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Abstract 

Bac kgr ound: Applying good data management and FAIR (F indable , Accessible , Interoper able , and Reusable) data principles in re- 
sear c h projects can help disentangle knowledge discov er y, study r esult r e pr oducibility, and data r euse in futur e studies. Based 

on the concepts of the original FAIR principles for resear c h data, FAIR principles for resear c h software w ere recently proposed. 
FAIR Digital Objects ena b le discov er y and r euse of Resear c h Objects, including computational w orkflows for both humans and 

mac hines. Pr actical examples can help promote the adoption of FAIR practices for computational workflows in the research 

comm unity. We dev eloped a m ulti-omics data anal ysis w orkflow implementing FAIR pr actices to share it as a FAIR Digital 
Object. 

Findings: We conducted a case study investigating shared patterns between multi-omics data and childhood externalizing be- 
havior. The analysis workflow was implemented as a modular pipeline in the workflow manager Nextflow, including contain- 
ers with softw ar e de pendencies. We adher ed to softw ar e dev elopment practices like v ersion contr ol, documentation, and licens- 
ing. F inally, the w orkflow was described with ric h semantic metadata, pac kaged as a Resear c h Object Cr ate , and shared via 
Workflo wHub . 

Conclusions: Along with the packa ged m ulti-omics data analysis workflow, we share our experiences adopting various FAIR practices 
and creating a FAIR Digital Object. We hope our experiences can help other resear c hers who develop omics data analysis workflows 
to turn FAIR principles into pr actice . 

Ke yw or ds: multi-omics, w orkflow, metadata, FAIR, RO-Cr ate, FDO 
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Ke y P oints: 

� T he FAIR4RS principles pro vide guidelines to enhance 
the discovery and reuse of research software. 

� FAIR Digital Objects support Findability , Accessibility , In- 
ter oper ability, and Reusability by both humans and ma- 
chines. 

� We her e demonstr ate an implementation of a multi- 
omics data analysis w orkflo w and share it as a FAIR Dig- 
ital Object. 
Recei v ed: J une 13, 2023. Re vised: No vember 14, 2023 
© The Author(s) 2024. Published by Oxford Uni v ersity Pr ess GigaScience. This is an
Attribution License ( https://cr eati v ecommons.org/licenses/by/4.0/ ), which permits 
the original work is pr operl y cited. 
ac kgr ound 

he FAIR principles for r esearc h data [ 1 ] were proposed to guide
 esearc hers to create research data that is Findable , Accessible ,
nter oper able, and Reusable (FAIR). Since these guidelines aim to
nable r esearc hers handling and navigating thr ough the r a pidl y
ncreasing amounts of data, special emphasis was put on con-
epts to make data not only usable by humans but also machine-
ctionable. In the past y ears, various standar ds [ 2 , 3 ] and imple-
entations [ 4–7 ] of the FAIR principles have been introduced, and

t has been demonstrated that FAIR data are beneficial to r esearc h
nd patients [ 8–10 ]. Reuse of r esearc h data and r epr oducibility
f r esearc h r esults [ 11 ] ar e facilitated by good data pr ov enance,
nd this r equir es not only the data but also the data processing
nd analysis w orkflo ws to be FAIR. Consequently, guidelines and
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Table 1: Ov ervie w of r ecommended FAIR pr actices for r esearc h data and softwar e 

FAIR guiding principles [ 1 ] 
Open-source software 

recommendations [ 12 ] 
Recommendations for FAIR 

software [ 13 ] 
FAIR principles for research software [ 14 , 

18 ] 

Findable F. Software, and its associated metadata, is 
easy for both humans and machines to 
find. 

F1. (Meta) data are assigned globally 
unique and persistent identifiers. 

F1. Software is assigned a globally unique 
and persistent identifier. 

F1.1. Components of the software 
r epr esenting le v els of gr anularity ar e 
assigned distinct identifiers. 

F1.2. Differ ent v ersions of the softwar e ar e 
assigned distinct identifiers. 

F2. Data are described with rich metadata. F2. Software is described with rich 
metadata. 

F3. Metadata clearly and explicitly include 
the identifier of the data they describe. 

F3. Metadata clearly and explicitly include 
the identifier of the software they 
describe. 

F4. (Meta)data are registered or indexed in 
a searchable resource. 

R2. Make software easy to 
discover by providing software 
metadata via a popular 
comm unity r egistry. 

#3 Register your code in a 
comm unity r egistry. 

F4. Metadata are FAIR, searchable, and 
indexable. 

Accessible R1. Make source code publicly 
accessible from day 1. 

#1 Use a publicly accessible 
repository with version 
control. 

A. Software, and its metadata, is 
r etrie v able via standardized protocols. 

A1. (Meta)data are retrievable by their 
identifier using a standardized 
comm unication pr otocol. 

A1. Software is retrievable by its identifier 
using a standardized communications 
protocol. 

A1.1. The protocol is open, free, and 
univ ersall y implementable. 

A1.1. The protocol is open, free, and 
univ ersall y implementable. 

A1.2. The protocol allows for an 
authentication and authorization 
pr ocedur e wher e necessary. 

A1.2. The protocol allows for an 
authentication and authorization 
pr ocedur e, wher e necessary. 

A2. Metadata should be accessible e v en 
when the data are no longer a vailable . 

A2. Metadata ar e accessible, e v en when the 
software is no longer a vailable . 

Interoperable I. Softwar e inter oper ates with other 
softw are b y exchanging data and/or 
metadata, and/or thr ough inter action via 
a pplication pr ogr amming interfaces 
(APIs), described through standards. 

I1. (Meta)data use a formal, accessible, 
shar ed, and br oadl y a pplicable langua ge 
for knowledge r epr esentation. 

I1. Softwar e r eads , writes , and exchanges 
data in a way that meets 
domain-r ele v ant comm unity standards. 

I2. (Meta)data use vocabularies that follow 

the FAIR principles. 
I3. (Meta)data include qualified r efer ences 

to other (meta)data. 
I2. Software includes qualified references 

to other objects. 
Reusable R4. Define clear and tr anspar ent 

contribution, go vernance , and 
comm unication pr ocesses. 

#4 Enable citation of the 
software; #5 Use a software 
quality c hec klist. 

R. Software is both usable (can be 
executed) and reusable (can be 
understood, modified, built upon, or 
incor por ated into other software). 

R1. (Meta)data are richly described with a 
plurality of accurate and relevant 
attributes. 

R1. Software is described with a plurality of 
accurate and relevant attributes. 

R1.1. (Meta)data are released with a clear 
and accessible data usage license. 

R3. Adopt a license and comply 
with the license of third-party 
dependencies. 

#2 Add a license. R1.1. Software is given a clear and 
accessible license. 

R1.2. (Meta)data are associated with 
detailed pr ov enance. 

R1.2. Software is associated with detailed 
pr ov enance. 

R2. Software includes qualified references 
to other software. 

R1.3. (Meta)data meet domain-r ele v ant 
community standards. 

R3. Software meets domain-relevant 
community standards. 
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r actices for FAIR r esearc h softwar e hav e been pr oposed [ 12–14 ]
see Table 1 ), and the special case of computational w orkflo ws has
een discussed [ 15 , 16 ]. These guidelines aim to incr ease r epr o-
ucibility not only at the experimental level but also at the data
nal ysis le v el. It has been shown that the availability of data and
ode alone is not sufficient. They both need to be provided in an
pen and inter oper able format and described by metadata [ 17 ]. 

Se v er al pr actices r ecommended for r esearc h softwar e de v elop-
ent originate from general software engineering practices [ 12 ,

5 , 19 ], which include version control, documentation, and licens-
ng. Version control of source code facilitates collabor ativ e de v el-
pment and monitoring changes [ 13 ]. Additionally, making the
ode publicl y av ailable on dedicated softwar e r epositories that
upport v ersion contr ol suc h as Git-based [ 20 ] GitHub [ 21 ], Git-
ab [ 22 ], or BitBucket [ 23 ] contributes to findability [ 24 ], acces-
ibility [ 12 ], and reusability [ 13 ]. The documentation of research
oftware includes multiple levels. First, a comprehensive end-user
ocumentation and usage examples enable reusability by other
 esearc hers [ 17 , 24–26 ]. It should also include the documentation
f w orkflo w parameters [ 16 , 17 ]. Second, sour ce code documenta-
ion enables other de v elopers to understand and build upon the
oftware [ 17 ]. Documentation of code changes via a version con-
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trol system helps document the development process [ 19 , 25 ], and 

documentation of dependencies is pr er equisite for software inter- 
operability [ 24 ] and reusability [ 18 ]. Adding a clear and machine- 
readable [ 16 ] license is essential to allow for software reuse. It 
is recommended to choose a widely used and preferably open- 
source license that is compatible with licenses of the dependen- 
cies [ 12–14 , 18 , 19 , 24 , 25 ]. Examples of open-source licenses with 

fe w r estrictions ar e the Apac he License 2.0 [ 27 ] and the MIT Li- 
cense [ 28 ]. 

