Louis (WUSTL), and contained measure-

ment waves at 12, 14, and 16 years (N = 621).

Ethical permission for the NTR study was obtained from Medisch

Ethische Toetsingscommissie of the VUmc. All participants (and par-

ents/guardians for participants under 18) were informed about the

nature of the study and were invited by letter to participate. Agree-

ment to participate was obtained in writing. The GNASA study was

approved by the human studies committee at the Washington Univer-

sity School of Medicine. A written informed assent was obtained from

all participants, and a written informed consent was obtained from

their parents.

2.2 | EEG acquisition

A detailed procedure of NTR EEG data recording is described else-

where (Smit, Posthuma, Boomsma, & Geus, 2005; Van Baal, de

Geus, & Boomsma, 1996). NTR EEG data were recorded with tin elec-

trodes placed according to 14 channels of the 10–20 system and con-

nected to a Nihon Kohden PV-441A polygraph with time constant 5 s

(corresponding to a 0.03 Hz high-pass filter) and low-pass of 35 Hz,

digitized at 250 Hz using an in-house built 12-bit A/D converter

board and stored for offline analysis. Leads were Fp1, Fp2, F7, F3, F4,

F8, C3, C4, T5, P3, P4, T6, O1, O2, and bipolar horizontal and vertical

electrooculographic (EOG) derivations. Electrode impedance was kept
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below 10 kΩ. All EEG signals were measured against physically con-

nected earlobe electrodes with high impedance preamplifiers follow-

ing Pivik et al. (1993). Participants were seated in a dimly lit and sound

attenuated booth for recording. They were instructed to close their

eyes. Acquisition lasted for three periods of 1 min. Between recording

epochs, the door was opened and participants were checked not to

have fallen asleep. Acquisition was extended when data was observed

to have excessive artifact or sleep EEG.

The GNASA sample EEG data were recorded using Compumedics-

Neuroscan SynAmps2 system from 30 scalp locations according to the

extended 10–20 system using an elastic cap with Ag/AgCl electrodes

and a ground electrode on the forehead, with high- and low-pass filters

set at 0.05 and 100 Hz respectively on a Neuroscan SynAmps recording

system. The left mastoid served as a reference during recording, and the

right mastoid was recorded as a separate channel. Averaged mastoid ref-

erence was computed offline. Participants were recorded for 1 min

periods with alternating eyes closed and eyes open for a total of 4 min.

The data for eyes-closed were extracted from the continuous recordings.

2.3 | EEG processing

In the present study, a set of 12 channels overlapping in both NTR

and WUSTL data sets was used: F3/4/7/8, C3/4, P3/4/7/8, and

O1/2. All EEG signals were filtered between 1 and 30 Hz, individually

inspected, and periods with artifacts were removed. Channels were

excluded if artifact removal reduced the length of the channel signal

to below the minimum total length of 90 s. EOG artifacts were

removed using independent component analysis (ICA) (Delorme &

Makeig, 2004), and the cleaned EEG data were partitioned into 2s

epochs. Next, the signals were converted from the time domain into

the frequency domain using fast Fourier transformation. The resulting

power spectrum was divided into bins of 1 Hz, ranging from 1–24 Hz

(24 bins).

GNASA and NTR samples used different apparatus and acquisi-

tion parameters (specifically, the use of different time constants and

hardware low-pass filters during recording), which could lead to age-

correlated differences in power scores which could be capitalized by

the machine learning algorithms for classification. We expected these

spurious effects to be minimal, as the largest age range recordings

(NTR childhood and adolescents, age range 5–18 years) are the most

informative for the machine learning algorithms, and these recordings

were made on the same apparatus. Nevertheless, we removed any

remaining apparatus effects by removing power differences between

the GNASA and NTR. Since apparatus was also confounded with age,

we decided to find age-matched pairs of individuals in the GNASA

and WUSTL data sets (N = 30 each, mean age = 16.3). PSDs were

obtained for each channel, and the difference obtained between

GNASA and WUSTL. These differences were then averaged across

channels, since effects in apparatus were not expected to change

between channels with the same settings. The averaged difference

was used to correct the WUSTL power values for each 1 Hz power

bin. The results were not critically affected by the removal of the

apparatus/cohort effect; however, MAE increased by approximately

0.10 years. Figure S1 shows the average power spectra for these par-

ticipants (NTR vs. GNASA). The corrected power spectral densities for

representative leads (F3 and O2) and for each wave are provided in

Figure S2, Supporting Information. All subsequent analyses used the

corrected power spectra.

