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Metabolomics is the comprehensive study of metabolites, which are the substrates, intermediate, and end
products of cellular metabolism. The heritability of the concentrations of circulating metabolites bears
relevance for evaluating their suitability as biomarkers for disease. We report aspects of familial resem-
blance for the concentrations in human serum of more than 100 metabolites, measured using a targeted
metabolomics platform. Age- and sex-corrected monozygotic twin correlations, midparent–offspring re-
gression coefficients, and spouse correlations in subjects from two independent cohorts (Netherlands Twin
Register and Leiden Longevity Study) were estimated for each metabolite. In the Netherlands Twin Register
subjects, who were largely fasting, we found significant monozygotic twin correlations for 121 out of 123
metabolites. Heritability was confirmed by midparent–offspring regression. For most detected metabolites,
the correlations between spouses were considerably lower than those between twins, indicating a contribu-
tion of genetic effects to familial resemblance. Remarkably high heritability was observed for free carnitine
(monozygotic twin correlation 0.66), for the amino acids serine (monozygotic twin correlation 0.77) and
threonine (monozygotic twin correlation 0.64), and for phosphatidylcholine acyl-alkyl C40:3 (monozygotic
twin correlation 0.77). For octenoylcarnitine, a consistent point estimate of approximately 0.50 was found
for the spouse correlations in the two cohorts as well as for the monozygotic twin correlation, suggesting
that familiality for this metabolite is explained by shared environment. We conclude that for the majority of
metabolites targeted by the used metabolomics platform, the familial resemblance of serum concentrations
is largely genetic. Our results contribute to the knowledge of the heritability of fasting serum metabolite
concentrations, which is relevant for biomarker research.

� Keywords: monozygotic twins, spouse correlations, midparent–offspring resemblance, Biocrates
platform

Metabolites are the small molecules that represent the
substrates, intermediates, or end products of cellular
metabolism. There is considerable interest in the famil-
ial clustering of circulating metabolite concentrations, be-
cause this is informative of the likelihood that a particular
metabolite may serve as a biomarker for disease (Nichol-
son et al., 2011). For instance, if the level of a particular
metabolite is completely heritable, then it is unlikely that
this metabolite will be suitable as a biomarker for diseases
that are primarily driven by environmental factors. In addi-
tion, the assessment of the heritability of metabolite levels

through modeling of family data may help to explain the
heritability of metabolic diseases characterized by altered
metabolite levels (Shah et al., 2009). The heritability of
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metabolite levels is also of interest because it harbors the
contribution of all genetic variants that influence individ-
ual differences in metabolite concentration (Kettunen et al.,
2012; Nicholson et al., 2011) and thus sets an upper limit
to the contribution of genetic variants.

In this study, we address several aspects of familial re-
semblance for metabolite concentrations as measured using
metabolomics techniques in human serum. Metabolomics
is the study of ideally all metabolites (small molecules, typ-
ically <1 kDa) as can be found in a specimen, tissue, or-
gan, or complete organism (Dunn et al., 2011). The aim of
metabolomics is to obtain a holistic overview (snapshot) of
cellular metabolism both quantitatively and qualitatively.
With respect to other types of ‘omics’ such as transcrip-
tomics, metabolomics is particularly interesting because
metabolites are relatively close to the observable pheno-
type (e.g., disease). On the other hand, metabolites are
still sufficiently close to the genome to provide enhanced
statistical power to detect genetic effects on a phenotype
compared with directly linking genotype and phenotype it-
self (Gieger et al., 2008; Illig et al., 2010). Metabolomics
uses analytical chemical techniques such as proton nu-
clear magnetic resonance spectroscopy (1H NMR) or mass
spectrometry to obtain information about the identity and
abundance of metabolites in a particular sample at much
higher resolution (e.g., about the individual triglycerides)
than would be possible using classical clinical chemistry
measures (such as enzymatically determined total triglyc-
eride level). Metabolomics analyses can be classified into tar-
geted and untargeted (global) approaches (Griffiths et al.,
2010). The targeted approaches are used to obtain good
quantification of known metabolites, whereas the global
approaches are used to obtain a broad overview of all
metabolites (both known and unknown) that are present in
a particular sample. However, given the often widely differ-
ing physicochemical characteristics of the metabolites from
different metabolite classes that are present in a biological
sample, no single analytical technique is able to detect and
quantify all metabolites. In the current article, we describe
various aspects of familiality for serum metabolite con-
centrations as determined using a targeted metabolomics
platform that combines sample preprocessing using the
Biocrates AbsoluteIDQ p150 kit (Biocrates Life Sciences
AG, Innsbruck, Austria) with metabolite detection by tan-
dem mass spectrometry. The Biocrates sample preparation
kit allows simultaneous quantification of 163 metabolites
belonging to various metabolite classes that are part of key
metabolic pathways (for more information, see e.g., Berg
et al., 2012; Vance & Vance, 2008; Zhai et al., 2010). In brief,
acylcarnitines are acyl esters of carnitine, which allows the
transport of fatty acids over the mitochondrial membrane
for beta-oxidation. Amino acids are building blocks for pro-
tein synthesis and several amino acids can also be used as
energy sources during gluconeogenesis. The phosphatidyl-
cholines are important building blocks of cell membranes

and of the outer membrane of lipoprotein particles, as well
as the precursors of lysophosphatidylcholines and sphin-
gomyelins. Lysophosphatidylcholines in blood are formed
from phosphatidylcholines by the liver enzyme lecithin–
cholesterol transferase. These pro-inflammatory lipids are
found in oxidized low-density lipoprotein (LDL) particles
(Wu et al., 1998). Sphingomyelins are very long-chain struc-
tural analogues of phosphatidylcholines that are important
for signal transduction. Finally, the Biocrates AbsoluteIDQ
p150 kit allows for the quantification of hexose, which is
�90–95% glucose (Goek et al., 2012) and this is an impor-
tant source of energy for the body. Indeed, metabolites as
detected using this sample preprocessing kit have been asso-
ciated previously with various diseases and other conditions
(see, e.g., Floegel et al., 2013; He et al., 2012; Jourdan et al.,
2012; Mittelstrass et al., 2011; Wang-Sattler et al., 2012; Xu
et al., 2013; Yu et al., 2012).

