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Environment-by-PGS Interaction in the Classical Twin Design: An Application
to Childhood Anxiety and Negative Affect

Susanne Bruinsa,b , Jouke-Jan Hottengaa , Michael C. Nealea,c , Ren�e Poola,b ,
Dorret I. Boomsmaa,b,d , and Conor V. Dolana

aDepartment of Biological Psychology, Vrije Universiteit; bAmsterdam Public Health research institute; cVirginia Institute for Psychiatric
and Behavioral Genetics, Virginia Commonwealth University; dAmsterdam Reproduction and Development research institute

ABSTRACT
One type of genotype-environment interaction occurs when genetic effects on a phenotype are
moderated by an environment; or when environmental effects on a phenotype are moderated
by genes. Here we outline these types of genotype-environment interaction models, and pro-
pose a test of genotype-environment interaction based on the classical twin design, which
includes observed genetic variables (polygenic scores: PGSs) that account for part of the genetic
variance of the phenotype. We introduce environment-by-PGS interaction and the results of a
simulation study to address statistical power and parameter recovery. Next, we apply the model
to empirical data on anxiety and negative affect in children. The power to detect environment-
by-PGS interaction depends on the heritability of the phenotype, and the strength of the PGS.
The simulation results indicate that under realistic conditions of sample size, heritability and
strength of the interaction, the environment-by-PGS model is a viable approach to detect geno-
type-environment interaction. In 7-year-old children, we defined two PGS based on the largest
genetic association studies for 2 traits that are genetically correlated to childhood anxiety and
negative affect, namely major depression (MDD) and intelligence (IQ). We find that common
environmental influences on negative affect are amplified for children with a lower IQ-PGS.

KEYWORDS
Genotype-environment
(g� e) interaction;
moderation; mono- and
dizygotic twins; polygenic
scores (pgs); genetic
covariance structure
modeling

Introduction

Genotype-environment interaction occurs when the
effects of environmental exposure on a trait systemat-
ically depend on an individual’s genotype, or when
the effects of a genotype on a trait depend on an indi-
vidual’s environmental exposure (Eaves 1977;
Boomsma and Martin 2002). On the substantive level,
genotype-environment interaction is relevant to our
understanding of development across multiple
domains, including psychopathology (Hicks et al.
2009; Samek et al. 2015, 2017; D. Molenaar et al.
2016), personality (Boomsma et al. 1999), or substance
use (Koopmans et al. 1999; Dick et al. 2007). On the
statistical level, genotype-environment interaction is
relevant to the correct interpretation of parameters in
the modeling of data from twins, families, or geno-
typed individuals. Unmodeled genotype-environment
interaction, if present, may result in biased parameter
estimates (Purcell 2002; Verhulst et al. 2019), that
depend on the source of the interaction. Here we
often distinguish between environmental factors that

are common (C) to family members who share their
environment, and environmental factors that are not
shared between family members (E). An interaction of
additive genotype (A) with common environmental
factors (A�C interaction) presents as part of the
additive genetic variance, and any A�E interaction
presents as part of the unshared environmental
variance.

The vast majority of genotype-environment inter-
action studies in behavioral science are conducted
within a framework in which the effect of the geno-
type depends on a measured environmental exposure,
as historically it was more feasible to measure an
aspect of the environment than a person’s genotype.
In this framework, genotype-environment interaction
can be tested by moderation models, where the envir-
onment moderates the influence of latent genetic and
environmental factors on an outcome phenotype
(Purcell 2002). For example, a religious upbringing
diminishes genetic effects on disinhibition (Boomsma
et al. 1999) as adolescent twins with a religious
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upbringing report lower levels of disinhibition, and
genetic effects on disinhibition are smaller in this
group. Genetic effects on the development of adoles-
cent externalizing disorders appear to be amplified in
the face of environmental stress (Hicks et al. 2009;
Samek et al. 2017). This moderating effect of environ-
mental stress is important in adolescence, but wanes
in young adulthood (Johnson et al. 2009; Samek et al.
2015, 2017).

The study of G�E interaction in genetically
informative designs has been facilitated by the applica-
tion of structural equation modeling (SEM; Boomsma
and Molenaar 1986; Molenaar and Boomsma 1987).
Boomsma and Molenaar showed how the covariance
between measures and between family members could
be decomposed into genetic and environmental sour-
ces of variance and covariance using the LISREL soft-
ware (J€oreskog 1973; Boomsma and Molenaar 1986),
and D. Molenaar and Dolan (2014) illustrated how
methods and approaches as developed in psychomet-
rics proved to be inspirational in the study of G�E
interaction.