2.4 | Machine learning analyses

To estimate brain maturational level, the three most common machine

learning algorithms in previous studies were applied (see Table S1);

random forest (RF), support vector machine (SVM), and relevance vec-

tor machine (RVM) using power in 1 Hz wide bins from 1 to 24 Hz, as

input features to the machine learning models. For both cohorts, each

bin was corrected for sex difference by subtracting the difference

from the female group to match the males for each power bin.

2.4.1 | Random forest

RF is one of the most popular machine learning methods for classifica-

tion and regression (Breiman, 2001). RF creates a large number of

decision trees using various bootstrapped subsamples of the data and

features, a so-called RF. To classify a new data vector based on attri-

butes, each tree gives a classification and the tree “votes” for that

class. The forest chooses the classification having the most votes.

The regression extension of RF works similarly, but additionally

assigns a value for the outcome variable whenever a decision falls

below or under a certain threshold. RF improves the predictive accu-

racy over standard regression in cross-validation, controls for overfit-

ting, and naturally allows for interactions between the features. In this

study, the number of trees was fixed at 500 trees. The number of pre-

dictors was set to 40. None of these numbers were critical from 500+

trees and ~15+ predictors. Below these values, variability in prediction

started to appear.

2.4.2 | Support vector machine

In classification SVM, the feature data points are projected on a high-

dimensional space. The classification groups are then separated using

a hyperplane with shared hyperparameters; variables such as α, which

control the distribution of model parameters (Vapnik, 1998). The

hyperplane is formed by the so-called support vectors, which are data

points that are highly informative on the separation between classes,

and close to the decision boundary. This supervised method aims to

find the hyperplane that provides the largest margin between data

points in the support vectors that fall into different classes. SVM has

become an important classifier over recent years.

2.4.3 | Relevance vector machine

RVM is an extension of SVM (Tipping, 2000; Vapnik, 1998). RVM uti-

lizes a Bayesian approach to increase sparseness in the prediction.

The approach aids machine learning with highly correlated predictors

(as is likely to be the case in EEG data.) RVM uses a probabilistic mea-

sure to define the separation space; it imposes an explicit zero-mean

Gaussian prior. The relevance vectors are formed by samples appear-

ing to be more representative of the classes, which are located away

from the decision boundary of the classifier, whereas SVM typically

uses the samples close to the decision boundary as so-called support

vectors. The key difference in RVM compared to SVM is that a sepa-

rate hyperparameter is introduced for each of the parameters, instead
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of a single shared hyperparameter. When the evidence concerning

these hyperparameters is maximized, a significant proportion of them

go to infinity and play no role in the prediction of the model (Bishop,

2006). Therefore, the RVM is a sparse classifier as the decision func-

tion depends on fewer input data that a comparable SVM. This spar-

sity may lead to a faster performance on training data and results of

more generalizable results by decreasing the overfitting, which can

reduce error during cross-validation.

2.4.4 | Validation, classification, and accuracy measures

The performance of the methods was assessed in different ways. All

prediction performance measures were estimated using sixfold cross-

validation. In cross-validation, all data are iteratively split into a train-

ing and a testing set. Because of the complex familial (twin) depen-

dence in the input data sets, we first reduced the data set by selecting

a single person from each family to avoid family relations between

participants in the training and testing data sets. Next, sixfold cross-

validation was applied on the reduced set with each time the regres-

sion RVM and RF performed on the test set. Note that we did not use

the out-of-bag option for RF to maximize comparability with the RVM

approach. We then repeated this procedure 12 times for a different

set of family members, again selecting only a single person from each

family. Finally, all available prediction values were averaged.