Several authors report familial resemblance for metabo-
lites detected in blood using metabolomics platforms. For
instance, Menni et al. computed monozygotic (MZ) and
dizygotic (DZ) twin correlations for 11 (four acylcarnitines,
six phosphatidylcholines, and one sphingomyelin) and es-
timated heritability for nine serum metabolites that showed
significant association with dietary variables in female twins
from the TwinsUK cohort (Menni et al., 2013). These au-
thors used as the basis for their study metabolomics data
obtained using the same Biocrates sample preprocessing
kit as we do in the current study, and also employed mass
spectrometry to detect metabolites. Twins from the Twins-
UK cohort were also included in the study by Nicholson
et al. (2011), who employed a longitudinal study design to
estimate familiality (in their study, heritability plus shared
environmental effects) for metabolites as detected in plasma
by 1H NMR. Alul et al. (2013) computed the heritability of
metabolite concentrations as determined in dried blood
spots obtained from heel stick in neonatal MZ and DZ
twins. The authors included hormones, enzymes, acylcar-
nitines, and amino acids (47 analytes in total) as detected in
routine newborn screening in their study; the amino acids
and acylcarnitines were measured by a mass spectrometry-
based platform. Next to the heritability of the individual
biomolecules, these authors also report heritability for eight
amino acid ratios and nine acylcarnitine ratios. In families
burdened with premature cardiovascular disease, Shah et al.
(2009) performed heritability analysis of 66 metabolites (in-
cluding 37 acylcarnitines, 15 amino acids, 9 free fatty acids,
conventional analytes, and ketones) detected in plasma us-
ing a targeted mass spectrometry-based metabolomics plat-
form. In the context of a large genome-wide association
study for metabolite levels as determined in serum by 1H
NMR, MZ and DZ twin correlations, and heritability were
computed for 216 metabolic variables (measured or com-
putationally derived ‘single’ metabolites, or selected ratios
among these single metabolites; Kettunen et al., 2012; van
Dongen et al., 2012).
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Of all metabolites targeted by the Biocrates sample pre-
processing kit used in the current study, the familiality of
concentrations in blood has been reported in particular for
amino acids and acylcarnitines. However, the lipids (sphin-
gomyelins, phosphatidylcholines, and lysophosphatidyl-
cholines) that are targeted by the Biocrates kit are relatively
underrepresented in previous studies. Here, we describe as-
pects of familiality for circulating metabolite concentrations
that have not yet been addressed in previous metabolomics-
based studies. First, we present MZ twin correlations for
all metabolites detected in subjects originating from the
Netherlands Twin Register (NTR), who were mostly fast-
ing. The resemblance of MZ twins, expressed for example
in correlations, gives an upper limit for the heritability of
human traits (Falconer & Mackay, 1996). If there is no
shared environmental influence, or assortative mating in
the parental generations, the correlation in MZ pairs is the
most precise estimate of heritability.

Next, we estimated midparent–offspring regression co-
efficients for all metabolites detected in serum samples from
a small subgroup of NTR participants. If there is significant
assortative mating, the midparent–offspring regression co-
efficient provides a direct estimate for the heritability of a
trait in the parental generation (Falconer & Mackay, 1996),
again as long as there is no contribution of shared environ-
ment.

Finally, we report the correlations between spouses for
all metabolites detected in NTR and in the Leiden Longevity
Study (LLS), which is a study of long-lived siblings and their
offspring. Spouse correlations have not yet been described
for metabolomics-based metabolic variables. Non-zero cor-
relation between mates (spouses) can be due to assortative
mating, spousal interaction, or due to the effect of a shared
environment (Di Castelnuovo et al., 2009; van Grootheest
et al., 2008). From a practical point of view, significant
spouse correlations suggest that interventions aiming at
reduction of metabolic risk factors should address both
members of a marital couple rather than only one of the
spouses (Di Castelnuovo et al., 2009). Significant resem-
blance for metabolite levels between spouses who share a
household may be an indication that common environment
(‘C’) contributes to familiality. Hence, in the current study,
we are able to obtain an estimate for the contribution of
C to MZ correlations by comparing MZ correlations with
spouse correlations. We further investigated the contribu-
tion of C to the familiality of metabolite levels by looking
at the effect of self-reported marriage duration on spousal
resemblance.

We find considerable MZ twin correlations for most
metabolites, and generally lower spouse correlations in
both investigated cohorts. Our findings for the MZ twin
correlations are of particular interest to obtain a bet-
ter understanding of the genetic and biochemical un-
derpinnings of individual differences observed during
fasting.

Methods

Participants

Participants included in the MZ correlation and parent–
offspring analyses, and part of the spouse pairs in this
study belong to a subgroup of NTR participants who
are included in NTR-Biobank studies (Willemsen et al.,
2010). Roughly 50% of adult NTR participants (twins, their
parents, spouses, and siblings) are part of NTR-Biobank
projects and inclusion was not based on selection of phe-
notype. Venous blood was drawn in the morning from par-
ticipants after overnight fasting. An attempt was made to
bleed fertile women on the same day (day 3) of their cycle
and women who took oral contraceptives in their pill-free
week. The zygosity of MZ twins was confirmed by DNA
markers. Data on the relationship duration of spouse pairs
at the time of blood sampling were reported in NTR ques-
tionnaires. Ethical approval was obtained from the Central
Ethics Committee on Research Involving Human Subjects
of the VU University Medical Center, Amsterdam.

Metabolomics data obtained for the calculation of
parent–offspring regression coefficients and spouse corre-
lations (total 1,372 participants from the first NTR-Biobank
project; Willemsen et al., 2010) and for computing the MZ
twin correlations (total 480 participants from the second
NTR-Biobank project; Willemsen et al., 2013) were ob-
tained in two different measurement batches. Data from
seven participants and one participant were identified as
outliers in the metabolomics data originating from the first
and second measurement batch, respectively, and excluded
from further analysis. In the remaining data from the first
batch, there were 281 complete spouse pairs who also had
data on age, sex, and fasting status, and these were all in-
cluded in the current study. Of these 281 spouse pairs, 70
pairs were also parents of one or two children. There were
10 families in which two children participated; from these
families one child was selected at random. The resulting
70 parent–offspring trios were used to estimate midparent–
offspring regression coefficients. In the metabolomics data
from the second measurement batch after outlier removal,
181 complete MZ twin pairs were available for analysis, and
these were all included in the study. Ten MZ twins were also
offspring in the parent–offspring sample.

Details of the design and recruitment procedure for
LLS have been provided elsewhere (Schoenmaker et al.,
2006; Westendorp et al., 2009). Briefly, LLS was designed
to identify phenotypic and genetic markers of longevity. To
this end, long-lived (nonagenarian) siblings from in total
421 families together with their offspring and the partners
of the offspring were recruited. The offspring were included
because these also have a higher propensity to reach old age,
and the partners were included as similarly aged controls.
In the current study, the offspring and their partners were
included. For LLS, blood samples were drawn for 266
participants after overnight fasting and for 388 non-fasting
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participants. All samples were processed within 2 hours
and the serum samples were stored at -80°C until the
time of analysis. From the 656 eligible participants with
metabolomics data, one was identified as an outlier and
was removed.