Ther e ar e differ ences between r esearc h softwar e that imple- 
ments a specific method as a standalone tool or a software li- 
brary and complex analysis w orkflo ws [ 16 ]. Computational anal- 
ysis w orkflo ws can comprise numerous steps that ar e integr ated 

into pipelines [ 16 ] and are often developed in a specific project [ 19 ,
29 ]. With a multitude of analysis steps being combined into com- 
plex w orkflo ws, the documentation of the individual analyses and 

their dependencies can become challenging. To facilitate the au- 
tomation of analysis tasks and their documentation, w orkflo ws 
can be described using w orkflo w management systems such as 
Nextflow [ 30 ] or Snak emak e [ 31 ]. Workflow managers that support 
the creation of reusable modules can help reduce complexity and 

pr omote the r euse of w orkflo ws or w orkflo w modules [ 15 , 16 , 32 ].
Additionall y, notebooks can a ppl y the concept of liter ate pr ogr am- 
ming and are a useful tool to add human-readable documentation 

next to code blocks [ 19 ]. Interoperability and reusability of work- 
flows can be ac hie v ed using portable software containers such as 
Apptainer/Singularity [ 33 ] or Docker [ 34 ] that ca ptur e the runtime 
environment of a w orkflo w or a w orkflo w module [ 15 , 16 , 26 , 35 ]. 

Computational w orkflo ws can be regarded as digital objects.
The concept of FAIR Digital Objects (FDOs) was introduced to 
make digital objects fully FAIR [ 36 ]. FDOs comprise, among oth- 
ers, the digital object, a persistent identifier (PID), and metadata 
(title , authors , licenses , etc.) describing the object. T he RO-Crate 
a ppr oac h was specified to pac ka ge digital r esearc h artifacts or Re- 
sear ch Objects (R Os) such as computational w orkflo ws [ 37 ]. The 
RO-Crate contains a PID that links to an RO, which is described 

by a structur ed JSON-LD RO-Cr ate metadata file. It contains all 
contextual and noncontextual related data to rerun the w orkflo w.
In case the actual data cannot be publicly shared due to privacy 
reasons, synthetic data can complement analysis w orkflo ws to 
demonstrate the computational procedure [ 16 , 38 ]. To make an 

RO-Crate findable, it needs to be registered at a registry such as 
W orkflowHub [ 39 , 40 ]. The W orkflowHub RO-Crate represents an 

a ppr oac h to implementing the FDO concept [ 41 ,42 ]. 
We her e demonstr ate the de v elopment of a FAIR Digital Ob- 

ject comprising a computational w orkflo w that analyzes and in- 
tegr ates m ulti-omics and phenotype data and is associated with 

rich human and machine-readable metadata. 

Findings 

Workflo w implementa tion 

To de v elop a r eusable w orkflo w, our input data and intermediate 
files wer e lar gel y based on open and widely used formats or com- 
munity standards. For the metabolomics data and metadata, we 
adopted practices of the MetaboLights database [ 43 ] of the Eu- 
ropean Bioinformatics Institute (EBI) of the European Molecular 
Biology Laboratory (EMBL). Metabolite levels and annotations are 
reported in metabolite annotation/assignment files (MAFs). The 
experimental metadata for omics measurements are reported us- 
ing the In vestigation/Study/Assa y (ISA) metadata framework [ 44 ].
We emplo y ed Jup yter [ 45 ] and the Python ISA API [ 46 ] to create 
SA-Tab and ISA-JSON files [ 47 ]. For mac hine-r eadable descrip-
ions of the experiments, ontology terms were used. Ontologies 
re standardized taxonomies of entities of a specific subject (do-
ain), including definitions of relationships between these enti- 

ies. Ontology terms refer to these entities [ 48 ]. Based on recom-
ended standards from FAIRgenomes [ 3 ] and Metabolights [ 43 ],
e pr efer abl y emplo y ed the follo wing ontologies: National Can-

er Institute Thesaurus (NCIT) [ 49 ], Experimental Factor Ontol-
gy (EFO) [ 50 ], Ontology for Biomedical Investigations (OBI) [ 51 ],
etabolomics Standards Initiative Ontology (MSIO) [ 52 ], Chemical 
ethods Ontology (CHMO) [ 53 ], and Chemical Entities of Biologi-

al Interest (ChEBI) [ 54 ]. The DNA methylation levels and associ-
ted metadata, behavioral data, and additional information about 
henotypes or technical and biological covariates are stored as 
omma-separ ated v alue (CSV) files . T his allows our computa-
ional w orkflo w to be easil y r eusable and ada ptable for other
atasets . T he w orkflo w documentation [ 55 ] describes all input
les used in the w orkflo w and pr ovides human-r eadable descrip-
ions of e v ery step of the w orkflo w processing and integrating in-
ividual input data types. Each of these analysis steps (see Figure
 ) is implemented in Python or R and added as a module to the
 orkflo w. We emplo y Jup yter and R notebooks for implement-

ng downstr eam anal yses and visualization of r esults. We c hose
extflow as our workflow management system, since it allows 
exible de v elopment, can be run on differ ent platforms, supports
ontainers, is well documented, and is alr eady widel y adopted by
he bioinformatics community [ 32 ]. Each module of the w orkflo w
s provided with their own Docker container to ensure portability
nd eliminate the need for local software installations. 

Finally, the Nextflo w w orkflo w is pac ka ged as an RO-Cr ate.
n addition to the w orkflo w and a synthetic dataset, it contains
 structured metadata file with machine-readable descriptions 
f input files and analysis steps ( ro-crate-metadata.json ).
e pr efer abl y used EDAM–Ontology of bioscientific data anal-

sis and data management [ 56 ] as it is recommended for
 orkflo w R O-Crates [ 37 ]. For terms that w er e not av ailable in
DAM, alternativ e ontologies suc h as NCIT [ 49 ], OBI [ 51 ], or
he Semanticscience Integrated Ontology (SIO) [ 57 ] were used.

e emplo y ed the Python pac ka ge r o-cr ate-py [ 58 ] to cr eate
he RO-Crate metadata file . T he RO-Crate further contains an
mage with an overview of the analysis steps. For findabil-
ty, the pac ka ged w orkflo w (see Fig. 2 ) is r egister ed on Work-
owHub [ 39 ] and provided with a Digital Object Identifier (DOI)

https://doi.org/10.48546/w orkflo whub.w orkflo w.402.8). 

ase study 

ur w orkflo w w as de v eloped to anal yze and integr ate DNA
ethylation and urine metabolomics profiles with behavioral 

ata originating from the ACTION Biomark er Stud y (ACTION, Ag-
ression in Children: Unra veling Gene-En vironment Interpla y to
nform Treatment and Intervention strategies) [ 59–61 ] (see “Case
tudy” in the Methods section). Within ACTION, urine and buccal 
ell samples were collected in a twin cohort from the Netherlands
win Register (NTR) and in a cohort of c hildr en r eferr ed to an aca-
emic center for child and youth psychiatry in the Netherlands

LUMC-Curium). These c hildr en wer e also c har acterized for be-
avior al pr oblems, and her e we look at externalizing pr oblems.
e pur posel y selected a case of complex human behavior al phe-

otype that is typically not caused by a single well-defined molec-
lar defect but originates from changes in multiple factors and as
uch would benefit from a multi-omics analysis. Since we con-
ider these data to be potentially personally identifiable informa- 
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Figure 1: Ov ervie w of anal ysis steps. 
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ion, we share a synthetic dataset to demonstrate the w orkflo w.
he goal of the analysis is the identification of substructures in
he multi-omics data and to determine if they correlate with be-
avioral data (see “Unsupervised Data Analysis”). A team com-
rising members of the Netherlands X-omics Initiative [ 62 ] in col-

aboration with the NTR [ 63 ] developed the computational work-
ow . T o uncover possible relationships between the multi-omics
ata and the behavioral data, we applied different unsupervised
ata-driven methods follo w ed b y do wnstr eam anal yses, including
etermining the effect of possible confounding factors of sex and
ge . An o verview of the main analysis steps is shown in Fig. 1 . An
v ervie w of data dimensions and types during different steps of
he w orkflo w is provided in Additional File 10. 

To identify underlying patterns in childhood externalizing be-
avior, we applied multiple correspondence analysis (MCA) [ 64 ,
5 ] to the par ent-r ated r esponses on the externalizing behavior
tems of the Child Behavior Checklist (CBCL) of the Ac henbac h
ystem of Empirically Based Assessment (ASEBA) [ 66 ] in both co-
orts . In NTR participants , the first 3 MC A dimensions jointly ex-
lain 30% of the variation in 26 externalizing behavior items of the
SEBA CBCL (see Additional File 1). Additional dimensions each
xplain < 5% of the v ariation. The pr esence r ather than the ab-
ence of externalizing behaviors c har acterized all of the first 3 di-
ensions, whic h r eflects the answer options to items (a pr oblem

ehavior is not present, a little, or a lot). Variables that contributed
ost to the first dimension, which explained 16% of the variation,

 epr esent temper amental behavior (fr equent temper tantrums,
tubbornness, screaming, and arguing). Variables contributing to
he second dimension, which explained 9% of the variation, rep-
esent hostile aggressive behaviors (frequent vandalism, bullying,
nd cruelty). In LUMC-Curium participants, the first 2 MCA di-
ensions suffice to explain 30% of the variation in 18 items of

he ASEBA CBCL (see Additional File 2). Similar to NTR, these first
imensions in LUMC-Curium ar e c har acterized by the presence of
 ggr essiv e beha viors . 