Prediction accuracy was determined in several ways. First, we used

mean absolute error, defined simply as the sum of the prediction errors

divided by the number of recordings/measurements. Next, we assessed

the wave-by-wave prediction accuracy, that is, we compared the

median age to median predicted age per wave (four waves for NTR;

three waves for GNASA). This method allows individual age prediction

to systematically deviate from actual age without penalty, only asses-

sing the prediction error of the wave medians compared to median

actual age. Finally, we assessed longitudinal stability (correlation

between waves) of the predicted age. Stability was assessed as the cor-

relation between the prediction errors (estimated minus actual age) of

subjects at baseline with their own prediction error at follow-up. Finally,

classification accuracy was assessed for childhood versus puberty/ado-

lescence waves of the NTR data set (cutoff age of 10 years).

To assess the heritability of the age-prediction errors, we used

structural equation modeling (SEM) implemented in R package

OpenMx (Boker et al., 2011). The relative contribution of genetic and

environmental effects to the total trait variance can be estimated by

weighing the contribution of known levels of resemblance to the cor-

relational structure between family members (D. Boomsma, Busjahn,

& Peltonen, 2002; Neale and Cardon, 1992). Specifically, additive

genetic effects (A) are correlated 1 between monozygotic twin pairs

(mz), and on average 0.5 between dizygotic (dz) twins and siblings. Large

contributions of additive genetic effects (A), therefore, result in observed

twin/sibling correlations close to these levels (rMZ = 1, rDZ = 0.5). Non-

additive genetic effects (D)—effects of genetic dominance or epigenetic

effects—are correlated 1 for MZ twins and 0.25 for (rMZ = 1, rDZ = 0.25).

Common environmental effects (C)—such as the effects of rearing

environment—are shared among all family members (rMZ = 1, rDZ = 1).

Large contributions of common environmental effects (C) to the trait

variance will result in high correlations equal for MZ and DZ/sibling cor-

relations. Unique environmental effects (E) are the residual variance that

cannot be explained by the familial resemblance (A or C). For twin data,

unique environmental effects (E) largely reflect the variance not

explained by the MZ twin correlation (1-rMZ). Admixtures of these

effects will result in specific correlation patterns based on summing of

each effect's theoretical twin/sibling correlations weighted by the con-

tribution of that effect. SEM iteratively searches through these relative

contributions comparing the estimated and actual correlations, finishing

at the maximally likely solution.

Note that in the current twin design, the contributions of C and D

effects are collinear and cannot be estimated simultaneously. The

Akaike information criterion was used to decide which variance com-

ponent (D or C) was used. We fitted ADE or ACE models to the data

to estimate the relative proportions of A, C or D, and E effects on the

age-prediction error of the participants. The significance of the effects

was determined by fixing the estimated contribution of the effect to

zero. Comparing the models with and without the effect results in a

difference in likelihood of the models. Twice the difference in likeli-

hood is approximately chi-square distributed with the reduction in

free parameters as the degrees of freedom. From this p-values are

obtained with the number of parameters dropped as degrees of free-

dom (1 df ). We first tested the significance of the D or C effect. If this

effect could be dropped, we established significance of heritability

(A) by comparing the fit of a model with AE variance components

against a model with only E.

3 | RESULTS

3.1 | Machine learning prediction performance

SVM regression did not perform well in comparison to both RF and

RVM on all criteria and was not pursued further. In the full age range

from childhood into adolescence, application of RF resulted in the

smaller MAE of 1.22 years compared to RVM yielding an MAE of

TABLE 1 Classification childhood versus puberty/adolescence

Type of classification Child Adolescence % of correct classification Chi-square p

RF

Correct 736 1,768 93.9 >100 <<.001

Incorrect 115 48

RVM

Correct 748 1,792 95.2 >100 <<.001

Incorrect 91 36

RF = random forest; RVM = relevance vector machine.
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1.46 years. Both these methods were able to classify childhood versus

adolescence of NTR participants well (93.9% for RF, 95.2% for RVM) (see

Table 1). Predicted-age wave medians were plotted against the actual age

medians for all seven waves (wave ages 5, 7, 16, and 18 of NTR data and

ages 12, 14, and 16 of WUSTL data) (see Figure 1, red [NTR] and green

[WUSTL] dots indicates the median predicted against median actual age).