Metabolomic Measurements

The Biocrates metabolomics platform has been validated
extensively and complies with 21 CFR (Code of Federal Reg-
ulations) Part 11, indicating reproducibility within a given
error range (Gieger et al., 2008). Metabolite measurements
were carried out by flow injection analysis coupled to tan-
dem mass spectrometry (MS/MS) at the Metabolomic Facil-
ity of the Genome Analysis Centre at the Helmholtz Centre
in Munich, Germany, as described previously (Goek et al.,
2012; Illig et al., 2010; Mittelstrass et al., 2011; Römisch-
Margl et al., 2012). Assessment of metabolomics measures
was done in three batches: one for NTR parents and off-
spring, one for LLS participants, and one for the MZ twins.
Each batch had additional unrelated participants as well
and data preprocessing was done on all data.

Metabolomics Data Preprocessing

We excluded from further analysis data for metabolites with
a coefficient of variation over the measurements of a pooled
quality control sample larger than 25%, or with a median
value below the limit of detection. Outlying data points
and samples were identified as described previously (Goek
et al., 2012). Missing values were imputed using multivari-
ate imputation by chained equations as implemented in
the ‘mice’ package (Van Buuren & Groothuis-Oudshoorn,
2011) in the R statistical language and programming en-
vironment (R Core Team, 2012). The imputed values were
normalized by natural logarithm transformation. Through-
out the article, lipids detected in the study samples are
denoted as follows: acylcarnitines (Cx:y), sphingomyelins
(SMx:y) and sphingomyelin-derivatives [SM(OH)x:y]; and
glycerophospholipids (PC). Glycerophospholipids are dif-
ferentiated with respect to the presence of ester (a) and ether
(e) bonds in the glycerol moiety, where two letters (aa =
diacyl, ae = acyl–alkyl) denote that two glycerol positions
are bound to a fatty acid residue, while a single letter (a =
acyl) indicates the presence of a single fatty acid residue.
Lipid side chain composition is abbreviated as Cx:y, where
x denotes the number of carbon atoms in the side chain and
y the number of double bonds (Menni et al., 2013). The
full list of metabolites detected in subjects from each cohort
(NTR or LLS) included in the current study is provided in
the Appendix and in Supplementary Table S1.

Statistical Analysis

All analyses were carried out in R. Three measures of familial
resemblance for metabolite concentration values were stud-
ied: MZ twin correlations, midparent–offspring regression,
and spouse correlations. For all analyses, the effects of age

and sex were regressed out of the raw metabolite levels and
the residuals were used for further analysis. For the spouse
correlation analyses in the LLS cohort, fasting state was an
additional binary covariate when computing residuals. MZ
twin and spouse correlations were estimated as the Pearson
correlations between the residuals for both twins or spouses.
Parent–offspring regressions for all metabolic variables
were estimated by simple linear regression analysis of the
values for the offspring on the mean values for the parents.
A p value of .05 was adopted as the threshold for nominal
significance in this study. In the NTR MZ twins and in
the NTR and LLS spouses, the multiple testing–corrected
significance threshold was defined as (0.05/Meffli), with
Meffli being equal to the estimated number of independent
tests using the method of Li and Ji (2005). We assessed the
concordance between the three measures of familial resem-
blance that were studied as follows. For each set of analyses,
we investigated for how many metabolic variables the
95% confidence intervals of the correlation or regression
coefficients overlapped. Also, for MZ twin correlations, we
investigated how many metabolites were significant and
compared the estimates of heritability with the estimates
from midparent–offspring regression. As the number of
MZ pairs is about twice as large as the number of parent–
offspring pairs, for this comparison we adopted a liberal
multiple testing–corrected significance threshold for the
parent–offspring regressions (see the Discussion section).
We used simple linear regression analysis to estimate the
association between absolute metabolite level differences
within pairs (spouses or MZ twins) and relationship dura-
tion (for spouses) or age (for MZ twin pairs). When com-
puting the association of absolute within-spouse metabolic
variable levels with self-reported relationship duration, we
used the average of the self-reported relationship duration
values over both spouses. The classification of Robinson
et al. (1949) was adopted to categorize familiality estimates
as low (0–30%), moderate (31–60%), or high (>60%).

Results
Characteristics of participants for each subgroup are given
in Table 1. In both the NTR MZ twin sample and the NTR
parent–offspring sample, 123 metabolites passed quality
control. In the LLS spouses, 120 metabolites passed quality
control (see Table 2). A full list of all metabolites included in
each of the three groups of participants (LLS, NTR parents
and offspring, and NTR MZ twins) and their quartile values
is given in Supplementary Table S1. All NTR MZ twins were
over 18 years of age (see Table 1) with the NTR offspring
group being the youngest on average. For NTR and LLS
data, the Meffli values equaled 44 and 42, respectively.

Familial Resemblance

MZ twins. In the MZ twin group, men had higher values
for all acylcarnitines and for hexose, and for most amino
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TABLE 1

Basic Participant Characteristics

Subgroup N Age in years (mean ± SD) Minimum age Maximum age Female (%)

NTR spouses 281 pairs 59.8 ± 6.2 43 81 50
NTR parents 70 fathers and mothers 59.2 ± 6.2 43 76 50
NTR offspring 70 offspring 30.9 ± 4.6 22 42 60
NTR MZ twins 181 pairs 32.6 ± 11.5 19 68 69
LLS spouses 327 pairs 63.0 ± 6.6 39 82 50

Note: NTR: Netherlands Twin Register; LLS: Leiden Longevity Study.

TABLE 2

For All Possible Pair-Wise Combinations of Analysis Types: Numbers of Metabolites for Which the 95% Confidence Intervals Obtained
in Both Types of Analyses Overlapa

MZ correlation Parent–offspring regression Spouse correlation NTR Spouse correlation LLS

MZ correlation (123)
Parent–offspring regression 100 (123)
Spouse correlation NTR 34 122 (123)
Spouse correlation LLS 21 108 105 (120)

Note: aNumbers on the diagonal indicate the numbers of metabolites that passed quality control in each sample (NTR MZ twin pairs, NTR parent–offspring
trios, and NTR and LLS spouse pairs).

acids and lysophospatidylcholines as indicated by the nega-
tive regression coefficients for female sex when computing
residuals of metabolite levels (see Supplementary Table S2
for the point estimates). Values were lower in men for most
phosphatidylcholines and sphingomyelins. Serum values of
hexose, of all acylcarnitines and sphingomyelins and of most
amino acids, phosphatidylcholines, and lysophosphatidyl-
cholines increased with age. Significant Pearson correla-
tions between MZ twins were observed for 121 measured
metabolites (listed in the Appendix and in Supplementary
Table S2) that passed quality control. Point estimates and
95% confidence intervals for the MZ twin correlations for all
metabolites that passed quality control are given in Figure 1
and in the Appendix. Supplementary Table S2 also provides
p values for the correlations. The mean MZ twin correlation
across all metabolites was equal to 0.53 (range 0.21–0.77).
The highest correlation was observed for serine and for PC
ae C40:3 (point estimate for both metabolites equal to 0.77);
the lowest correlation was observed for histidine and for SM
C26:1 (point estimate for both metabolites equal to 0.21).