Methods that investigate genotype-environment
interaction as a function of a measured (environmen-
tal) moderator are relatively intuitive and straightfor-
ward to implement, as outlined by Purcell (2002).
Peter Molenaar demonstrated that genotype-environ-
ment interaction in the classical twin design can also
be detected by nonlinear factor analysis (Molenaar
and Boomsma, 1987), and by analysis of the distribu-
tion of factor scores (Molenaar et al. 1990, 1999) in
cross-sectional and longitudinal structural equation
models, without the need to measure the environmen-
tal exposure (or the genotype). Inspired by Peter
Molenaar’s work on factor scores, van der Sluis et al.
(2012) and D. Molenaar et al. (2012a, 2013) proposed
to study genotype-environment interaction by consid-
ering additive genetic factor (A) scores as moderators
of environmental effects by marginal maximum likeli-
hood estimation to condition on the latent A factor,
rather than actually estimating genetic factor scores.
This latent variable approach avoids the loss of infor-
mation incurred by a two-step analysis of deriving
and analyzing factor scores, when the scores may not
be identically distributed.

In this article, we turn to consider the SEM imple-
mentations of genotype-environment interaction,
where the effects of latent variables (genotypes and
environments) are moderated by measured genotypes
at the individual level. With high throughput genotyp-
ing technologies, it is feasible to measure genetic var-
iants in large samples. These usually are single

nucleotide polymorphisms (SNPs), a single nucleotide
in the genome sequence that varies between people.
SNPs that are associated with a phenotype of interest
can be combined into polygenic scores (PGS) which,
as an observed variable, provides a (partial) handle on
the otherwise latent genetic variable underlying a
phenotype of interest (Winkler et al. 2014; Tam et al.
2019; Choi et al. 2020).

Here we consider a model that incorporates PGS in
structural equation models for data collected in
mono- and dizygotic twin pairs to test for genotype-
environment interaction. In the approach we take in
this paper a PGS, an observed genetic variable, func-
tions as the moderator. This allows us to test the
hypothesis that the effect of the environment on the
phenotype of interest depends on an individual’s
genotype. Because we apply the model in the context
of twin data, we test both A�C and A�E inter-
action. The PGS may reflect the genetic contribution
to the phenotype that is analyzed, e.g., a PGS for
major depression disorder (MDD) based on a gen-
ome-wide association study (GWAS) for MDD, or
may reflect the genetic contribution to a different
phenotype that is relevant to the phenotype of inter-
est. Most human traits are polygenic and multiple
traits tend to be correlated for genetic reasons
(Brainstorm Consortium et al. 2018). Therefore, PGSs
for one trait tend to correlate with a variety of other
traits.

This paper is organized as follows. First, we intro-
duce classical twin design and the concept of PGSs.
We refrain from a detailed description of PGS estima-
tion, as excellent resources are available (Choi et al.
2020). We then describe a test of genotype-environ-
ment interaction in which the PGS functions as a gen-
etic moderator. We present a simulation study, in
which we address parameter recovery and statistical
power of the Environment-by-PGS interaction model,
and end with an empirical study in which we apply
this model to data on childhood anxiety and negative
affect.

The twin classical design

The classical twin design (CTD) is applied to decom-
pose the phenotypic covariance matrix of twins into
genetic and environmental covariance matrices
(Bruins et al. 2022a). The basis for the decomposition
is the difference in genetic relatedness between two
types of twins: monozygotic (MZ) twins arise from a
single fertilized egg and therefore share 100% of their
DNA, except for rare somatic mutations that arise in
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one member of a twin pair, but not in the other.
Dizygotic (DZ) twins share on average 50% of their
alleles at segregating loci. Both types of twins may
share environmental influences, including prenatal
exposures, which may contribute to their phenotypic
resemblance. All environmental influences that con-
tribute to phenotypic differences within pairs are
referred to as unshared (unique) environments. We
typically distinguish four sources of variance, namely
additive genetic (A) variance (a2), non-additive or
dominance genetic (D) variance (d2), common envir-
onmental (C) variance (c2), and unshared (E) environ-
mental variance (e2) that typically also includes
measurement error variance. The model including all
four variance components is not identified with only
data from MZ and DZ twin pairs. Here, we proceed
with an ACE model, where the phenotypic variance
then equals rY

2 ¼ a2 þ c2 þ e2, when assuming no
covariance or interaction among variance components
(Eaves 1977). Figure 1 displays a path diagram of the
univariate ACE twin model. The expected MZ and
DZ covariance matrices are:

R2
MZ ¼ r2MZ rMZ1,MZ2

rMZ1,MZ2 r2MZ

� �

¼ a2 þ c2 þ e2 a2 þ c2

a2 þ c2 a2 þ c2 þ e2

� �
(1)

R2
DZ ¼ r2DZ rDZ1,DZ2

rDZ1,DZ2 r2DZ

� �

¼ a2 þ c2 þ e2 0:5a2 þ c2

0:5a2 þ c2 a2 þ c2 þ e2

� �
(2)

The contributions of A to the phenotypic covari-
ance between twins correspond to the expected pro-
portions of shared alleles in the MZ (1) and DZ twin
pairs (0.5).