We applied multi-omics factor analysis (MOFA) [ 67 ] in both
ohorts to obtain 10 factors to describe the buccal DNA methy-
ation (Illumina EPIC array) and urine metabolomics data. For
his analysis, we selected the top 10% most v ariable pr obes fr om
NA methylation data. Cum ulativ el y, the 10 factors explained
2.5% and 74.9% of variation in the DNA methylation data and
.001% and 1.89% in the urine metabolomics data in NTR (see
dditional File 3) and LUMC-Curium (see Additional File 4), re-
pectiv el y. We observ ed no evidence that any of the factors cap-
ured sources of variation in both the DNA methylation and urine

etabolomics data in NTR and LUMC-Curium. In particular, fac-
ors 1 and 2 in NTR and factor 1 in LUMC-Curium were specific to
he DNA methylation data. To help elucidate the etiology of the 10
OFA factors, we selected for each factor the top 100 CpGs with

he largest weights and performed enrichment analyses within
he Epigenome-Wide Association Study (EWAS) atlas [ 68 ]. Mul-
iple factors in both cohorts (see Additional File 5 for ACTION-
TR and Additional File 6 for LUMC-Curium cohort) sho w ed en-

ichment of CpGs associated with glucocorticoid exposure (i.e.,
dministration of corticosteroid medication [ 69 ]), CpGs asso-
iated with aging, and CpGs associated with immune-related
r aits, suc h as psoriasis. Apart from these robustly enriched
r aits, additional significant enric hments wer e found but wer e
ften based on ≤5 ov erla pping CpGs between the factor results
nd the original studies. A limitation of the enrichment anal-
sis is that the most pr e vious EWAS studies included in this
nal ysis wer e conducted on blood samples from adult popula-
ions with the Illumina 450K BeadChip. In the factor weights
or metabolites, we observe that for both NTR (Additional File
) and LUMC-Curium (Additional File 4), many of the factors
r e c har acterized by onl y 1 or fe w metabolites. We note that
n both cohorts, the factors explained only a small amount of
ariation in the metabolomics data. To investigate whether the
mics factors were associated with behavioral dimensions (MCA),
e r an gener alized estimation equation (GEE) models adjusting

or relatedness in NTR and correlation analyses in Curium (see
dditional File 3 for ACTION-NTR and Additional File 4 for LUMC-
urium cohort). None of the omics factors wer e significantl y asso-
iated with the behavioral dimensions in NTR or LUMC-Curium,
or did we observe significant associations of sex- and age-specific
-scor es for a ggr essiv e behavior with the omics factors. In pre-
ious m ulti-omics anal yses of high v ersus low le v els of c hild-
ood a ggr ession [ 70 ] and attention-deficit/hyperactivity disorder

ADHD) [ 71 ], we applied supervised analyses in these cohorts
hile a ppl ying unsupervised anal yses her e. In these pr e vious su-
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Figure 2: Schematic ov ervie w of pac ka ged w orkflo w. 
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pervised anal yses, wher e we also included an additional omics 
layer—pol ygenic scor es—we found that although multi-omics 
models had low pr edictiv e v alue, they r e v ealed some connections 
of omics traits with externalizing problems, which suggested bio- 
logical plausibility. 

We also constructed integrated similarity networks with Sim- 
ilarity Network Fusion (SNF) [ 72 ] to identify subgroups of 
individuals based on omics data. In both NTR and LUMC-Curium,
we defined integrated similarity networks based on 2 and 4 clus- 
ters . T he 2 clusters in NTR were characterized by differences in 

a ge, wher eas the 2 clusters in LUMC-Curium were characterized 

by differences in the proportion of boys and girls. To investigate 
whether the omics clusters were associated with externalizing be- 
havior, we compared the behavioral dimension scores from MCA 

between c hildr en in the different clusters. In both NTR and LUMC- 
Curium, we observed no significant differences in the behavioral 
dimensions across the 2 omics clusters after correction for mul- 
tiple testing (see Additional File 7 for NTR and Additional File 
8 for LUMC-Curium cohort). Similarly, no differences in behav- 
ioral dimensions were observed between the 4 omics clusters in 

NTR, but in LUMC-Curium, behavioral dimension 6 differed sig- 
nificantly between the 4 omics clusters. In LUMC-Curium, dimen- 
ion 6 explained 3.9% of the variance in childhood externalizing
ehavior, and the strongest contributors to this dimension com- 
rised higher frequencies of parent-rated tendencies to be suspi- 
ious and loud. Such forms of direct aggressive behavior, particu-
arly physical aggressive behavior, are common in early childhood 

n both boys and girls, and while ov er all le v els of a ggr ession de-
line with age and are roughly similar for boys and girls [ 73 ], boys
r e mor e likel y to enga ge in dir ect and physical forms of a ggr es-
ion by age 11 [ 74 ]. T hus , this finding aligns with the observation
hat the 2 omics clusters differ in the proportion of males and fe-

ales and in the age composition. 
Our data-driven approach to identifying possible relationships 

etween multi-omics and behavioral data did not reveal signifi- 
ant findings that could not also be explained by potential con-
ounding factors of sex or age. Since we here focused on latent
imensions r epr esenting the lar gest v ariations between individu-
ls (after correcting for known confounders), it is possible that re-
ationships between omics and a ggr essiv e behavior can be found
n lo w er dimensions that r eflect onl y a small amount of v ariation
n the cohorts. Ho w e v er, including mor e (latent) v ariables in the
orr elation anal ysis will also incr ease the c hance of false-positiv e
ndings. 
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iscussion 

n this collabor ativ e r esearc h pr oject, partners fr om the Nether-
ands X-omics Initiative codeveloped a w orkflo w to analyze a
omplex m ultimodal dataset. De v eloping w orkflo ws with partners
cr oss m ultiple institutions can pose a challenge, and we experi-
nced that a secure shared computing environment was k e y to
he success of this pr oject. Additionall y, pr actices aiming to in-
rease FAIRness of the shared w orkflo w suc h as v ersion contr ol
ith Git and a modular w orkflo w structure allo w ed for transpar-

nt and target-oriented w orkflo w de v elopment. Ther efor e, while
he use of technologies like Git or w orkflo w management systems

ight r equir e initial tr aining of r esearc hers, we belie v e this to be
orthwhile not only for future reuse but also during w orkflo w de-
elopment. 

To make the w orkflo w findable, w e r egister ed it in Work-
owHub [ 39 ], which is part of the European Open Science Cloud

EOSC) [ 75 ]. Since this was the first w orkflo w w e r egister ed in
orkflo wHub, w e profited from its documentation and active

omm unity. The r egistry allo w ed us to assign a globally unique
nd persistent identifier to the w orkflo w [ 76 ] and its versions.
etadata could be added using the open R O-Crate standar d and

r e searc hable in the r egistry. The w orkflo w page [ 76 ] links to
he publicly accessible and v ersion-contr olled source code on
itHub [ 77 ]. 
Se v er al FAIR pr actices for w orkflo ws include existing best prac-

ices of software development, for example, version control and
ood documentation. Adoption of these practices, along with the
se of w orkflo w managers and softw are containers, aims to con-
ribute to better inter oper ability, r eusability, and r epr oducibility
f analysis w orkflo ws and resear ch results. While w e experienced
he adoption of these technologies to be straightforw ar d, fully
AIR, and especially interoperable, data or software requires also
achine-understandable semantic metadata. Specifications like

he ISA metadata fr ame work and RO-Crate allow ontology-based
nnotations of omics experiments and analysis w orkflo ws, re-
pectiv el y. Our c hoice of ontologies was mainl y guided by the
ocumented submission r equir ements or r ecommendations pr o-
ided by services such as the MetaboLights arc hiv e or Work-
o wHub. Ho w e v er, when r ecommended ontologies do not com-
rise suitable terms, choosing appropriate ones from ontologies
an be challenging. For example, no exact match to the generic
erm sample collection that is part of the ISA schema can be found in
n y ontology av ailable in EBI’s Ontology Lookup Serivce (OLS) [ 78 ].
o describe w orkflo w steps in R O-Crate with unsupervised learning ,
e had to employ the eNanoMapper Ontology [ 79 ] as no matching

erm was available in the recommended EDAM ontology. Conse-
uentl y, we r ecognize the importance of teams dedicated to ontol-
gy cur ation, activ e user comm unities, and tr aining of r esearc hers
n using semantic technologies . T his is especially important for
 ulti-omics r esearc h that spans m ultiple r esearc h domains. 
While machine actionability supported by standardized meta-

ata is r ele v ant for inter oper ability, the w orkflo w also needs to be
sable and reusable by humans. We added software containers
hat are referenced by the workflow metadata. They enable porta-
ility and thereby reusability. A user documentation was added to
elp understand the w orkflo w steps and facilitate reuse. Enabling
icher w orkflo w annotation with R O-Crate in combination with
dditional tooling that enable automated generation of user doc-
mentation could potentially reduce the efforts of manual work-
ow documentation in the future. 