In MZ pairs, we also investigated if there was an associ-
ation of absolute within-MZ pair differences in metabolite
levels with age of the twins. Such associations would in-
dicate that MZ twins become less (or possibly more) alike
as they age. Only for PC ae C42:5 was found a nominally
significant positive association (� = 0.002; p value = .03;
df = 179, see Supplementary Table S6).

Midparent–offspring regression. Similar to the MZ twins,
in the offspring included in the parent–offspring sample,
serum values of hexose, of all acylcarnitines and sphin-
gomyelins, and of most phosphatidylcholines and lysophos-
phatidylcholines, increased with age (see Table S3; see the
results of the spouse correlation analysis in NTR for the

effects of age and sex in the parental generation). How-
ever, in contrast to the MZ twins, the concentrations of
most amino acids decreased with age in the offspring in-
cluded in the parent–offspring sample, which might be due
to the slightly different age and sex distributions in both
groups of subjects. Also, in the offspring included in the
parent–offspring sample, serum values of hexose, of most
amino acids, of most lysophosphatidylcholines, and of all
acylcarnitines were higher in males than in females. The val-
ues of almost all phosphatidylcholines and sphingomyelins
were lower in males. Point estimates and associated 95%
confidence intervals for the parent–offspring regression es-
timates for all metabolites are given in Figure 2 and in Table
S3. The mean midparent–offspring regression coefficient
across all metabolites was equal to 0.31 (range -0.13–0.85).

Spouse correlations. In the NTR spouses, in both men and
women the levels of all acylcarnitines (except C3 in male
spouses) increased with age (see Table S4). There was more
heterogeneity in the age effects among the amino acids,
lysophosphatidylcholines, and phosphatidylcholines (both
among the metabolites and between the sexes). The levels
of almost all sphingomyelins and hexose increased with age
in both males and females. In NTR, significant Pearson
correlations between the metabolite levels of spouses were
observed for 74 metabolites (listed in Table S4). The mean
spouse correlation across all metabolites was equal to 0.24
(range 0.02–0.54). Figure 3(a) displays the correlation point
estimates as well as the boundaries of the 95% confidence
intervals for the 123 metabolites that passed quality control
for NTR.

In the LLS spouses, the levels of hexose and all
acylcarnitines increased with age in both sexes (see
Table S7). Also, the levels of most amino acids except
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FIGURE 1

Monozygotic twin correlations in NTR for all 123 metabolites that passed quality control. For the explanation of metabolite names, see
the Appendix and Supplementary Table S1.

glycine, histidine, serine, threonine, and tryptophan in-
creased with age in both sexes. The levels of most phos-
phatidylcholines, lysophosphatidylcholines, and sphin-
gomyelins decreased with age. In LLS, 58 metabolites (listed
in Table S7) displayed significant spouse correlations. The
mean spouse correlation across all metabolites was equal
to 0.18 (range -0.06–0.51). Correlation point estimates and
95% confidence intervals are given for the LLS spouses in
Figure 3(b).

Comparison of Correlations in Pairs of Different Ge-
netic Relatedness

Table 2 indicates for MZ correlations, midparent–offspring
regressions, and spouse-pair correlations, how many
metabolic variables the 95% confidence intervals over-
lapped. For most pair-wise combinations of these measures,
the 95% confidence intervals overlapped for the majority of
metabolites. However, this overlap was considerably lower
between the MZ correlations and the spouse correlation
estimates in both NTR and LLS.

Association With Relationship Duration

For the majority of spouses in NTR, there were data re-
garding their self-reported relationship duration (N = 150
pairs). We assessed whether there were associations between
relationship duration and absolute within-spouse pair dif-

ferences in levels for each metabolite. At the nominal sig-
nificance level, we found indications for such association
for three single metabolites (C18:2; lysoPC a C18:2; SM
(OH) C16:1; see Supplementary Table S5) that displayed
significant spouse correlations; for all three metabolites,
the association of relationship duration with within-pair
differences was negative.

Discussion
The current study investigated familial resemblance for
serum metabolite concentrations as measured using a well-
established targeted metabolomics platform. Moderate-to-
high MZ twin correlations were observed for most metabo-
lites (mean 0.53; range 0.21–0.77), providing upper limits
of heritability. Spouse correlations in two independent co-
horts were generally lower and ranged from low to moder-
ate. Therefore, these results suggest a substantial contribu-
tion of genetic factors to individual differences in serum
metabolite concentrations. Consistent with previous re-
ports of MZ twin correlations and heritability of blood
metabolite concentrations (Alul et al., 2013; Kettunen et al.,
2012; Nicholson et al., 2011; Shah et al., 2009), there was
considerable heterogeneity in the MZ correlations across
all metabolites. We observed more variation in MZ correla-
tion estimates among the acylcarnitines, amino acids, and
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FIGURE 2

Midparent–offspring regression coefficients for all metabolites. For the explanation of metabolite names, see the Appendix and
Supplementary Table S1.

sphingomyelins compared with the lysophosphatidyl-
cholines and phosphatidylcholines.

In particular, the estimates of MZ twin correlations for
the acylcarnitines and amino acids can be compared with es-
timates of heritability obtained in previous studies for these
metabolites. Supplementary Table S8 gives the point esti-
mates for the MZ correlations together with the 95% confi-
dence intervals for all metabolites targeted by the Biocrates
AbsoluteIDQ p150 kit, along with the estimates of MZ cor-
relations (Kettunen et al., 2012; Menni et al., 2013), heri-
tability (Alul et al., 2013; Shah et al., 2009), or ‘familiality’
(Nicholson et al., 2011) (in the study by Nicholson et al.,
‘familiality’ was defined as heritability plus shared environ-
mental influences) in five previous studies that investigated
familial aspects of metabolite concentrations as determined
by metabolomics platforms. In the discussion that follows,
we will denote as ‘close’ or ‘consistent’ those point estimates
from these previous studies that are within the 95% confi-
dence interval of the MZ correlation observed in the current
work (a similar comparison was made by Nicholson et al.
in their study; Nicholson et al., 2011).