Observed genetic variables: Polygenic scores

At a locus with 2 alleles, denoted B and b, we can
observe 3 genotypes: bb, bB or Bb, and BB, which are
coded 0 (bb), 1 (Bb or bB), and 2 (BB). An individu-
al’s PGS is calculated as the weighted linear combin-
ation of these values from all SNPs that contribute to
a phenotype (Choi et al. 2020; Wray et al. 2021). The
weights are based on effects estimated in genome-
wide association studies (see, e.g., Vilhj�almsson et al.
2015). Suppose that K SNPs contribute to the genetic
variance of a trait. We express an individual’s (i)
phenotype (Y) as:

Yi ¼ b0 þ
XK

k¼1
bkSNPki þ cCi þ eEi, (3)

where C and E are standardized latent variables, SNP
(a measured locus with three distinct genotypes) is
coded 0, 1, or 2, and bK is the regression coefficient
of the kth SNP. The phenotypic variance is expressed
as

r2Y ¼
XK

k¼1
b2kr

2
SNPk þ c2 þ e2 (4)

In practice, we will have a subset comprising P of
the K SNPs, that are used in calculating the PGS, and
with L¼K-P unmeasured SNPs contributing to the
phenotypic variance. Then

r2Y ¼PP
p¼1 b

2
pr

2
SNPp þ

PL
l¼1 b

2
l r

2
SNPl þ c2 þ e2

¼ a2P þ a2L þ c2 þ e2
(5)

where a2P ¼ PP
p¼1 b

2
pr

2
SNPp is the genetic variance of

Y explained by the PGSs, and a2L ¼
PL

l¼1 b
2
l r

2
SNPl is

the residual genetic variance of Y.

Environment-by-PGS interaction

We propose to model the PGS�C and PGS�E inter-
action, as depicted in Figure 2. The moderation (or
interaction) parameters, denoted bc and be, accommo-
date the dependency of the C and E effects on the
PGS. We test this moderation by specifying the effects
of C and E on the phenotype as a function of the
PGS: C ¼ c0 þ bc � PGS and E ¼ e0 þ be � PGS: In
the absence of environment-by-PGS interaction, the
parameters c0 and e0 are equal to the parameters c
and e in Figure 1. In Figure 2, the proportion of

Figure 1. Path diagram of the ACE twin model. Y indicates
the measured phenotype (Y1 and Y2 are the phenotypes of
twin 1 and twin 2). Squares denote observed variables; circles
denote latent variables. qA denotes the degree of genetic simi-
larity (correlation) between members of a twin pair (1 for MZ
and 0.5 for DZ twins); A, C, and E are uncorrelated and repre-
sent the genetic, shared environmental, and unshared environ-
mental factors; a, c, and e are the additive genetic, shared
environmental, and unshared environmental path coefficients
respectively. The variance of the latent variables is 1.
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genetic variance captured by the PGS is R2
A ¼

a2P=ða2L þ a2PÞ: The variance-covariance matrices are

We investigate PGS�C and PGS�E interaction
by testing bc ¼ 0 and/or be ¼ 0. Because R2

A < 1, the
estimated interaction parameters (bc, be) underesti-
mate the true interaction parameter values.
Considering A�C interaction, let A denote the total
additive genetic variable (i.e., A ¼ AP þ AL, where
AP is PGS), let bc denote the true interaction param-
eter value, and let bc denote the estimated interaction

parameter value. The effect of C and its interaction
with A on the genotype is c0 þ bc � A, but we esti-
mate ĉ0 þ bC � AP ¼ ĉ0 þ bC �

ffiffiffiffiffiffi
R2
A

p
� A: Thus, we

underestimate the interaction parameter value by a
factor of

ffiffiffiffiffiffi
R2
A

p
, such that bc ¼ bc �

ffiffiffiffiffiffi
R2
A

p
¼

bc � RA, and we can find the true interaction param-
eter by dividing the estimate by RA: The same applies
to be and be :

bc ¼
bc
RA

and be ¼
be
RA

(8)

Note that this correction based on RA is only
applicable if the PGS is based on a GWAS of the
phenotype of interest. If the PGS is based on a pheno-
type different from the phenotype of interest, RA will
be underestimated, and the resulting corrected inter-
action parameters will be inflated.

Simulation study

We explored the power to detect genotype-environ-
ment interaction in a simulation study and assume
the following: Random mating of parents of twins, for
the trait that is analyzed MZ twins are not treated dif-

ferently than DZ twins (equal environment assump-
tion), no genotype-environment correlation, and the
phenotypic data conditional on the genetic variable
follow a multivariate normal distribution.

We considered various scenarios, in which we var-
ied the genetic and environmental variance (a2, c20,
e20), the proportion of genetic variance explained by
the PGSs (R2

A), and the sample composition (MZ:DZ

Figure 2. Path diagram for environment-by-PGS interaction
model. Y denotes the phenotypes of twin 1 and twin 2. PGS1
and PGS2 are polygenic scores of twins 1 and 2. Squares
denote observed variables and circles denote latent variables.
AP and the PGS are identical (one-to-one relationship), and AL,
C, and E are the latent variables with effects aL, c0, and e0,
respectively. The parameter aP denotes the main effect of the
PGS on the phenotype; bc and be are the interaction parame-
ters. The variances of all latent variables are 1. The parameter
qAL denotes the correlation between the additive genetic vari-
ables (1 for MZ twins and 0.5 for DZ twins), qAK is the correl-
ation between the PGSs.