For r epr oducibility of r esearc h r esults, it is essential that data
r e shar ed along with the w orkflo w. Ho w e v er, priv acy r egulations
rohibit sharing of potentially personally identifiable data such as
mics measurements or clinical information. To demonstrate the
unctionality of the w orkflo w, w e shared a synthetic dataset that
m ulates the structur e of the case study dataset. Curr ent de v el-
pments in the areas of federated data storage and analysis such
s Feder ated Eur opean Genome-Phenome Arc hiv e (EGA) [ 80 ] and
he Personal Health Train [ 81 ] have the potential to allow fully
AIR and r epr oducible data anal ysis w orkflo ws while maintaining
riv acy r egulation compliance. 

Implementing these FAIR practices required us to use various
ools, some of which we used for the first time. While this re-
uired some time and openness to getting familiarized with these
ools, we experienced that the tools were generally well docu-

ented and could quic kl y be adopted. Open online resources such
he ELIXIR’s [ 82 ] comm unity-driv en FAIR Cookbook [ 83 , 84 ] pro-
ide guides and examples that can help r esearc hers implement
AIR pr actices. Existing Python libr aries suc h as the ISA API[ 46 ]
nd r o-cr ate-p y [ 58 ] w er e v ery useful when implementing meta-
ata standards as they can help ensure compliance with the stan-
ar ds as w ell as automating creation of metadata files. Ho w e v er,

t would have been useful if more use cases implementing FAIR
ractices for scientific computational w orkflo ws w ere available as
xamples or tutorials. We experienced that implementing FAIR
r actices fr om the start helped us create a tr anspar ent m ulti-
mics analysis w orkflo w. Additionally, w e are convinced that FAIR
 orkflo ws are k e y to not only reproducible but also efficient re-

earch as workflows or subworkflows can be reused in new con-
exts , thereby sa ving time . T herefore , we hope our experiences
elp other r esearc hers who de v elop m ulti-omics data anal ysis
 orkflo ws choosing and implementing practices that makes their
 esearc h mor e FAIR. 

ata and Methods 

ase study 

ur case study comprises data from 2 cohorts that took part in the
CTION Biomark er Stud y [ 59–61 ]. The ACTION Biomarker Study
ollected buccal DNA samples for large-scale genome-wide and
pigenome-wide association studies [ 85 , 86 ] and first-morning
rine samples to investigate the association of urine biomark-
rs and metabolites with childhood aggression [ 61 ]. These urine
nd buccal cell samples were collected in a twin cohort from the
TR [ 87 ], where twin pairs were selected on their longitudinal
oncor dance or discor dance for c hildhood a ggr ession, and in a co-
ort of c hildr en r eferr ed to an academic center for c hild and youth
sychiatry in the Netherlands (LUMC-Curium). The DNA methyla-
ion, genotype, metabolomics, and behavioral data from these co-
orts were previously used for multi-omics analyses of aggressive
ehavior [ 70 ] and ADHD [ 71 ]. Detailed information on the study
opulations and study protocol is available at protocols.io [ 88 ]. 

ata 

enome-wide DNA methylation data in buccal DNA samples were
easured on the Infinium MethylationEPIC BeadChip kit (Illu-
ina [ 89 ]) by the Human Genotyping Facility (HuGe-F) of Eras-
usMC (the Netherlands [ 90 ]). The ZymoResearch EZ DNA Methy-

ation kit (Zymo Research Corp) was used for bisulfite treatment
f 500 ng enomic DNA obtained from buccal s wabs . T he In-
nium HD Methylation Assay was performed according to the
anufacturer’s specification. Good Biomarker Sciences Leiden
easured the specific gravity (by refractomertry), levels of cre-

tinine (by colorimertry), blood traces, markers of leukocytes,
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proteins , glucose , and nitrites (the latter 5 by dipstick) of each 

urine sample . T he Metabolomics Facility of the University of 
Leiden quantified urine metabolites using 3 platforms: a liquid 

c hr omatogr a phy–mass spectr ometry (LC-MS) platform tar geting 
amines (66 biomarkers), an LC-MS platform tar geting ster oid hor- 
mones (13 biomarkers), and a gas c hr omatogr a phy–mass spec- 
trometry (GC-MS) platform targeting organic acids (21 biomark- 
ers). Behavioral data comprise the 115 items of the Dutch version 

of the ASEBA CBCL for sc hool-a ged c hildr en (6–18 years) [ 66 ]. For 
participants of the NTR cohort, we used the mother-rated CBCL as 
completed at the time of biological sample collection, and for par- 
ticipants of the LUMC-Curium cohort, we used the par ent-r ated 

(90% mother ratings) CBCL as completed in a 6-month window 

surrounding the biological sample collection. Again, details on the 
data generation are available in [ 88 ]. 

Synthetic data and metadata 

The purpose of the synthetic dataset that is part of the RO-Crate 
is to demonstrate how the workflow can be run. It resembles the 
structure of the files of the cohort data. The v alues wer e r andoml y 
sampled from the observed values in the NTR cohort without pre- 
serving an y corr elations. While cr eation of ISA metadata is not 
part of this w orkflo w, w e share the Jupyter notebook employing 
the Python ISA API [ 46 ] that was used to create the metadata for 
the synthetic dataset [ 47 ]. 

Data processing 

To ensure the urine sample metabolic integrity and to minimize 
bias contributed by health conditions, we excluded samples from 

the metabolomics data from (1) subjects who have started men- 
struating, (2) subjects in whom the time between urine sample 
collection and storing in the freezer was > 2 hours, (3) subjects 
in whom se v er e violations to the sampling protocol occurred (e.g.,
not putting a lid on the container), (4) subjects in whom the leuko- 
c yte count w as abov e tr ace, (5) subjects in whom the nitrites le v el 
was “positive high,” (6) subjects in whom the pr otein le v el was 
> 0.3, (7) subjects with glucose le v els abov e tr ace, (8) subjects with 

blood le v els abov e tr ace , (9) subjects ha ving the flu, (10) subjects 
reporting inflammation, (11) subjects reporting vomiting, (12) sub- 
jects reporting abdominal pain, and (13) subjects reporting gen- 
er al health pr oblems . Note that the abo v e criteria 4–8 ar e based 

on the dipstick marker estimation performed separ atel y fr om the 
metabolomics measurements on the same samples [ 88 ], while the 
other criteria are based on questionnaire data at the time of sam- 
pling. 

The metabolomics features were filtered based on missing val- 
ues. Missing values were reported for cases where the metabolite 
concentration is below the limit of quantification. Samples and 

metabolites with 15% or more of missing v alues wer e discarded.
Sample-wise normalization to correct for urine concentration was 
conducted by adjusting metabolite intensities to the sample cre- 
atinine le v els [ 88 ]. This was followed by metabolite-wise P ar eto 
scaling [ 91 ] to statistically account for large differences in re- 
ported values. 

Quality control (QC) and normalization of the DNA methy- 
lation array data have been previously described [ 85 ] and were 
carried out with a pipeline de v eloped by the Biobank-based In- 
tegr ativ e Omics Study (BIOS) consortium [ 92 ]. From the 787,711 
autosomal methylation probes that survived QC, the top 10% 

most variable probes were included in the analyses. Cellular 
proportions of buccal samples were predicted with Hierarchical 
Epigenetic Dissection of Intr a-Sample-Heter ogeneity (HepiDISH) 
ith the reduced partial correlation (RPC) method, as described 

heng et al. [ 93 ] and implemented in the R/Bioconductor pac ka ge
piDISH. Median imputation was carried out on the epigenetics 
ata. Residual methylation le v els wer e obtained by r egr essing the
ffects of percentages of epithelial and natural killer cells, EPIC
rr ay r ow, and bisulfite sample plate from the methylation beta-
alues. 

Missing values in the externalizing behavior items were im- 
uted with the nonpar ametric r andom for ests method fr om the R

ibr ary missFor est (1.4) [ 94 ]. 

nsupervised data analysis 

ach cohort was analyzed separately. We applied MOFA using the
/Bioconductor library MOFA2 (1.3.4) [ 67 , 95 ] to obtain factors for
he buccal DNA methylation and urine metabolomics data and 

pplied MCA [ 65 ] using the R library FactoMineR (2.4) [ 64 ] to obtain
actors for the behavioral data. 