All 12 (acyl)carnitines that were included in the MZ twin
correlation analysis in our study were also included in the
metabolomic newborn screen used in the study by Alul

et al. (2013), except for C14:2 (see Supplementary Table
S8). However, this latter acylcarnitine was included in the
study by Shah and colleagues (2009), who report heritabil-
ity for in total 10 acylcarnitines for which we report MZ
correlations. In line with the findings of Alul et al., in gen-
eral we find lower heritability for medium- and long-chain
acylcarnitines (more than eight carbon atoms) compared
with the short-chain acylcarnitines. This is opposite to the
pattern in the heritability observed by Shah and colleagues
in families burdened with premature cardiovascular dis-
ease: compared with our MZ correlation estimates and the
heritability estimates observed by Alul et al., the heritability
estimates observed by Shah et al. are generally at the upper
end or (much) higher, whereas the estimates for the short-
and medium-chain species are similar or even lower. Re-
markably, for C8:1 our estimate of the MZ correlation is
(much) higher than the heritability estimates obtained by
Alul et al. and Shah et al., but close to the MZ correlation
observed by Menni et al. (2013). By comparison with the
spouse correlations in NTR for this acylcarnitine, it can be
seen that the high MZ correlations in our study might have
been due in part to a substantial contribution of shared
environment; this notion is supported by the considerably
lower DZ correlation in the study by Menni et al. (2013).
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FIGURE 3

Spouse correlations for all metabolites that passed quality control in NTR (a) and LLS (b). For the explanation of metabolite names, see
the Appendix and Supplementary Table S1.
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Aspects of familial resemblance for the amino acids thre-
onine (MZ correlation 0.64) and tryptophan (MZ correla-
tion 0.26) have not been reported in the five previous studies
with which we compare our results. The estimates obtained
in the current study might therefore be the first reported
for these metabolites. Results for tyrosine, valine, and total
leucine (leucine/isoleucine) are reported in four previous
studies (Alul et al., 2013; Kettunen et al., 2012; Nicholson
et al., 2011; Shah et al., 2009). Our estimate (0.33) of the MZ
correlation for tyrosine is close to that observed by Kettunen
et al. (2012), and to the heritability estimates of 0.36 and
0.38 obtained by Alul et al. (2013) and Shah et al. (2009).
However, Nicholson et al. (2011) find a familiality for this
amino acid more than twice as high as our MZ correla-
tion. The estimates of heritability obtained in the current
study for the branched-chain amino acids (valine and total
leucine) are rather consistent with those in previous reports.
Our point estimate for the MZ correlation of valine (0.40)
is close to the estimates in three of the four studies (range
0.43–0.44), but Alul et al. found almost zero heritability. The
MZ correlation in the current study of 0.35 for total leucine
is consistent with ‘familiality’ (Nicholson et al., 0.35) or her-
itability (Shah et al., 0.39) reported by two previous studies,
but slightly lower than the MZ correlation estimate of 0.50
obtained by Kettunen et al. and much higher than the heri-
tability observed in the study by Alul et al. Remarkably, Alul
and colleagues report almost zero heritability for this and a
number of other metabolites that show considerably higher
familiality in other studies, including the current study. The
MZ correlations for methionine (comparison with Alul et
al. and Shah et al.), ornithine, and proline (comparison
with Shah et al.) are close to the heritability estimates ob-
tained in previous studies, suggesting that for these amino
acids the MZ correlations provide an accurate estimate of
heritability. However, the MZ correlations for glycine and
serine obtained in the current study are higher than the MZ
correlations or heritability observed by previous authors;
our estimate for serine (0.77) is more than three times as
high as the heritability calculated by Shah and colleagues.
As we also find a considerable spouse correlation for serine
in the NTR participants included in the current study, the
relatively high MZ correlation may be due to the effects of
shared environment. On the other hand, for glycine we find
very low spouse correlations in samples from both cohorts
(NTR and LLS) included in the current study, suggesting
that the relatively high MZ correlation (0.60) that we find
does not necessarily overestimate the heritability for this
metabolite in the currently investigated subjects. The MZ
correlations for the remaining amino acids are somewhat
less consistent with those in earlier reports. Our estimate for
arginine is almost twice as large as the heritability found by
Alul et al., but approximately half the heritability observed
by Shah and colleagues. For glutamine, our MZ correlation
estimate is close to that obtained by Kettunen and col-
leagues, but lower than the heritability in the study by Shah

et al. For histidine, the MZ correlation estimate is lower
than the heritability estimated by Shah and colleagues, and
lower than the MZ correlation in the study of Kettunen and
colleagues. We speculate, therefore, that this metabolite was
measured with higher precision in those previous studies.
Our MZ correlation estimate for phenylalanine is consis-
tent with that of Kettunen et al., but slightly lower than the
heritability in the study by Shah and colleagues and much
higher than in the study by Alul and colleagues.

Menni et al. (2013) calculated MZ correlations
for three diacyl-phosphatidylcholines and three acyl-
alkylphospatidylcholines that were also included in our MZ
correlation analyses. For all six phosphatidylcholines, our
MZ correlation estimates are higher than those observed by
Menni and colleagues. The only sphingomyelin for which
estimates of familial resemblance have been reported pre-
viously is SM C26:1, also in the study by Menni et al., who
found a higher MZ correlation than we did. The relatively
low congruence between the estimates obtained in both
studies may be due to differences in age and sex distribu-
tions across the study subjects: the mean age in the study of
Menni et al. was 58.5 years, and their study included females
only.

In most studies that estimate heritability for complex
traits, MZ twins are included and DZ twins serve as ‘con-
trols’ to test for the contribution of shared environment.
Most heritability studies of metabolite concentrations that
employed the classical twin design in adult twins did not
report evidence for common environment (C) shared by
family members, although it should be recognized that these
prior studies had too little power to obtain such evidence
(Posthuma & Boomsma, 2000). In this study, we estimate
upper limits of heritability for each metabolite in the MZ
twins. If we are willing to assume that for metabolite levels
in adults, the parents and their offspring do not share C
we can compare heritability estimates from MZ twins to
heritability based on the midparent–offspring regression.
The midparent–offspring regression has the advantage that
it gives an estimate for heritability that is unaffected by
assortative mating. Therefore, it is interesting to investi-
gate whether metabolites displaying significant midparent–
offspring regression also display significant MZ correla-
tion. For this comparison, because of the differences in
sample size, we adopted a different significance threshold
for the parent–offspring regression coefficients compared
with the MZ twin correlations. This threshold was deter-
mined on the basis of the following power calculation using
the G∗Power software (v. 3.1.7; Faul et al., 2009). Given
a multiple testing–corrected significance threshold of p =
(.05/44) = 1.14E-3 with 44 being the estimated number of
independent tests in the metabolomics data and a sample
size of 181 MZ twin pairs, we would be able to detect an
MZ twin correlation of 0.30 with 80% power. To detect
a parent–offspring regression coefficient of minimally this
magnitude with 80% power in the parent–offspring sample
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comprising 70 parent–offspring pairs (one child with mean
of parents), a significance threshold equal to 0.041 should
be adopted. Based on this liberal multiple testing–corrected
threshold, midparent–offspring regression coefficients are
significant for 57 of the 123 metabolites that passed qual-
ity control in NTR (Supplementary Table S2). The average
midparent–offspring regression coefficient over these 57
metabolites would be equal to 0.44 (range 0.24–0.85). Of
these metabolites, 55 are also significant in the MZ corre-
lation analysis. This considerable overlap in the number of
statistically significant metabolites in both MZ correlation
and parent–offspring regression analysis is consistent with
the notion that both measures are estimates of heritability
under the assumption of no shared environment between
parents and their adult offspring.