RMZ ¼ r2MZ rMZ1,MZ2

rMZ1,MZ2 r2MZ

� �

¼ a2L þ a2P þ ðc0 þ bc � PGSÞ2 þ ðeþ be � PGSÞ2 a2L þ a2P þ ðc0 þ bc � PGSÞ2
a2L þ a2P þ ðc0 þ bc � PGSÞ2 a2L þ a2P þ ðc0 þ bc � PGSÞ2 þ ðe0 þ be � PGSÞ2

 !
(6)

RDZ ¼ r2DZ rDZ1,DZ2
rDZ1,DZ2 r2DZ

� �

¼ a2L þ a2P þ ðc0 þ bc � PGSÞ2 þ ðe0 þ be � PGSÞ2 0:5a2L þ 0:5a2P þ ðc0 þ bc � PGSÞ2
0:5a2L þ 0:5a2P þ ðc0 þ bc � PGSÞ2 a2L þ a2P þ ðc0 þ bc � PGSÞ2 þ ðe0 þ be � PGSÞ2

 !
(7)
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twin ratio). The interaction effect size (dc, de) indi-
cates the change in the environmental variance (c2,
e2) for each standard deviation increase in the PGS,
i.e., the phenotypic variance that is explained by the
interaction parameter (dc ¼ b2c þ 2bcc0 and
de ¼ b2e þ 2bee0). The effect size was dc ¼ de ¼ 0.10
over all simulations, and we simulated data for 4000
twin pairs. The power to detect environment-by-PGS
interaction was calculated as the power to reject the
model in which the non-zero interaction parameters
(bc, be) were fixed to 0, over 1,000 replications, given
alpha ¼ 0.05, for separate (1 df) tests and an omnibus
(2 df) test of the interaction parameters. An overview
of simulation parameters is presented in Table 2. The
choice of the parameter values is based in part on
empirical parameter values from an earlier study
where we found that IQ moderated genetic and envir-
onmental influences on psychopathology in children
(Bruins et al. 2022b).

To determine whether the power to detect an inter-
action effect depended on sample composition (i.e.,
the MZ: DZ ratio), we considered the following scen-
arios: an equal number of MZ and DZ pairs (MZ: DZ
¼ 1: 1); the ratio in the population with more DZ
than MZ pairs (MZ: DZ ¼ 1=3: 2=3); and an overrepre-
sentation of MZ pairs relative to DZ pairs, as often
found in adult twin studies (MZ: DZ¼ 2=3: 1=3).

In addition, we determined the false positive rate
by simulating data without an interaction effect and
calculated the proportion of simulations in which the

test of the interaction parameters had a p-value
smaller than .05. To explore violation of the condi-
tional multivariate distribution, we determined the
false-positive rate on left-censored data. Specifically,
we introduced a floor effect by assigning a score cor-
responding to the quantile associated with the prob-
ability of 0.15 to the lowest 15% of the phenotypic
data, and again calculated the proportion of false posi-
tive results. We considered left-censoring because
many measures of psychopathology display floor
effects in population-representative samples.

All analyses were conducted in R 3.6.0 (R Core
Team 2018) in the R-packages doSNOW (Analytics
and Weston 2014), foreach (Calaway et al. 2015),
MASS (Venables and Ripley 2013) for the simulation
study, and OpenMx 2.17.1 for genetic model fitting
(Neale et al. 2016). R scripts are available at Open
Science Framework (OSF), via doi: 10.17605/
OSF.IO/GB7WQ

Results of the simulation study

The power to detect the environment-by-PGS inter-
action effect depended on the A, C, and E variance,
and increased with a greater proportion of genetic
variance explained by the PGSs (RA

2). We present the
results of the simulation study in Table 3. In general,
power to detect E-by-PGS interaction was greater
than the power to detect C-by-PGS interaction, and
the omnibus (2 df) test of bc and be had greater power

Table 1. Glossary of terminology and notation.
Glossary Notation

Genotype-environment correlation. Correlation between genes and
environment that arises when exposure to certain environments is
partially influenced by an individual’s genotype.
Genotype-environment interaction.
Interaction between genotype and environment that can occur when the
effects of the environment on a phenotype depend on genotype, or when
the effects of the genotype on a phenotype depend on environment.
Single nucleotide polymorphism (SNP). A common type of genetic
variation that occurs when a single nucleotide (Adenine, Thymine,
Cytosine, or Guanine) in the DNA sequence is altered.
Genome-wide association study (GWAS). A study in which the
associations between many genetic variants (often SNPs) and a phenotype
are estimated.
Polygenic score (PGS). Weighted linear combination of the SNPs that
affect a phenotype. Also known as Polygenic Risk Score (PRS) or Polygenic
Index (PGI).
Additive genetic effects. Contribution of individual genes or alleles to a
phenotype in a linear and additive manner.
Dominance genetic effects. Non-additive genetic effects stemming from
intra-locus interactions.
Common environmental effects. Environmental effects that are shared
between members of a twin pair.
Unique environmental effects. Environmental effects that are not shared
between members of a twin pair, typically also includes measurement
error.