The figures reveal that RF is not able to extrapolate beyond the minimum

(4.9 years) and maximum actual age (18.5 years), resulting in bounded

prediction estimates as evidenced from the very small lower error bar at

age 5 and upper error bar at age 18. This phenomenon may have reduced

the prediction error for RF compared to RVM, therefore, the lower MAE

for RF may not reflect real prediction accuracy,

A better criterion for prediction accuracy may be to look at wave

centroids (i.e., average prediction age compared to average age within

a wave of subjects). These wave centroids showed more error in RF

(average absolute error = 0.503) than in RVM (average absolute

error = 0.363). The latter showed almost perfect overlap with the per-

fect prediction line.

3.2 | Stability of age prediction error

For each participant, we calculated the age-prediction error as the

deviation between RVM or RF estimation and actual age (see Table 2).

We then correlated these between consecutive time-points across

longitudinal measurements. Prediction error stability across time was

moderate to high (RF: 0.54 < r < 0.74; RVM: 0.53 < r < 0.67).

3.3 | Heritability of age prediction error

Age prediction errors from the RVM predictions were entered into

univariate SEMs with age and sex covariates. Common environmental

(C) and nonadditive/dominant genetic effects (D) were not significant

for any of the models (p > .080), and were subsequently dropped. The

best fitting models fitted only additive genetic (A) and unique environ-

mental (E) effects. Heritability (h2) is then defined as the proportion of

variance explained by A to the total variance (A + E). For most waves,

h2 was substantial (h2 > 50%) (see Table 3). For NTR age 18, the heri-

tability was moderate (h2 = 42.7%). All heritabilities were highly signif-

icant (p < .001).

3.4 | Genetic correlations across waves

We calculated the genetic correlations across time points for consecu-

tive waves with sample overlap. These results are shown in Table 4.

The results show that the genetic overlap of the heritable variance of

the prediction error is very substantial (rG > 0.77), but significantly dif-

ferent from unity.

3.5 | Contributing features in RF

In order to investigate the contribution of each feature to the predic-

tive model, we performed analysis of feature importance using the RF

regression only, because the random feature selection during each

regression tree allows each feature to obtain a feature importance

score. The lack of randomizing feature in RVM and the high collinear-

ity will obscure the importance of some features in RVM, even if they

are nearly as good in predicting age as the highly collinear power

values at nearby electrodes and/or nearby frequencies.

Figure 2 shows the log-transformed feature importance averaged

across different brain regions. The most contributing frequencies were

identified at lower frequencies (delta). Other contributing frequencies

were lower alpha, which changed in power but also reflected

increased alpha peak frequency (see Figure S2). In addition, beta

FIGURE 1 Predicted age medians plotted against actual age medians

for each of the seven age groups (NTR; age 5 (n = 401,) 7 (n = 383),
16 (n = 426), and 18 (n = 368); GNASA; age 12 (n = 343),
14 (n = 425), and 16 (n = 294) of the relevance vector machine (left)
and random forest (right) algorithms. Error bars represent P75 and
P25 quartiles. Wave centroids in red for NTR and green for GNASA
[Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Stability of age prediction error, that is, correlation between prediction error at baseline and prediction error at follow-up (95% CI)

NTR (95% CI) GNASA (95% CI)

Age range 5–7 16–18 12–14 14–16

RF 0.54 (0.47, 0.62) 0.57 (0.50, 0.65) 0.73 (0.68, 0.80) 0.74 (0.61, 0.75)

RVM 0.57 (0.48, 0.63) 0.53 (0.47, 0.62) 0.66 (0.60, 0.74) 0.67 (0.54, 0.70)

CI = confidence interval; RF = random forest; RVM = relevance vector machine.