To the best of our knowledge, spouse correlations have
not yet been reported for metabolomics-based traits. In
a systematic review, significant but low (upper limit of
95% confidence interval, maximal 0.10) spouse correla-
tions were identified for the classical cardiovascular risk
factors total and LDL cholesterol and total triglycerides (Di
Castelnuovo et al., 2009). The meta-analysis estimate for
total triglycerides can be compared with the spouse corre-
lation estimates for the diacylphosphatidylcholines in the
current study; for instance, because lipids from both classes
can be formed from the intermediate molecule phospha-
tidic acid during biosynthesis (Vance & Vance, 2008). In
concordance with the meta-analysis result, in the current
study we found only low-to-modest spouse correlations for
most phosphatidylcholines, although these were lower in
LLS than in NTR generally. Heritability studies for triglyc-
erides have been reviewed by Snieder et al. (1999). In one
study by Knoblauch et al. (1997), 100 MZ pairs and 72 DZ
twin pairs were included with age characteristics (average
age 33.0; SD 14.0; range 15–69) close to the age character-
istics of the MZ twins in the current study. The heritability
estimate of 0.66 for fasting total triglycerides obtained in
the study by Knoblauch et al. is in line with the average MZ
correlation of 0.59 we observe for the phosphatidylcholines.

The differences in the spouse correlations observed be-
tween the NTR and LLS subjects may be due to the intrinsic
differences between both cohorts: LLS is a selected cohort
of offspring from long-lived parents and their unrelated
spouses, whereas NTR is an unselected population sample.
Also, 59% of the LLS participants were non-fasting (but
correction for fasting status was applied in the analyses),
whereas 93–96% (dependent on subsample) of all NTR
participants in this study were fasting. However, separate
analysis of the data from fasting and non-fasting LLS par-
ticipants did not substantially alter the results (data not
shown).

Hexose showed only moderate MZ correlation, which
is consistent with the notion that the majority of serum
samples from NTR included in the current study were
obtained from participants after an overnight fast. Dur-

ing fasting, serum concentrations of glucose (�90–95%
of hexose; Goek et al., 2012) are expected to be low and
little inter-individual variation is to be expected (Krug
et al., 2012). The relatively high MZ correlation observed
for free carnitine (C0), obtained using samples from fasting
participants, suggests considerable genetic variation in the
enzymes and transporters that are involved in the palmitoyl-
CoA carnitine transferase II shuttle which is active during
fasting (Krug et al., 2012). The observed considerable her-
itability of various amino acids (notably glutamine, serine,
and threonine, which displayed both considerable MZ cor-
relations and considerable midparent–offspring regression
coefficients) may be due to these biomolecules being pre-
cursors of glucose during gluconeogenesis, a process also
occurring during fasting (Berg et al., 2012). Interestingly,
there appears to be an increasing trend in MZ twin correla-
tions for phosphatidylcholines with increasing numbers of
carbon atoms in their acyl chains. A bifurcation seems to
occur in this respect between the diacyl (aa) and acyl-alkyl
(ae) phosphatidylcholines (see Figure 1), where diacyl- or
acyl-alkyl phospatidylcholines with approximately the same
number of carbon atoms appear to display similar heri-
tability. This observation is in line with what we observed
previously for triglycerides in a pilot study of heritability in
lipidomics data, where triglycerides with increasing num-
bers of carbon atoms in their fatty acid side chains and/or
increasing numbers of double bonds displayed increasing
heritability (Draisma, 2011). The bifurcation in the effects
observed for the diacyl- and acyl-alkyl (ether) phospho-
lipids might be due to the fact that the biosynthetic path-
ways for these two classes of lipids are spatially separated
and in some aspects different. We speculate that the patterns
observed in heritability for the phospatidylcholines are due
to different numbers of metabolic conversion rounds dur-
ing either fatty acid synthesis or beta-oxidation for phos-
phatidylcholines with different numbers of carbon atoms
in their acyl chains.

In conclusion, we have demonstrated several aspects
of familial resemblance for metabolite concentrations in
serum. Our results suggest a substantial heritable compo-
nent of variation for most metabolites, as has also been sug-
gested by various genome-wide association studies based on
metabolomics-based metabolic variables (e.g., Gieger et al.,
2008; Illig et al., 2010; Kettunen et al., 2012). Our findings
have implications for instance for biomarker research, sug-
gesting that the metabolites showing high heritability may
have better value as biomarkers for diseases that are me-
diated primarily by genetic factors compared with diseases
that are driven primarily by environmental influences.
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Appendix: Overview of all detected metabolites and their monozygotic twin correlations

Short and full names for metabolites measured in each cohort (LLS and NTR), and metabolite class. rMZ is the correlation in
monozygotic twins for the levels of all measured metabolites that passed quality control and rMZ_lbound and rMZ_ubound are the
lower and upper bounds of 95% confidence interval for rMZ.