Y. Observed phenotypic variable.
PGS. Measured PGS variable.
AL. Latent additive genetic variable.
aL. Additive genetic path coefficient.
AP. Latent variable representing the PGS.
aP. PGS path coefficient, denoting the effect of the PGS on phenotype Y.
C. Common environmental variable.
c0. Common environmental path coefficient.
bc. C-by-PGS coefficient, denoting the interaction between the PGS and
the common environment.
E. Unique environmental variable.
e0. Unique environmental path coefficient.
be. E-by-PGS coefficient, denoting the interaction between the PGS and
the unique environment.
qAL. Additive genetic correlation between members of a twin pair. This
corresponds to the proportion of shared genetic material (i.e., 1 for MZ
twins and .50 for DZ twins).
qAP. Correlation between PGSs of a twin pair. Its value is expected to be 1
in MZ twins and .50, on average, in DZ twins.
dc. Effect size of C-by-PGS interaction. Indicates the change in C variance
with every standard deviation increase in the PGS.
de. Effect size of E-by-PGS interaction. Indicates the change in E variance
with every standard deviation increase in the PGS. When the phenotype is
scaled to have unit variance, dc and de correspond to the proportion of
phenotypic variance that is explained by the C- or E-by-PGS interaction.
RA

2. Proportion of additive genetic variance captured by the PGS.

Note. Parameters in italics are freely estimated in the environment-by-PGS interaction model.

MULTIVARIATE BEHAVIORAL RESEARCH 5



to detect environment-by-PGS interaction than the 1
df tests of individual interaction parameters (especially
when the power for the individual tests was relatively
modest, e.g., in simulations 2 and 8). Power also
increases when the relative effect size increases. That
is, the greater the ratio of parameters (i.e., bc/c0 and
be/e0) the greater the power to detect an environ-
ment-by-PGS interaction effect. Power was slightly
lower when the MZ:DZ ratio was unbalanced (i.e.,
other than 1:1; see Supplementary Table 1). Figure 3
displays examples of conditional variance and power
(based on simulation 1), and parameter bias in the
interaction parameters (stemming from RA

2<1).
Given multivariate normal phenotypic data (condi-

tional on the PGS), the average false-positive rate is
approximately equal to the alpha of 0.05 (fluctuating
from 0.03 to 0.07 across simulations). However, when
we introduced a floor effect in the data by collapsing
the lowest 15% of the phenotypic scores into a single
minimum score, the false positive rate ranged from
0.5 to 1 across simulations (see Supplementary
Table 2).

Empirical application to childhood anxiety and
negative affect

We analyzed data on anxiety and affective problems
from seven-year-old twins. These are heritable traits
(Middeldorp et al. 2005; Wesseldijk et al. 2017).
Bruins et al. (2022a, 2022b) found that genetic and/or
environmental effects on anxiety and affect at age 7
were moderated by a total IQ score, as assessed by
psychometric intelligence tests for children. Here, we
tested whether environmental effects on anxiety and
effect are moderated by a PGS of IQ. The discovery
GWA study (Savage et al. 2018) published the effect

sizes for SNPs for IQ in adults and children, which
we used to calculate PGSs for the twins in our sample.
The second series of tests is considered a PGS based
on the currently largest discovery GWAS for Major
Depressive Disorder (Wray et al. 2018). These discov-
ery GWASs were mainly carried out in adult partici-
pants, but there is substantial genetic stability from
early childhood to adulthood for IQ as well as for
symptoms of anxiety and depression (e.g., Nivard
et al. 2015), indicating that largely the same genetic
variants are expressed in children and adults.

Participants

Genotype and phenotype data were available for 1391
MZ and 1185DZ twin pairs who participate in the
Young Netherlands Twin Register (YNTR).
Participants of the YNTR are recruited at birth, and
their parents complete surveys on their development
until the twins reach the age of 12 years. In this study,
we analyzed data on anxiety and affective problems,
as reported by mothers on their 7-year-old children
(Van Beijsterveldt et al. 2013).

Measurements

Anxiety and negative affect were assessed by the
DSM-oriented scales of the Child Behavior Check List
(CBCL; Achenbach et al. 2003). The CBCL includes
112 items concerning specific problem behaviors that
are rated on a scale from 0—2, where 0¼not true;
1¼ somewhat or sometimes true; and 2¼ very true or
often true. The affect scale (“affective problems”) con-
sisted of 13 items, and the anxiety scale (“anxiety
problems”) consisted of 6 items. Both scales have
good test-retest reliability over 8 days (r¼ 0.84 for
affective problems and r¼ 0.80 for anxiety problems),
and acceptable to good internal consistency (a ¼ 0.82
for affective problems and a ¼ 0.72 for anxiety prob-
lems; Achenbach 2001). Total scale scores were con-
structed with item response theory, using a graded
response model (Samejima 1997). The distribution of
the scores is characterized by left censoring (a floor
effect), caused by overuse of the “not true” category.
We return to the effect of this censoring on the results
of our analyses below.