To identify subgroups of individuals based on their buccal DNA
ethylation and urine metabolomics data, we constructed inte- 

rated similarity networks with SNF [ 72 ]. The optimal numbers of
lusters were determined using a built-in function of the Python
ibrary SNFpy [ 96 ] that uses the eigengap method [ 97 ] to find the
ptimal number of clusters. SNF first constructs sample similarity 
etworks for eac h av ailable data type and then fuses these into a
ingle network comprising both the shared and unique informa- 
ion fr om eac h data type . T he final fused network thus ca ptur es
ow each data type contributes to the similarity among the sam-
les. We tested whether the behavioral dimension scores from 

CA differ between c hildr en in the different SNF clusters, using
ann–Whitney U tests (2 clusters) or Kruskal–Wallis tests (four 

lusters) in the Curium cohort, and with GEE models (with cluster
s predictor and behavioral dimension score as outcome) in NTR.

We determined correlations among the obtained factors cap- 
uring the omics and behavioral data, respectively, using Spear- 

an’s rank correlation and additionally in the NTR cohort using
EE models. All GEE models were fitted with the R pac ka ge GEE,
ith the following specifications: Gaussian link function (for con- 

inuous data), 100 iterations, and the “exchangeable” option to ac- 
ount for the correlations in twin pairs. Statistical tests were ad-
usted for multiple testing using the false discovery rate [ 98 ]. 

vailability of source code and 

 equir ements 

� Project name: X-omics ACTION demonstrator multi-omics 
analysis w orkflo w 

� Pr oject homepa ge: [ 77 ] 
� Operating system(s): Platform independent 
� Pr ogr amming langua ge: Python, R 

� Other r equir ements: Nextflow (22.04.0), Doc ker (19.03.1), Sin-
gularity (3.8.0) 

� License: MIT 

� SciCrunch: RRID:SCR _ 024719 

a ta Av ailability 

etails on data availability can be found in Additional File 10. The
ata of the Netherlands Twin Register (NTR) ACTION Biomarker 
tudy may be accessed, upon a ppr ov al of the data access commit-
ee, through the NTR [ 99 ]. 

A synthetic dataset r epr esenting the structur e of the ACTION
iomark er Stud y dataset is available as part of the w orkflo w R O-

https://scicrunch.org/resolver/RRID:SCR_024719
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r ate av ailable at Workflo wHub [ 76 ]. An ar c hiv al cop y of the w ork-
ow is also available via the GigaScience database, GigaDB [ 100 ]. 

dditional Files 

� File name: Additional File 1 
� File format: .html 
� Title: Multiple Corr espondence Anal ysis of CBCL Behavior al

Data 
� Description: Ov ervie w of externalizing behavior items of the

Child Behavior Checklist (CBCL) of the Achenbach System of
Empirically Based Assessment (ASEBA) in the ACTION-NTR
cohort before and after imputation of missing values using
r andom for ests and r esults and visualizations of m ultiple cor-
r espondence anal ysis (MCA). 

� File name: Additional File 2 
� File format: .html 
� Title: Multiple Corr espondence Anal ysis of CBCL Behavior al

Data 
� Description: Ov ervie w of externalizing behavior items of the

Child Behavior Checklist (CBCL) of the Achenbach System of
Empirically Based Assessment (ASEBA) in the LUMC-Curium
cohort before and after imputation of missing values using
r andom for ests and r esults and visualizations of m ultiple cor-
r espondence anal ysis (MCA). 

� File name: Additional File 3 
� File format: .html 
� T itle: MOF A Downstr eam Anal ysis Report 
� Description: Visualizations of multi-omics factor analysis

(MOFA) of buccal DNA methylation (Illumina EPIC array) and
urine metabolomics data of the A CTION-NTR cohort. Also , as-
sociations between the MOFA factors and phenotypic data are
tested with GEE models. 

� File name: Additional File 4 
� File format: .html 
� T itle: MOF A Downstr eam Anal ysis Report 
� Description: Visualizations of multi-omics factor analysis

(MOFA) of buccal DNA methylation (Illumina EPIC array) and
urine metabolomics data of the LUMC-Curium cohort. 

� File name: Additional File 5 
� File format: .xlsx 
� Title: EWAS Atlas Enrichment Analysis 
� Description: Enric hed tr aits for CpGs with top 100 largest

weights of ACTION-NTR MOFA factors 1 to 10. 

� File name: Additional File 6 
� File format: .xlsx 
� Title: EWAS Atlas Enrichment Analysis 
� Description: Enric hed tr aits for CpGs with top 100 largest

weights of LUMC-Curium MOFA factors 1 to 10. 

� File name: Additional File 7 
� File format: .html 
� Title: Similarity Network Fusion Downstream Analysis 
� Description: Visualizations of similarity network fusions

(SNFs) and subsequent spectral clustering of buccal DNA
methylation (Illumina EPIC array) and urine metabolomics
data of the ACTION-NTR cohort. 

� File name: Additional File 8 
� File format: .html 
� Title: Similarity Network Fusion Downstream Analysis 
� Description: Visualizations of similarity network fusions
(SNFs) and subsequent spectral clustering of buccal DNA
methylation (Illumina EPIC array) and urine metabolomics
data of the LUMC-Curium cohort. 

� File name: Additional File 9 
� File format: .html 
� Title: Similarity Network Fusion Downstream Analysis With

GEE models 
� Description: Associations between the similarity network fu-

sion (SNF) clusters and phenotypic data are tested with GEE
models in the ACTION-NTR cohort. 

� File name: Additional File 10 
� File format: .pdf 
� Title: Ov ervie w of Data Dimensions for ACTION-NTR and

LUMC-CURIUM Cohort 
� Description: Table with dimensions (variables by observa-

tions) of input and intermediate data types. 

bbreviations 

CTION: Aggression in Children: Unraveling Gene-Environment
nterplay to Inform Treatment and Intervention Strategies;
SEBA: Ac henbac h System of Empiricall y Based Assessment;
BI: European Bioinformatics Institute; EGA: European Genome-
henome Arc hiv e; EMBL: Eur opean Molecular Biology Labor a-
ory; EWAS: epigenome-wide association study; FAIR: Findable,
ccessible, Inter oper able, Reusable; GC-MS: gas c hr omatogr a phy–
ass spectr ometry; ISA: Inv estigation, Study, Assay; LC-MS: liquid

 hr omatogr a phy–mass spectr ometry; MOFA: m ulti-omics factor
nalysis; NTR: Netherlands Twin Register; R O-Crate: Resear ch Ob-
ect Crate; SNF: Similarity Network Fusion. 
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he ACTION Biomarker study was conducted according to the
uidelines of the Declaration of Helsinki and a ppr ov ed by the
entral Ethics Committee on Research Involving Human Sub-
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ay 2007 and ACTION 2013/41 and 2014.252), an institutional re-
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nce FWA00017598; IRB/institute codes), and the Medical Ethical
ommittee of Leiden University Medical Center (B17.031, B17.032,
nd B17.040). 
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ion of their c hildr en. 

ompeting Interests 

he authors declare that they have no competing interests. 

unding 

.J.G. and P.A.C.H. r eceiv ed funding fr om The Netherlands X-omics
nitiativ e, whic h is (partiall y) funded by the Dutc h Researc h Coun-
il (NWO), project 184.034.019, and from EATRIS-Plus, which has
 eceiv ed funding the European Union’s Horizon 2020 r esearc h and
nnov ation pr ogr am under gr ant a gr eement No. 871096. D.I.B. and
.R.J.M.V. r eceiv ed funding from “Aggression in Children: Unrav-
ling Gene-Envir onment Inter play to Inform Treatment and In-
erv ention Str ategies” (ACTION), whic h is (partiall y) funded by
he European Union Seventh F ramew ork Program (FP7/2007-2013)



A multi-omics data analysis w orkflo w packaged as a FAIR Digital Object | 9 

 

 

 

 

8  

 

 

 

9

1  

 

 

1  

1  

 

1

1  

 

1

 

1  

1  

 

1  

 

1  

2  

2

2

2  

2
 

2  

2

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giad115/7528996 by Vrije U

niversiteit Am
sterdam

 user on 18 January 2024
under grant agreement No. 602768. D.I.B. received funding from 

“Consortium on Individual De v elopment” (CID), funded by the 
Gr avitation Pr ogr am of the Dutch Ministry of Education, Culture,
and Science and the Dutch Research Council (NWO) under grant 
a gr eement No. 024-001-003 and is supported by the Ro y al Nether- 
lands Academy of Arts and Sciences (KN AW) Professor Aw ar d 

(PAH/6635). 

Authors’ Contributions 

A.J.G., P.A.C.H., D.I.B., and J.D. form ulated ov er arc hing r esearc h 

aims (conceptualization). R.P. and N.K. maintained and annotated 

the metabolomics data of the ACTION-NTR cohort (data cura- 
tion). C.V., A.N., P.K., and JD applied statistical methods to ana- 
lyze the study data (formal analysis). A.J.G., P.A.C.H., R.R.J.M.V., and 

D.I.B. acquired financial support for the projects leading to this 
publication (funding acquisition). A.N., C.V., F.A.H., N.K., A.S.D.K., 
P .K., R.P ., and J.D. conducted the r esearc h pr ocess (inv estigation).
A.N., C.V., F.A.H., N.K., A.S.D.K., P.K., R.P., and J.D. designed the 
methodology (methodology). A.N. coordinated the r esearc h activ- 
ity planning and execution (project administration). F .A.H., R.P .,
J .D., R.R.J .M.V., and D.B. provided study samples and acquired data 
(resources). C.V., P .K., R.P ., J.D., and A.N. implemented the source 
code (software). D.I.B., A.J.G., and P.A.C.H. provided mentorship 

to the r esearc h team (supervision). A.N. wr ote the initial dr aft 
of the manuscript (writing—original draft). All authors critically 
r e vie wed and contributed to writing the manuscript (writing—
r e vie w & editing). 