TABLE 3 Heritability (h2) with CI of age prediction error

Age in years h2 (%) (95% CI) p

NTR

5 50.8 (37.7, 66.6) <.001

7 62.8 (53.3, 74.5) <.001

16 52.8 (39.8, 65.2) <.001

18 42.7 (28.9, 60.4) <.001

GNASA

12 78.9 (68.7, 85.6) <.001

14 78.8 (70.8, 84.6) <.001

16 77.5 (64.5, 84.0) <.001

CI = confidence interval; GNASA = Genetics, Neurocognition and Adoles-
cence Substance Abuse; SEMs = structural equation models.
Note. Heritability was estimated in with additive genetic (A) and unique
environmental effects (E). Age and sex were used as covariates. Signifi-
cance was determined by likelihood ratio test with 1 df.
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frequency power contributed to age predictions. For these frequen-

cies, topographic plots of the feature importance from RF models for

these frequencies are shown in Figure 3. These indicate that the best

regression was obtained with central delta, frontal lower alpha, parie-

tal alpha, frontal lower beta, and occipital upper beta. These observa-

tions are largely consistent with the known developmental patterns in

these regions (Bresnahan et al., 1999; Matousek & Petersen, 1973a,

1973b).

4 | DISCUSSION

The results showed that brain maturational level can be estimated

based on 3 min resting-state EEG recordings with high accuracy.

Comparison of our outcomes based on EEG with age estimation from

MRI revealed comparable results. Childhood versus puberty/adoles-

cent classification accuracy in MRI studies ranged from 75 to 95%

(Franke et al., 2012). With EEG, we obtained classification accuracy of

childhood versus puberty/adolescence that was even higher (>95%

for RVM). The mean prediction error of 1.22 for RF and 1.46 for RVM

are only slightly higher than the lowest prediction errors estimates

obtained in MRI studies (1.1 years) in comparable age groups. The

analysis of feature importance in RF showed that classification

depended mostly on low-frequency power; further notable contribu-

tors to the prediction were temporal theta, frontal lower alpha waves.

The RVM and RF machine learning methods were comparable in

their results. One limitation of RF is that it does not give fully

continuous predicted ages, and cannot extrapolate outside the input

age range. RF prediction performance may have been artificially

decreased by this capping of the output values. RVM, on the other

hand, does extrapolate, which resulted in higher mean prediction

error, but also yielded illogical age estimates (even below zero for two

participants), suggesting that the remaining age-prediction error has

variability that cannot logically be attributed to brain maturation. On

the other hand, RVM did provide the best fit of age-group median

centroids, outperforming RF. In our view, these results suggest that

sparser models such as the RVM are superior for age prediction using

EEG power, even though remaining error variance is likely to exist.

The underestimation or overestimation relative to actual age indi-

cates that some children and adolescents exhibit EEG brain activity

patterns more like those of younger or older ages. This study is the

first to show that this prediction error was systematic, and moderately

to highly stable over a period of 1.5 years (0.54 < r < 0.74 for RF and

0.53 < r < 0.67 for RVM). In addition, age-prediction error was to a

large extent heritable, ranging from 43 to 79%. No significant effects

of shared environment or nonadditive genetic effects—that is, the

interactions among alleles both within and across gene loci—were

found, suggesting that the systematic deviation is largely genetically

determined, but with substantial unique environmental influences that

include nonstable error estimates. By and large, the same genetic

influences determined age-prediction error in consecutive age groups;

genetic correlations ranged from 0.77 to 0.89. This further adds to the

stable character of the age-prediction error.