The PGSs were based on the discovery GWA meta-
analysis of (Savage et al. 2018) for intelligence, and
the GWAS of (Wray et al. 2018) for major depressive
disorder. We detail our procedure for PGS construc-
tion in the supplementary methods. We scaled the
PGSs to have a mean of 0 and a variance of 1, and we

Table 2. Parameter values in the simulation study.
Parameters settings
Parameter Values

a2 .35 .55
c0

2 .10 .35
e0

2 .35 .50
RA

2 .10 .20
Parameters in the power simulations
dc .10
de .10
MZ/DZ ratio 2=3 : 1=3 1=3 : 2=3 1 : 1
Parameters in the false positive rate simulations
dc 0
de 0
MZ/DZ ratio 1 : 1
Proportion of floor values 0 .15

a2¼ total genetic variance; c02¼ shared environmental variance;
e02¼ unshared environmental variance; RA2¼ proportion of genetic
variance explained by PGS; dc ¼ C-by-PGS interaction effect size; de¼ E-
by-PGS interaction effect size. The total number of MZþDZ twin pairs
was 4000.
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reverse-coded the IQ PGS such that it correlated posi-
tively with negative affect and anxiety.

The best-fitting twin model for anxiety includes the
influence of A and E, while for negative affect we also
find a contribution of C (Bruins et al. 2022b).
Therefore, we tested only E-by-PGS interaction for
anxiety, and both E-by-PGS and C-by-PGS interaction
for negative affect. As demonstrated in the simulation
results above, censoring can lead to false positive
interaction parameters. When we detected environ-
ment-by-PGS interaction, we took the effect of cen-
soring into account by re-analyzing the data while
explicitly modeling the left-censored phenotypic distri-
bution in OpenMx (see for example, de Zeeuw et al.
2019). For all analyses, we used a significance thresh-
old of a ¼ 0.05.

Results application to empirical data

The PGSs for IQ and MDD each captured 0.3% of the
additive genetic variance of anxiety, and 0.4% of the
additive genetic variance of negative affect. The correl-
ation between these PGSs equaled 0.135. Results for
negative affect suggested some interesting interaction
effects, both for the IQ-PGS and the MDD-PGS.
There was C-by-PGS interaction, where shared envir-
onmental variance for negative affect changed with a
higher PGS for negative affect or lower IQ, such that
most shared environmental variance of negative affect
can be observed in the tails of the PGS distribution.
For negative affect, there was also evidence for E-by-
PGS interaction, where unshared environmental
variance increased with a lower PGS for IQ. The E-
by-PGS interaction coefficient for the MDD PGS was

not significant (p¼ 0.063). For anxiety, we observed
no environment-by-PGS interaction.

In the simulation study, we demonstrated that the
false-positive rate drastically increases when there is a
floor effect in the data. In our empirical data, 15% of
the subjects have the minimum score on negative
affect (see Figure 4). To assess how this floor effect
influences the results, we re-analyzed the negative
affect data, while explicitly modeling the left-censored
phenotypic distribution. We still found that there was
C-by-IQ-PGS interaction after correcting for censor-
ing, but C-by-MDD-PGS interaction and E-by-PGS
interaction disappeared. The model fitting results are
in Table 4. The conditional variance components are
shown in Figure 5.

Given that the PGSs explained less than 1% of the
genetic variance of anxiety and negative affect, and
that the sample size was small compared to the simu-
lated sample size, the power to detect a small effect
was low, and the obtained estimates are rather impre-
cise. When we correct the interaction parameters for
the proportion of genetic variance explained by the
PGSs, the resulting corrected estimates are implausibly
large. This is in line with our simulations, in which
underpowered studies yield imprecise estimates. When
corrected for RA, these corrected estimates may not
reflect the true effect.

Discussion

Our aim was to present the environment-by-PGS
interaction model and to discuss its implementation
in combination with the classical twin design. We
looked at the power to detect environment-by-PGS
interaction for two different types of environmental

Table 3. Results of simulation study, averaged over 1000 replications.
Parameter settings Estimates Relative effect size Power n .80