Ac kno wledgments 

We acknowledge the ACTION Consortium and thank the partici- 
pants of the ACTION Biomarker Study. We thank Michael van Vliet 
for discussions on the FAIRification strategy and Philippe Rocca- 
Serra and his team for their support on ISA. 

References 

1. Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. The FAIR 

guiding principles for scientific data management and stew- 
ardship. Sci Data 2016;3(1):160018. https:// doi.org/ 10.1038/ sd 
ata.2016.18 .

2. Lawson J, Cabili MN, Kerry G, et al. The data use ontology to 
str eamline r esponsible access to human biomedical datasets. 
Cell Genom 2021;1(2):100028. https:// doi.org/ 10.1016/ j.xgen.2 
021.100028 .

3. van der Velde KJ, Singh G, Kaliyaperumal R, et al. FAIR Genomes 
metadata sc hema pr omoting next gener ation sequencing data 
r euse in Dutc h healthcar e and r esearc h. Sci Data 2022;9(1):169.
https:// doi.org/ 10.1038/ s41597- 022- 01265- x .

4. Peters K, Bradbury J, Bergmann S, et al. PhenoMeNal: process- 
ing and analysis of metabolomics data in the cloud. Giga- 
science 2019;8(2):1–12. https:// doi.org/ 10.1093/ gigascience/ gi 
y149 .

5. Berrios DC, Galazka J, Grigor e v K, et al. NASA GeneLab: inter- 
faces for the exploration of space omics data. Nucleic Acids Res 
2021;49(D1):D1515–22. https:// doi.org/ 10.1093/ nar/ gkaa887 .

6. Courtot M, Gupta D, Liyanage I, et al. BioSamples database: 
FAIRer samples metadata to accelerate research data manage- 
ment. Nucleic Acids Res 2022;50(D1):D1500–7. https://doi.org/ 
10.1093/ nar/ gkab1046 .

7. da Silva Santos LOB, Burger K, Kaliyaperumal R, et al. FAIR data 
point: a FAIR-oriented a ppr oac h for metadata publication. Data 
Intelligence 2022; 5(1):163–183. https:// doi.org/ 10.1162/ dint _ a _ 
00160 .

. v an Lin N, P aliour as G, Vr oom E, et al. How patient or gani-
zations can drive FAIR data efforts to facilitate research and
health car e: a r eport of the virtual second international meet-
ing on Duchenne data sharing, March 3, 2021. J Neuromusc Dis
2021;8(6):1097–108. https:// doi.org/ 10.3233/ JND-210721 .

. Lalout N. ERN EURO-NMD and Duchenne Parent Project begin 

le v er a ging their FAIR data—EURO-NMD Registry Website 
(ern-eur o-nmd.eu). https://r egistry.ern- euro- nmd.eu/ern- eur 
o- nmd- and- duchenne- parent- project- begin- lev er aging-their 
- fair- data/. Accessed 18 November 2022.

0. Quer alt-Rosinac h N, Kaliya perumal R, Bernabé CH, et al. Ap-
plying the FAIR principles to data in a hospital: challenges and
opportunities in a pandemic. J Biomed Semant 2022;13(1):12.
https:// doi.org/ 10.1186/ s13326- 022- 00263- 7 .

1. Baker M. 1,500 scientists lift the lid on r epr oducibility. Natur e
2016;533(7604):452–4. https:// doi.org/ 10.1038/ 533452a .

2. Jiménez RC, Kuzak M, Alhamdoosh M, et al. Four simple recom-
mendations to encour a ge best pr actices in r esearc h softwar e.
F1000Research 2017;6:876. https:// doi.org/ 10.12688/f1000rese 
arch.11407.1 .

3. The Netherlands eScience Center. Dutch Data Archiving and 
Networked Services (DANS), FAIR | FAIR (fair-software.nl). http 
s://fair -softwar e.nl/. Accessed 21 November 2022.

4. Barker M, Chue Hong NP, Katz DS, et al. Introducing the FAIR
principles for r esearc h softwar e. Sci Data 2022;9(1):622. https:
// doi.org/ 10.1038/ s41597- 022- 01710- x .

5. Cohen-Boulakia S, Belhajjame K, Collin O, et al. Scientific work- 
flows for computational r epr oducibility in the life sciences: 
status , challenges and opportunities . Future Gener Comp Syst
2017;75:284–98. https:// doi.org/ 10.1016/ j.future.2017.01.012 .

6. Goble C, Cohen-Boulakia S, Soiland-Reyes S, et al. FAIR compu-
tational w orkflo ws. Data Intelligence 2020;2(1–2):108–21. https: 
// doi.org/ 10.1162/ dint _ a _ 00033 .

7. Kim YM, Poline JB, Dumas G. Experimenting with r epr o-
ducibility: a case study of robustness in bioinformatics.
Gigascience 2018;7(7):1–8. https:// doi.org/ 10.1093/ gigascience/ 
giy077 .

8. Chue Hong NP, Katz DS, Barker M, et al. FAIR principles for re-
sear ch softw are version 1.0. (FAIR4RS Principles v1.0). Res Data
Alliance. 2022. https:// doi.org/ 10.15497/RDA00068 .

9. Stoudt S, Vásquez VN, Martinez CC. Principles for data analysis
w orkflo ws. PLoS Comput Biol 2021;17(3):1–26. https://doi.org/ 
10.1371/journal.pcbi.1008770 .

0. Softw are F reedom Conservanc y, Git. https:// git-scm.com/ . Ac-
cessed 31 October 2023.

1. GitHub, Inc. GitHub. https:// github.com/ . Accessed 21 Novem- 
ber 2022.

2. GitLab B V. The One DevOps Platform | GitLab. https://gitlab.c 
om/. Accessed 21 November 2022.

3. Atlassian Pty Ltd. Bitbucket | Git solution for teams using Jira.
https:// bitbucket.org/ . Accessed 21 November 2022.

4. Martín del Pico E, Gelpi JL, Ca pella-Gutiérr ez S. FAIRsoft—
practical implementation of FAIR principles for r esearc h soft-
ware. bioRxiv. 2022. 2022.05.04.490563. https:// doi.org/ 10.110 
1/2022.05.04.490563 .

5. Grüning BA, Lampa S, Vaudel M, et al. Software engineering for
scientific big data analysis. Gigascience 2019;8(5):1–6. https:// 
doi.org/ 10.1093/ gigascience/ giz054 .

6. Marx V. When computational pipelines go ‘clank’. Nat Methods 
2020;17(7):659–62. https:// doi.org/ 10.1038/ s41592- 020- 0886- 9 .

https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1016/j.xgen.2021.100028
https://doi.org/10.1038/s41597-022-01265-x
https://doi.org/10.1093/gigascience/giy149
https://doi.org/10.1093/nar/gkaa887
https://doi.org/10.1093/nar/gkab1046
https://doi.org/10.1162/dint_a_00160
https://doi.org/10.3233/JND-210721
https://registry.ern-euro-nmd.eu/ern-euro-nmd-and-duchenne-parent-project-begin-leveraging-their-fair-data/
https://doi.org/10.1186/s13326-022-00263-7
https://doi.org/10.1038/533452a
https://doi.org/10.12688/f1000research.11407.1
https://fair-software.nl/
https://doi.org/10.1038/s41597-022-01710-x
https://doi.org/10.1016/j.future.2017.01.012
https://doi.org/10.1162/dint_a_00033
https://doi.org/10.1093/gigascience/giy077
https://doi.org/10.15497/RDA00068
https://doi.org/10.1371/journal.pcbi.1008770
https://git-scm.com/
https://github.com/
https://gitlab.com/
https://bitbucket.org/
https://doi.org/10.1101/2022.05.04.490563
https://doi.org/10.1093/gigascience/giz054
https://doi.org/10.1038/s41592-020-0886-9


10 | GigaScience , 2024, Vol. 13, No. 1 

2  

 

2  

2  

 

3  

 

3  

 

3  

 

 

3  

 

3  

 

3  

 

3  

 

3  

 

3  

 

 

3  

4  

 

4  

 

4  

 

4  

 

4  

 

4  

 

 

 

 

4  

 

 

4  

 

4  

 

4  

 

5  

 

 

5  

 

5  

 

5  

 

5  

 

 

5  

 

5  

 

 

5  

 

 

5  

5  

 

 

6  

 

 

 

 

6  

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giad115/7528996 by Vrije U

niversiteit Am
sterdam

 user on 18 January 2024
7. The Apache Software Foundation. APACHE LICENSE, VERSION
2.0. https://www.a pache.or g/licenses/LICENSE-2.0 . Accessed 2
February 2023.