The stability and heritability scores of the GNASA sample were

significantly higher than those of the NTR sample as evidenced from

the 95% confidence intervals. This we explain by the fact that the

NTR sample has the largest age range and were from an identical

FIGURE 2 The feature importance scores were averaged across the

random forest runs after log-transformation. The feature importance
scores were then averaged for different brain regions, grand average
in black [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Topographic plots for the log-transformed random forest (RF) feature importance at the standard frequencies (delta 1–3 Hz, theta

4–7 Hz, lower alpha 8–9 Hz, upper alpha 10–11 Hz, lower beta 14–18 Hz, and upper beta 20–25 Hz). The plots reveal that central delta,
temporal theta, frontal lower alpha, parietal alpha, frontal lower beta, and occipital upper beta are the most informative features for age
classification. Note, that feature importance is plotted in relative strength [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Correlation matrix: Genetic correlation and 95% CI

between prediction errors at consecutive time points

rG (95% CI)

RF

Age 5–7 0.91 (0.75, 1.00)

Age 16–18 0.92 (0.70, 1.00)

Age 12–14 0.83 (0.75, 0.90)

Age 14–16 0.81 (0.72, 0.88)

RVM

Age 5–7 0.86 (0.75, 1.00)

Age 16–18 0.87 (0.69, 1.00)

Age 12–14 0.77 (0.65, 0.87)

Age 14–16 0.80 (0.68, 0.91)

CI = confidence interval; RF = random forest; RVM = relevance vector
machine.

1924 VANDENBOSCH ET AL.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


population as well as identically measured. The RF and RVM models

will largely be shaped by this cohort's extensive age range. Any pop-

ulation differences or subtle apparatus or measurement effects

between the NTR and GNASA cohorts will cause the model to be

slightly suboptimal for the GNASA sample with a more restricted

age range. Applying such a suboptimal model may result in several

effects, thus including additional signal to the predicted age that

depends in part on heritable traits, viz., power in specific frequen-

cies. However, GNASA should in this case also show larger predic-

tion error. This was, however, not the case. These differences may

therefore reflect true population or sample differences between the

cohorts.

Although it has yet to be determined whether these stable and

heritable deviations are predictive of behavioral traits and/or neuro-

developmental disorders, the fact that they do not fully reflect unsta-

ble variance due to measurement noise or model misspecification

indicates that prediction error may be a good candidate for predicting

stable individual differences in neurodevelopment, cognition, and neu-

rodevelopmental disorders. Previous research has suggested that

scoring high or low on selected behavioral phenotypes (viz., IQ and

ADHD) are associated with slower or faster brain-maturation trajecto-

ries (P. Shaw et al., 2006, Shaw et al., 2007, Shaw et al., 2012; Sowell,

2004). These studies were the first to suggest that brain maturational

level estimated from brain parameters is a property correlated with

behavioral outcomes. These neurodevelopmental phenotypes are

therefore prime candidates to link to the EEG-based predicted age.

Moreover, attention problems and IQ are to a large extent genetically

determined (Derks et al., 2008; Posthuma, Mulder, Boomsma, & De

Geus, 2002).

Overall, our results show that age predictions from low-cost

EEG recordings can be performed with a precision comparable to

predictions obtained from MRI in an age range from childhood to

adolescence. In addition, we have shown that the prediction error is

not random noise, but moderately stable over a period of about

1.5 years, and to a large extent influenced by the genetic back-

ground of the subject. These findings clear the way for EEG-based

age prediction as a marker of brain maturation and investigation of

its relation with (genetically mediated) neurodevelopmental pheno-

types, such as cognitive performance and ADHD. In clinical practice,

age prediction—and especially the systematic deviation from actual

age—may prove to become a valuable biomarker for neuropsychiat-

ric disorders related to abnormal brain development, or normal

behavioral outcomes. In parallel with the epigenetic clock (Horvath,

2013; Jones, Goodman, & Kobor, 2015; Jylhävä, Pedersen, & Hägg,

2017), EEG-estimated brain maturation might become a tool that

address questions concerning developmental trajectories. Some

studies have shown a relation between brain maturational level and

behavioral phenotypes (ADHD, impulsivity, and IQ; Shaw et al.,

2007, 2012; Yang et al., 2015). These studies showed that ADHD

and superior IQ both were related to a delay in maturation.

Future studies may show that this relation can also be captured by

EEG-estimated brain maturation, and could therefore be an impor-

tant additional predictor of scholastic achievement and attention

problems.
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