RA
2 a2 c0

2 e0
2 bc be bc be bc� be� bc/c0 be/e0 bc be om bc be om

1 .1 .55 .10 .35 .131 .079 .044 .025 .143 .082 .14 .04 .45 .90 .98 12982 3300 2306
2 .1 .55 .10 .50 .131 .067 .050 .021 .161 .068 .16 .03 .45 .68 .92 13025 6433 3341
3 .1 .55 .35 .35 .079 .079 .030 .025 .094 .079 .05 .04 .52 .88 .97 10121 3565 2450
4 .1 .55 .35 .50 .079 .067 .023 .022 .074 .07 .04 .03 .33 .70 .86 24257 5994 4196
5 .1 .35 .10 .35 .131 .079 .042 .025 .134 .081 .13 .04 .58 .91 .99 8379 3119 1750
6 .1 .35 .10 .50 .131 .067 .043 .021 .139 .067 .14 .03 .51 .73 .97 10694 5513 2537
7 .1 .35 .35 .35 .079 .079 .028 .025 .089 .078 .05 .04 .55 .89 .99 9137 3331 2132
8 .1 .35 .35 .50 .079 .067 .027 .020 .084 .063 .05 .03 .44 .65 .90 13651 6832 3532
9 .2 .55 .10 .35 .131 .079 .063 .035 .143 .079 .20 .06 .73 .99 1 5489 1716 1084
10 .2 .55 .10 .50 .131 .067 .063 .031 .143 .071 .20 .04 .64 .94 1 7191 2796 1522
11 .2 .55 .35 .35 .079 .079 .036 .035 .080 .079 .06 .06 .64 .99 1 7183 1660 1252
12 .2 .55 .35 .50 .079 .067 .035 .029 .079 .065 .06 .04 .54 .89 .99 9420 3421 2110
13 .2 .35 .10 .35 .131 .079 .058 .036 .130 .080 .18 .06 .84 .99 1 3974 1508 831
14 .2 .35 .10 .50 .131 .067 .056 .030 .128 .068 .18 .04 .69 .93 1 6197 2879 1333
15 .2 .35 .35 .35 .079 .079 .037 .035 .083 .079 .06 .06 .74 .99 1 5333 1610 1074
16 .2 .35 .35 .50 .079 .067 .038 .030 .086 .067 .06 .04 .69 .92 1 6149 2994 1584

Note. nMZ ¼ nDZ ¼ 2000 (i.e., 4000 twin pairs, 8000 individuals). RA
2 is the proportion of genetic variance explained by the PGSs. bc and be are the true

interaction parameters, bc, and be are the estimated interaction parameters, and bc� and be� are the estimated parameters corrected for RA, om stands
for omnibus (2 df) test, n 0.80 is the number of twin pairs (MZþDZ) required to detect an interaction effect with a power of 0.80 (given a ¼ 0.05).
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influences, those that create a resemblance between
children from the same household (common environ-
ment) and those that are unique to a person (unique
environment). We found that the detection of geno-
type-environment interaction depends on the size of
the A, C, and E effects, and on the genetic variance
explained by PGSs. We found that the power to detect
E-by-PGS generally was greater than the power to
detect C-by-PGS interaction, and a 2 df omnibus test
of both C- and E-by-PGS interaction had the greatest
statistical power.

The finding that the power to detect E-by-PGS
interaction is generally greater than the power to
detect C-by-PGS interaction is in line with previous
results of Molenaar et al (D. Molenaar et al. 2012; D.

Molenaar and Dolan 2014). When there is no particu-
lar interest in the type of interaction (E-by-PGS or
C-by-PGS), we recommend testing for environment-
by-PGS interaction with a 2 df omnibus test. The
power to detect environment-by-PGS interaction also
depends on the proportion of additive genetic vari-
ance (RA

2) that a PGS explains. As of current, this
proportion is typically small, but with ongoing pro-
gress in GWAS meta-analyses, the RA

2 is likely to
increase. We noted that the estimates of the inter-
action parameters (bc and be) depend on the genetic
variance explained by the PGS (RA

2). However, as we
demonstrated, it is simple to correct these parameter
estimates, given that the parameters are estimated
with reasonable accuracy.

Figure 3. Results from the simulation study. Top-left: Genetic and environmental variance conditional on the PGS, from simulation
1. X-axis is the PGS (in SDs), y-axis is variance. a2 ¼ total additive genetic variance (aL

2 þ aP
2), c2¼ common environmental vari-

ance, e2 ¼ unshared environmental variance, and s2 ¼ total phenotypic variance. Top-right: The power to detect a non-zero bc,
be, and bomnibus parameter, in simulation 1. X-axis is number of twin pairs (MZþDZ), y-axis is statistical power. Bottom: The dis-
crepancy between the true interaction parameter (b as simulated) and the corrected estimate (i.e., b/RA), conditional on the simu-
lation power. Power is given on the X-axis, and the bias is shown on the y-axis (b-b�).
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We applied the environment-by-PGS interaction
model to empirical data on childhood anxiety and
negative affect, recognizing that although the study
included 5,152 children with genotype and phenotype
data, the power calculations from our simulations and
the highly skewed phenotypic data suggest that cau-
tion is required. We considered two PGSs. Based on
earlier work in which phenotypic IQ was tested as a
moderator, we considered an IQ PGS, and the other
PGS was based on a large GWAS in adults for major
depressive disorder. Although these two PGSs
explained less than 1% of the genetic variance, we
detected C-by-PGS interaction for negative affect,
where a PGS for lower IQ was associated with more
shared environmental variance contributing to indi-
vidual differences in negative affect. We accommo-
dated the floor effect in the phenotypic data by
modeling a censored distribution. However, our data
did not follow a censored normal distribution, and
our empirical results may yet be influenced by distri-
butional issues.

Most genotype-environment interaction studies in
behavioral science have focused on how genetic effects
are expressed differentially depending on the environ-
ment (environmental moderation of genetic effects;
Hagenbeek et al. 2022; Willoughby et al. 2023). The
environment-by-PGS interaction method provides an
explicit test of the hypothesis that individuals may
have a differential sensitivity to environmental cir-
cumstances depending on their genotype. One advan-
tage of this method is that a prior hypothesis
concerning which specific environments have differen-
tial effects across levels of genetic sensitivity is not
required. As such, studies using this method can serve
as a first step in determining whether environmental

effects differ over levels of genetic sensitivity, and if
so, follow-up studies can focus on identifying specific
environmental circumstances.