8. Opensource .org. T he MIT License. https://opensource.org/licen
se/mit/. Accessed 2 February 2023.

9. Reiter T, Brooks PT, Irber L, et al. Streamlining data-intensive
biology with w orkflo w systems. Gigascience 2021;10(1):1–19.
https:// doi.org/ 10.1093/ gigascience/ giaa140 .

0. Di Tommaso P, Chatzou M, Floden EW, et al. Nextflow en-
ables r epr oducible computational w orkflo ws. Nat Biotechnol
2017;35(4):316–9. https:// doi.org/ 10.1038/ nbt.3820 .

1. Mölder F, Jablonski KP, Letcher B, et al. Sustainable data anal-
ysis with Snak emak e. F1000Research 2021;10 33. https://doi.or
g/10.12688/f1000r esearc h.29032.2 .

2. Wratten L, Wilm A, Göke J. Reproducible , scalable , and share-
able analysis pipelines with bioinformatics w orkflo w man-
agers. Nat Methods 2021;18(10):1161–8. https:// doi.org/ 10.103
8/s41592- 021- 01254- 9 .

3. Apptainer. Contributors to the Apptainer project, established
as Apptainer a Series of LF Projects LLC, Home | Apptainer. ht
tps:// apptainer.org/ . Accessed 22 November 2022.

4. Doc ker Inc. Doc ker: acceler ated, containerized a pplication de-
v elopment. https://www.doc ker.com/. Accessed 22 Nov ember
2022.

5. Gruening B, Sallou O, Moreno P, et al. Recommendations for
the pac ka ging and containerizing of bioinformatics software.
F1000Research 2019;7:742. https:// doi.org/ 10.12688/f1000rese 
arch.15140.2 .

6. De Smedt K, Koureas D, Wittenburg P. FAIR Digital Objects for
science: from data pieces to actionable knowledge units. Publi-
cations 2020;8(2):21. https:// doi.org/ 10.3390/ publications8020 
021 .

7. Soiland-Reyes S, Sefton P, Crosas M, et al. P ac ka ging r esearc h
artefacts with RO-Crate. Data Sci 2022;5(2):97–138. https://do
i.org/ 10.3233/ DS-210053 .

8. Krassowski M, Das V, Sahu SK, et al. State of the field in multi-
omics r esearc h: fr om computational needs to data mining and
sharing. Front Genet 2020;11 :1–17. https:// doi.org/ 10.3389/ fg
ene.2020.610798 .

9. The University of Manchester. HITS gGmbH, WorkflowHub. ht
tps:// workflowhub.eu/ . Accessed 10 November 2022.

0. Goble C, Soiland-reyes S, Bacall F, et al. Implementing FAIR dig-
ital objects in the EOSC-life w orkflo w collaboratory. Zenodo.
2021. https:// doi.org/ 10.5281/ zenodo.4605653 .

1. Soiland-Reyes S, Sefton P, Castro LJ, et al. Creating lightweight
FAIR digital objects with RO-Crate. Res Ideas Outcomes
2022;8:e93937. https:// doi.org/ 10.3897/ rio .8.e93937 . 

2. Soiland-Reyes S, Goble C, Groth P. Evaluating FAIR Digital Ob-
ject and Linked Data as distributed object systems. arXiv. 2023.
https:// doi.org/ 10.48550/arXiv.2306.07436 

3. Haug K, Coc hr ane K, Nainala VC, et al. MetaboLights: a resource
e volving in r esponse to the needs of its scientific community.
Nucleic Acids Res 2020;48(D1):D440–4. https:// doi.org/ 10.1093/ 
nar/gkz1019 .

4. Sansone SA, Rocca-Serra P, Field D, et al. To w ar d inter oper able
bioscience data. Nat Genet 2012;44(2):121–6. https:// doi.org/ 10
.1038/ng.1054 .

5. Kluyv er T, Ra gan-K elley B, Pér ez F, et al. Jupyter Notebooks—a
publishing format for r epr oducible computational w orkflo ws.
In: P ositioning and P o w er in Academic Publishing: Play ers,
Agents and Agendas—Proceedings of the 20th International
Confer ence on Electr onic Publishing, ELPUB 2016. IOS Pr ess,
Amsterdam. 2016: 87–90. https:// doi.org/ 10.3233/ 978- 1- 61499- 
649- 1- 87 .

6. Johnson D, Batista D, Coc hr ane K, et al. ISA API: an open plat-
form for inter oper able life science experimental metadata. Gi-
gascience 2021;10(9):1–13. https:// doi.org/ 10.1093/ gigascienc
e/giab060 .

7. The Netherlands X-omics Initiative. X-omics ISA-ACTION-
Template. https:// github.com/Xomics/ ISA- ACTION- Templat
e/tree/v1.0.0 . Accessed 9 November 2022.

8. Harris MA. In: Keith JM, ed. Bioinformatics: Data, Sequence
Analysis and Evolution. Developing an Ontology. Humana
Press; Toto w a, NJ. 2008:111–24. https:// doi.org/ 10.1007/ 978-1- 
60327- 159- 2 _ 5 .

9. National Cancer Institute. NCI Thesaurus OBO Edition. https://
github.com/NCI-Thesaur us/thesaur us-obo-edition/. Accessed
21 November 2022.

0. Malone J, Hollo w ay E, Adamusiak T, et al. Modeling sample
variables with an Experimental Factor Ontology. Bioinformat-
ics 2010;26(8):1112–8. https:// doi.org/ 10.1093/ bioinformatics
/btq099 .

1. Bandrowski A, Brinkman R, Br oc hhausen M, et al. The ontology
for biomedical investigations. PLoS One 2016;11(4):1–19. https:
// doi.org/ 10.1371/ journal.pone.0154556 .

2. Metabolomics Standards Initiative. Metabolomics Standards
Initiative Ontology. https://github.com/MSI- Metabolomics- St
andards-Initiative/MSIO/. Accessed 21 November 2022.

3. Ro y al Society of Chemistry. Chemical Methods Ontology. ht
tp://purl.obolibr ar y.or g/obo/c hmo.owl . Accessed 21 Nov ember
2022.

4. Hastings J, Owen G, Dekker A, et al. ChEBI in 2016: impr ov ed
services and an expanding collection of metabolites. Nucleic
Acids Res 2015;44(D1):D1214–9. https:// doi.org/ 10.1093/ nar/ gk
v1031 .

5. The Netherlands X-omics Initiative. X-omics ACTION demon-
str ator m ulti-omics anal ysis w orkflo w documentation.
https:// github.com/Xomics/ ACTIONdemonstr ator _ wor kflo 
w/ blob/main/ Documentation.md . Accessed 9 November 2022.

6. Ison J, Kalaš M, Jonassen I, et al. EDAM: an ontology of bioinfor-
matics operations, types of data and identifiers, topics and for-
mats. Bioinformatics 2013;29(10):1325–32. https:// doi.org/ 10.1
093/bioinformatics/btt113 .

7. Dumontier M, Baker C, Baran J, et al. The Semanticscience Inte-
grated Ontology (SIO) for biomedical research and knowledge
discovery. J Biomed Semant 2014;5:14. https:// doi.org/ 10.1186/
2041- 1480- 5- 14 .

8. De Geest P, Droesbeke B, Eguinoa I, et al. r o-cr ate-py. Zenodo.
2022. https:// doi.org/ 10.5281/ zenodo.6522015 

9. Boomsma DI. Aggression in children: unravelling the in-
terplay of genes and environment through (epi) genetics
and metabolomics. J Pediatr Neonatal Individualized Med
2015;4(2):e040251. https:// doi.org/ 10.7363/ 040251 .

0. Bartels M, Hendriks A, Mauri M, et al. Childhood a ggr ession
and the co-occurrence of behavioural and emotional prob-
lems: r esults acr oss a ges 3–16 years fr om m ultiple r aters in six
cohorts in the EU-ACTION project. Eur Child Adolesc Psychi-
atry 2018;27(9):1105–21. https:// doi.org/ 10.1007/ s00787- 018- 1
169-1 .