Metabolite Biochemical name Group rMZ rMZ_lbound rMZ_ubound

C0 Carnitine Acylcarnitines 0.66 0.57 0.74
C12:1 Dodecenoylcarnitine Acylcarnitines 0.38 0.25 0.5
C14:1 Tetradecenoylcarnitine Acylcarnitines 0.38 0.25 0.5
C14:2 Tetradecadienylcarnitine Acylcarnitines 0.37 0.24 0.49
C16 Hexadecanoylcarnitine Acylcarnitines 0.35 0.21 0.47
C18 Octadecanoylcarnitine Acylcarnitines
C18:1 Octadecenoylcarnitine Acylcarnitines 0.43 0.3 0.54
C18:2 Octadecadienylcarnitine Acylcarnitines 0.29 0.16 0.42
C2 Acetylcarnitine Acylcarnitines 0.42 0.29 0.53
C3 Propionylcarnitine Acylcarnitines 0.5 0.38 0.6
C4 Butyrylcarnitine Acylcarnitines 0.62 0.52 0.7
C5 Valerylcarnitine Acylcarnitines 0.41 0.28 0.52
C8:1 Octenoylcarnitine Acylcarnitines 0.52 0.41 0.62
Arg Arginine Amino acids 0.42 0.29 0.53
Gln Glutamine Amino acids 0.56 0.45 0.65
Gly Glycine Amino acids 0.6 0.5 0.68
His Histidine Amino acids 0.21 0.07 0.34
Met Methionine Amino acids 0.27 0.13 0.4
Orn Ornithine Amino acids 0.41 0.28 0.52
Phe Phenylalanine Amino acids 0.32 0.18 0.44
Pro Proline Amino acids 0.59 0.49 0.68
Ser Serine Amino acids 0.77 0.7 0.82
Thr Threonine Amino acids 0.64 0.54 0.72
Trp Tryptophan Amino acids 0.26 0.12 0.39
Tyr Tyrosine Amino acids 0.33 0.19 0.45
Val Valine Amino acids 0.4 0.27 0.51
xLeu Leucine/isoleucine Amino acids 0.35 0.21 0.47
lysoPC a C14:0 lysoPhosphatidylcholine acyl C14:0 Glycerophospholipids 0.35 0.21 0.47
lysoPC a C16:0 lysoPhosphatidylcholine acyl C16:0 Glycerophospholipids 0.36 0.22 0.48
lysoPC a C16:1 lysoPhosphatidylcholine acyl C16:1 Glycerophospholipids 0.48 0.36 0.59
lysoPC a C17:0 lysoPhosphatidylcholine acyl C17:0 Glycerophospholipids 0.52 0.4 0.62
lysoPC a C18:0 lysoPhosphatidylcholine acyl C18:0 Glycerophospholipids 0.5 0.39 0.61
lysoPC a C18:1 lysoPhosphatidylcholine acyl C18:1 Glycerophospholipids 0.5 0.39 0.61
lysoPC a C18:2 lysoPhosphatidylcholine acyl C18:2 Glycerophospholipids 0.48 0.36 0.58
lysoPC a C20:3 lysoPhosphatidylcholine acyl C20:3 Glycerophospholipids 0.41 0.29 0.53
lysoPC a C20:4 lysoPhosphatidylcholine acyl C20:4 Glycerophospholipids 0.56 0.45 0.65
lysoPC a C24:0 lysoPhosphatidylcholine acyl C24:0 Glycerophospholipids 0.47 0.34 0.57
lysoPC a C26:0 lysoPhosphatidylcholine acyl C26:0 Glycerophospholipids 0.49 0.38 0.6
lysoPC a C26:1 lysoPhosphatidylcholine acyl C26:1 Glycerophospholipids 0.57 0.46 0.66
lysoPC a C28:0 lysoPhosphatidylcholine acyl C28:0 Glycerophospholipids 0.55 0.44 0.65
lysoPC a C28:1 lysoPhosphatidylcholine acyl C28:1 Glycerophospholipids 0.53 0.41 0.62
PC aa C26:0 Phosphatidylcholine diacyl C26:0 Glycerophospholipids 0.48 0.35 0.58
PC aa C28:1 Phosphatidylcholine diacyl C28:1 Glycerophospholipids 0.58 0.47 0.67
PC aa C30:0 Phosphatidylcholine diacyl C30:0 Glycerophospholipids 0.41 0.28 0.52
PC aa C32:0 Phosphatidylcholine diacyl C32:0 Glycerophospholipids 0.51 0.39 0.61
PC aa C32:1 Phosphatidylcholine diacyl C32:1 Glycerophospholipids 0.55 0.44 0.64
PC aa C32:2 Phosphatidylcholine diacyl C32:2 Glycerophospholipids 0.43 0.3 0.54
PC aa C32:3 Phosphatidylcholine diacyl C32:3 Glycerophospholipids 0.45 0.33 0.56
PC aa C34:1 Phosphatidylcholine diacyl C34:1 Glycerophospholipids 0.55 0.44 0.65
PC aa C34:2 Phosphatidylcholine diacyl C34:2 Glycerophospholipids 0.59 0.49 0.68
PC aa C34:3 Phosphatidylcholine diacyl C34:3 Glycerophospholipids 0.55 0.44 0.64
PC aa C34:4 Phosphatidylcholine diacyl C34:4 Glycerophospholipids 0.48 0.36 0.58
PC aa C36:0 Phosphatidylcholine diacyl C36:0 Glycerophospholipids 0.57 0.47 0.66
PC aa C36:1 Phosphatidylcholine diacyl C36:1 Glycerophospholipids 0.53 0.41 0.62
PC aa C36:2 Phosphatidylcholine diacyl C36:2 Glycerophospholipids 0.59 0.49 0.68
PC aa C36:3 Phosphatidylcholine diacyl C36:3 Glycerophospholipids 0.54 0.43 0.63
PC aa C36:4 Phosphatidylcholine diacyl C36:4 Glycerophospholipids 0.65 0.55 0.72
PC aa C36:5 Phosphatidylcholine diacyl C36:5 Glycerophospholipids 0.61 0.51 0.7
PC aa C36:6 Phosphatidylcholine diacyl C36:6 Glycerophospholipids 0.58 0.47 0.67
PC aa C38:0 Phosphatidylcholine diacyl C38:0 Glycerophospholipids 0.59 0.48 0.68
PC aa C38:1 Phosphatidylcholine diacyl C38:1 Glycerophospholipids 0.58 0.48 0.67
PC aa C38:3 Phosphatidylcholine diacyl C38:3 Glycerophospholipids 0.52 0.41 0.62
PC aa C38:4 Phosphatidylcholine diacyl C38:4 Glycerophospholipids 0.64 0.55 0.72
PC aa C38:5 Phosphatidylcholine diacyl C38:5 Glycerophospholipids 0.66 0.57 0.73
PC aa C38:6 Phosphatidylcholine diacyl C38:6 Glycerophospholipids 0.57 0.46 0.66
PC aa C40:1 Phosphatidylcholine diacyl C40:1 Glycerophospholipids 0.59 0.49 0.68
PC aa C40:2 Phosphatidylcholine diacyl C40:2 Glycerophospholipids 0.72 0.64 0.78
PC aa C40:3 Phosphatidylcholine diacyl C40:3 Glycerophospholipids 0.69 0.6 0.76
PC aa C40:4 Phosphatidylcholine diacyl C40:4 Glycerophospholipids 0.6 0.5 0.69
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Appendix