The present method is a contribution to the grow-
ing body of methods that exploit measured genetic
information. While these strategies have gained popu-
larity for the study of genotype-environment correl-
ation (Dolan et al. 2021), its application in the study
of genotype-environment interaction has been more
limited (Hagenbeek et al. 2022). The incorporation of
PGSs in the modeling of family data has already
allowed for the development of new and more power-
ful tests of genotype-environment correlation. PGSs in
family members have been leveraged to estimate the
covariance between shared environment and genotype
in twins and full sibs (Selzam et al. 2019; Balbona
et al. 2021; Dolan et al. 2021) and in parents and off-
spring. (Kong et al. 2018; Bates et al. 2018; de Zeeuw
et al. 2019).

Rathouz et al (2008) have presented a careful ana-
lysis of Purcell’s (2002) original bivariate moderation
model. They demonstrated that a non-linear relation-
ship between the moderator M and the phenotype
may give rise to spurious A-by-M interaction. This
spurious A-by-M interaction specifically concerns the
moderation of the common A effects on the pheno-
type. By common A we mean the A component that
is common to the moderator and the phenotype in
the standard Cholesky representation of the Purcell
model. However, in the present model, the effects of
the PGS are not subject to moderation, and inter-
action is limited to phenotype-specific C and E effects.
Hence, these concerns do not apply to the environ-
ment-by-PGS interaction model.

The tests of environment-by-PGS interaction, like
most tests of interaction, are scale-dependent
(Wagenmakers et al. 2012). That is, genotype-environ-
ment interaction estimates depend on the scaling of
the phenotype, and positive results may be a function
of “bad” scaling (inconsistent measurement precision
across the scale) rather than true interaction (Eaves
2006). We considered a censored model, to accommo-
date the evident floor effects. While this is relatively
simple to implement, we acknowledge there are other
possibly more appropriate methods that one may con-
sider to reduce the probability of false positive inter-
action tests. A potential solution to overcome scaling
issues is to introduce a psychometric model to link
phenotypic indicators (e.g., items) to the phenotypic
latent variable. The test of interaction can then be
conducted at the level of the latent variable (van den
Berg et al. 2007; Molenaar and Dolan 2014). An

Figure 4. Histogram of negative affect scores.
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advantage of the present approach to analyzing geno-
type-environment interaction based on measured
PGSs is that it was relatively straightforward to
incorporate in psychometric modeling.

A further possibility to improve the modeling of
interaction effects on poorly-scaled measurements
would be to use the standard errors of factor scores to
moderate the residual variance of the trait. This

Table 4. Model fitting results of environment-by-PGS analyses for anxiety and negative affect.
Phenotype Test �2LL df v2 Ddf p AIC b (b�)

IQ PGS Anxiety 21236.79 8906 3424.79
be 21238.74 8907 1.94 1 .164 3424.74 �0.01

Neg. affect 20332.49 8904 2524.49
bc 20337.03 8905 4.54 1 .033 2527.03 .11 (1.92)
be 20336.36 8905 3.87 1 .049 2526.36 .01 (0.24)

Neg. affect censored dist. 21158.46 8904 3350.46
bc 21163.61 8905 5.16 1 .023 3353.61 .13 (2.63)
be 21161.32 8905 2.87 1 .090 3351.32 .01

MDD PGS Anxiety 21324.64 8906 3512.64
be 21324.87 8907 0.23 1 .631 3510.87 �0.004

Neg. affect 20406.68 8904 2598.68
bc 20413.73 8905 7.05 1 .008 2603.73 .11 (1.29)
be 20410.13 8905 3.45 1 .063 2600.13 .01

Neg. affect censored dist. 21240.08 8904 3432.08
bc 21243.68 8905 3.60 1 .058 3433.68 .11
be 21241.44 8905 1.35 1 .245 3431.44 .01

-2LL is the -2 loglikelihood, df is degrees of freedom, b is the interaction parameter, and b� is the interaction parameter corrected by RA. Neg. Affect cen-
sored dist. refers to the analyses in which we modeled a left-censored distribution.

Figure 5. Genetic, environmental, and total variance of negative affect (left panes) and anxiety (right panes), conditional on the
PGSs of IQ (top panes) and MDD (bottom panes). a2 ¼ total additive genetic variance (aL

2 þ ap
2), c2¼ shared environmental vari-

ance, e2 ¼ unshared environmental variance, and s2 ¼ total phenotypic variance. The variance components are based on the par-
ameter estimates from the analysis without the censoring correction. The shaded blocks indicate a PGS ±2-3 SD’s from the mean.
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approach has shown advantages in the context of fac-
tor analysis and seems appropriate to address scaling
issues in studies of G�E interaction. Simulations are
underway to explore this conjecture.
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