Continued

Metabolite Biochemical name Group rMZ rMZ_lbound rMZ_ubound

PC aa C40:5 Phosphatidylcholine diacyl C40:5 Glycerophospholipids 0.67 0.58 0.74
PC aa C40:6 Phosphatidylcholine diacyl C40:6 Glycerophospholipids 0.61 0.5 0.69
PC aa C42:0 Phosphatidylcholine diacyl C42:0 Glycerophospholipids 0.58 0.47 0.67
PC aa C42:1 Phosphatidylcholine diacyl C42:1 Glycerophospholipids 0.55 0.44 0.65
PC aa C42:2 Phosphatidylcholine diacyl C42:2 Glycerophospholipids 0.68 0.6 0.75
PC aa C42:4 Phosphatidylcholine diacyl C42:4 Glycerophospholipids 0.67 0.58 0.74
PC aa C42:5 Phosphatidylcholine diacyl C42:5 Glycerophospholipids 0.57 0.46 0.66
PC aa C42:6 Phosphatidylcholine diacyl C42:6 Glycerophospholipids 0.48 0.36 0.59
PC ae C30:0 Phosphatidylcholine acyl-alkyl C30:0 Glycerophospholipids 0.52 0.41 0.62
PC ae C30:2 Phosphatidylcholine acyl-alkyl C30:2 Glycerophospholipids 0.62 0.52 0.7
PC ae C32:1 Phosphatidylcholine acyl-alkyl C32:1 Glycerophospholipids 0.53 0.42 0.63
PC ae C32:2 Phosphatidylcholine acyl-alkyl C32:2 Glycerophospholipids 0.52 0.4 0.62
PC ae C34:0 Phosphatidylcholine acyl-alkyl C34:0 Glycerophospholipids 0.45 0.33 0.56
PC ae C34:1 Phosphatidylcholine acyl-alkyl C34:1 Glycerophospholipids 0.52 0.4 0.62
PC ae C34:2 Phosphatidylcholine acyl-alkyl C34:2 Glycerophospholipids
PC ae C34:3 Phosphatidylcholine acyl-alkyl C34:3 Glycerophospholipids 0.57 0.47 0.66
PC ae C36:0 Phosphatidylcholine acyl-alkyl C36:0 Glycerophospholipids 0.57 0.46 0.66
PC ae C36:1 Phosphatidylcholine acyl-alkyl C36:1 Glycerophospholipids 0.6 0.5 0.69
PC ae C36:2 Phosphatidylcholine acyl-alkyl C36:2 Glycerophospholipids 0.56 0.46 0.66
PC ae C36:3 Phosphatidylcholine acyl-alkyl C36:3 Glycerophospholipids 0.59 0.49 0.68
PC ae C36:4 Phosphatidylcholine acyl-alkyl C36:4 Glycerophospholipids 0.56 0.45 0.65
PC ae C36:5 Phosphatidylcholine acyl-alkyl C36:5 Glycerophospholipids 0.61 0.51 0.69
PC ae C38:0 Phosphatidylcholine acyl-alkyl C38:0 Glycerophospholipids 0.66 0.57 0.73
PC ae C38:1 Phosphatidylcholine acyl-alkyl C38:1 Glycerophospholipids 0.74 0.67 0.8
PC ae C38:2 Phosphatidylcholine acyl-alkyl C38:2 Glycerophospholipids 0.67 0.58 0.74
PC ae C38:3 Phosphatidylcholine acyl-alkyl C38:3 Glycerophospholipids 0.66 0.57 0.74
PC ae C38:4 Phosphatidylcholine acyl-alkyl C38:4 Glycerophospholipids 0.56 0.45 0.65
PC ae C38:5 Phosphatidylcholine acyl-alkyl C38:5 Glycerophospholipids 0.62 0.52 0.7
PC ae C38:6 Phosphatidylcholine acyl-alkyl C38:6 Glycerophospholipids 0.59 0.49 0.68
PC ae C40:0 Phosphatidylcholine acyl-alkyl C40:0 Glycerophospholipids 0.59 0.48 0.68
PC ae C40:1 Phosphatidylcholine acyl-alkyl C40:1 Glycerophospholipids 0.66 0.57 0.73
PC ae C40:2 Phosphatidylcholine acyl-alkyl C40:2 Glycerophospholipids
PC ae C40:3 Phosphatidylcholine acyl-alkyl C40:3 Glycerophospholipids 0.77 0.7 0.82
PC ae C40:4 Phosphatidylcholine acyl-alkyl C40:4 Glycerophospholipids 0.73 0.65 0.79
PC ae C40:5 Phosphatidylcholine acyl-alkyl C40:5 Glycerophospholipids 0.68 0.59 0.75
PC ae C40:6 Phosphatidylcholine acyl-alkyl C40:6 Glycerophospholipids 0.59 0.48 0.67
PC ae C42:0 Phosphatidylcholine acyl-alkyl C42:0 Glycerophospholipids 0.6 0.49 0.68
PC ae C42:1 Phosphatidylcholine acyl-alkyl C42:1 Glycerophospholipids 0.67 0.59 0.75
PC ae C42:2 Phosphatidylcholine acyl-alkyl C42:2 Glycerophospholipids 0.62 0.52 0.7
PC ae C42:3 Phosphatidylcholine acyl-alkyl C42:3 Glycerophospholipids 0.67 0.58 0.74
PC ae C42:4 Phosphatidylcholine acyl-alkyl C42:4 Glycerophospholipids
PC ae C42:5 Phosphatidylcholine acyl-alkyl C42:5 Glycerophospholipids 0.67 0.58 0.74
PC ae C44:3 Phosphatidylcholine acyl-alkyl C44:3 Glycerophospholipids
PC ae C44:4 Phosphatidylcholine acyl-alkyl C44:4 Glycerophospholipids
PC ae C44:5 Phosphatidylcholine acyl-alkyl C44:5 Glycerophospholipids 0.68 0.59 0.75
PC ae C44:6 Phosphatidylcholine acyl-alkyl C44:6 Glycerophospholipids 0.61 0.51 0.69
SM (OH) C14:1 Hydroxysphingomyeline C14:1 Sphingolipids 0.63 0.54 0.71
SM (OH) C16:1 Hydroxysphingomyeline C16:1 Sphingolipids 0.54 0.43 0.64
SM (OH) C22:1 Hydroxysphingomyeline C22:1 Sphingolipids 0.55 0.44 0.65
SM (OH) C22:2 Hydroxysphingomyeline C22:2 Sphingolipids 0.47 0.35 0.58
SM (OH) C24:1 Hydroxysphingomyeline C24:1 Sphingolipids 0.46 0.34 0.57
SM C16:0 Sphingomyeline C16:0 Sphingolipids 0.5 0.38 0.6
SM C16:1 Sphingomyeline C16:1 Sphingolipids 0.53 0.42 0.63
SM C18:0 Sphingomyeline C18:0 Sphingolipids 0.46 0.33 0.57
SM C18:1 Sphingomyeline C18:1 Sphingolipids 0.45 0.33 0.56
SM C20:2 Sphingomyeline C20:2 Sphingolipids 0.25 0.1 0.38
SM C24:0 Sphingomyeline C24:0 Sphingolipids 0.58 0.47 0.67
SM C24:1 Sphingomyeline C24:1 Sphingolipids 0.47 0.35 0.58
SM C26:0 Sphingomyeline C26:0 Sphingolipids
SM C26:1 Sphingomyeline C26:1 Sphingolipids 0.21 0.07 0.35
H1 Hexose Sugars 0.32 0.19 0.45
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