1. Hagenbeek FA, Roetman PJ, Pool R, et al. Urinary
amine and organic acid metabolites evaluated as mark-
ers for childhood aggression: the ACTION Biomarker Study.
Fr ont Psyc hiatr 2020;11(165): 1–15. https:// doi.org/ 10.3389/ fp
syt.2020.00165 .

https://www.apache.org/licenses/LICENSE-2.0
https://opensource.org/license/mit/
https://doi.org/10.1093/gigascience/giaa140
https://doi.org/10.1038/nbt.3820
https://doi.org/10.12688/f1000research.29032.2
https://doi.org/10.1038/s41592-021-01254-9
https://apptainer.org/
https://www.docker.com/
https://doi.org/10.12688/f1000research.15140.2
https://doi.org/10.3390/publications8020021
https://doi.org/10.3233/DS-210053
https://doi.org/10.3389/fgene.2020.610798
https://workflowhub.eu/
https://doi.org/10.5281/zenodo.4605653
https://doi.org/10.3897/rio.8.e93937
https://doi.org/10.48550/arXiv.2306.07436
https://doi.org/10.1093/nar/gkz1019
https://doi.org/10.1038/ng.1054
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1093/gigascience/giab060
https://github.com/Xomics/ISA-ACTION-Template/tree/v1.0.0
https://doi.org/10.1007/978-1-60327-159-2_5
https://github.com/NCI-Thesaurus/thesaurus-obo-edition/
https://doi.org/10.1093/bioinformatics/btq099
https://doi.org/10.1371/journal.pone.0154556
https://github.com/MSI-Metabolomics-Standards-Initiative/MSIO/
http://purl.obolibrary.org/obo/chmo.owl
https://doi.org/10.1093/nar/gkv1031
https://github.com/Xomics/ACTIONdemonstrator_workflow/blob/main/Documentation.md
https://doi.org/10.1093/bioinformatics/btt113
https://doi.org/10.1186/2041-1480-5-14
https://doi.org/10.5281/zenodo.6522015
https://doi.org/10.7363/040251
https://doi.org/10.1007/s00787-018-1169-1
https://doi.org/10.3389/fpsyt.2020.00165


A multi-omics data analysis w orkflo w packaged as a FAIR Digital Object | 11 

8

8

8

8

8

8  

 

8  

 

8  

 

8  

8  

 

9
 

9

9  

 

9  

9

9  

 

9

9

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giad115/7528996 by Vrije U

niversiteit Am
sterdam

 user on 18 January 2024
62. The Netherlands X-omics Initiative. X-omics—Home. https:// 
www.x-omics.nl/. Accessed 24 November 2022.

63. Vrije Universiteit Amsterdam. Information for re- 
searchers | Nederlands Tweelingen Register (vu.nl). 
https://tweelingenregister .vu.nl/infor mation _ for _ r esearc 
hers/inf ormation-f or-researchers . Accessed 24 November 
2022.

64. Lê S, Josse J, Husson F. FactoMineR: an R pac ka ge for m ultiv ari- 
ate analysis. J Statistic Softw 2008;25(1):1–18. https://doi.org/ 
10.18637/jss.v025.i01 .

65. Husson F, Lê S, P a gès J. Multiple corr espondence anal ysis 
(MCA). In: Explor atory Multiv ariate Anal ysis by Example Us- 
ing R. 2nd ed. Cha pman and Hall/CRC: Ne w York. 2017. https: 
// doi.org/ 10.1201/ b21874 .

66. Ac henbac h TM, Iv anov a MY, Rescorla LA. Empiricall y based 
assessment and taxonomy of psychopathology for ages 1 1 2 –
90 + years: de v elopmental, m ulti-informant, and m ulticultur al 
findings. Compr Psychiatr 2017;79:4–18. https:// doi.org/ 10.101 
6/j.comppsych.2017.03.006 .

67. Ar gela guet R, Velten B, Arnol D, et al. Multi-omics factor 
anal ysis—a fr ame work for unsupervised integration of multi- 
omics data sets. Mol Syst Biol 2018;14(6):e8124. https://doi.or 
g/10.15252/msb.20178124 .

68. Xiong Z, Yang F, Li M, et al. EWAS Open Platform: integrated 
data, knowledge and toolkit for epigenome-wide association 

study. Nucleic Acids Res 2022;50(D1):D1004–9. https://doi.org/ 
10.1093/ nar/ gkab972 .

69. Braun PR, Tanaka–Sahker M, Chan AC, et al. Genome-wide DNA 

methylation investigation of glucocorticoid exposure within 

buccal samples. Psychiatr Clin Neurosci 2019;73(6):323–30. 
https:// doi.org/ 10.1111/ pcn.12835 .

70. Ha genbeek FA, v an Dongen J, Pool R, et al. Integr ativ e m ulti- 
omics analysis of childhood aggressive beha vior. Beha v Genet 
2023;53:101–17. https:// doi.org/ 10.1007/ s10519- 022- 10126- 7 .

71. Hubers N, Hagenbeek FA, Pool R, et al. Integr ativ e m ulti-omics 
analysis of genomic , epigenomic , and metabolomics data leads 
to new insights for attention-deficit/hyperactivity disorder. 
medRxiv. 2022. https:// doi.org/ 10.1101/ 2022.07.21.22277887 .

72. Wang B, Mezlini AM, Demir F, et al. Similarity network fusion 

for a ggr egating data types on a genomic scale. Nat Methods 
2014;11(3):333–7. https:// doi.org/ 10.1038/ nmeth.2810 .

73. Côté S, Vaillancourt T, LeBlanc JC, et al. The de v elopment of 
physical a ggr ession fr om toddlerhood to pr e-adolescence: a na- 
tion wide longitudinal study of canadian c hildr en. J Abnorm 

Child Psychol 2006;34(1):68–82. https:// doi.org/ 10.1007/ s10802 
- 005- 9001- z .

74. Archer J. Does sexual selection explain human sex differences 
in a ggr ession? Behav Br ain Sci 2009;32(3–4):249–66. https://do 
i.org/ 10.1017/ S0140525X09990951 .

75. EOSC Future, EOSC Association. EOSC Portal (eosc-portal.eu). 
https:// eosc-portal.eu/ . Accessed 31 October 2023.

76. The Netherlands X-omics Initiative. X-omics ACTION 

demonstr ator m ulti-omics anal ysis w orkflo w. Accessed 8 
December 2023. https:// doi.org/ 10.48546/workflowhub.workf 
low.402.8 .

77. The Netherlands X-omics Initiative. X-omics ACTION demon- 
str ator m ulti-omics anal ysis w orkflo w. https://github.com/X 

omics/ACTIONdemonstr ator _ wor kflow. Accessed 9 November 
2022.

78. EMBL-EBI. Ontology Lookup Service < EMBL-EBI. https://www. 
ebi.ac.uk/ ols/ index . Accessed 9 March 2023.

79. Hastings J, J eliazko va N, Owen G, et al. eNanoMapper: harness- 
ing ontologies to enable data integration for nanomaterial risk 
assessment. J Biomed Semant 2015;6(1):10. https:// doi.org/ 10 
.1186/s13326- 015- 0005- 5 .

0. EGA Consortium. Federated EGA—EGA European Genome- 
Phenome Arc hiv e (ega-arc hiv e.or g). https://ega-arc hive.org/fe 
derated . Accessed 27 February 2023.

1. Health-RI. The Personal Health Train Network | The Personal 
Health Train (health-ri.nl). https:// pht.health-ri.nl/ . Accessed 
27 February 2023.

2. ELIXIR. ELIXIR | A distributed infr astructur e for life-science 
information (elixir-eur ope.or g). https://elixir -eur ope.or g/. Ac- 
cessed 31 October 2023.

3. ELIXIR. F AIRplus, F AIR Cookbook (elixir-eur ope.or g). https://fa 
ircookbook.elixir-eur ope.or g/. Accessed 31 October 2023.

4. Rocca-Serra P, Gu W, Ioannidis V, et al. The FAIR Cookbook—
the essential resource for and by FAIR doers. Sci Data 
2023;10:292. https:// doi.org/ 10.1038/ s41597- 023- 02166- 3 .

5. v an Dongen J, Ha genbeek FA, Suderman M, et al. DNA methyla-
tion signatures of aggression and closely related constructs: a 
meta-analysis of epigenome-wide studies across the lifespan.
Mol Psychiatr 2021. 26:2148–2162. https:// doi.org/ 10.1038/ s413 
80- 020- 00987- x .

6. Ip HF, van der Laan CM, Kr a pohl EML, et al. Genetic association
study of childhood aggression across raters , instruments , and
a ge. Tr ansl Psyc hiat 2021;11(1):413. https:// doi.org/ 10.1038/ s4 
1398- 021- 01480- x .

7. Ligthart L, v an Beijsterv eldt CEM, K e v enaar ST, et al. The
Netherlands twin reg ister: long itudinal research based on twin
and twin-family designs. Twin Res Hum Genet 2019;22(6):623–
36. https:// doi.org/ 10.1017/ thg.2019.93 .

8. Ha genbeek FA, v an Dongen J, Roetman PJ, et al. ACTION
Biomark er Stud y. protocolsio. 2023. https://dx.doi.org/10.1750 
4/ protocols.io.eq2ly7qkwlx9/ v1 .

9. Moran S, Arribas C, Esteller M. Validation of a DNA methyla-
tion micr oarr ay for 850,000 CpG sites of the human genome
enriched in enhancer sequences. Epigenomics 2016;8(3):389–
99. https:// doi.org/ 10.2217/ epi.15.114 .

0. Human Genomics Facility. Laboratory for Population Genomics 
of the Department of Internal Medicine at Er asm us MC, HuGe-F
(glimdna.org). http:// www.glimdna.org/ . Accessed 8 November 
2022.

1. Eriksson L. Introduction to Multi-and Megavariate Data Anal- 
ysis Using Projection Methods (PCA and PLS). Umetrics AB: 
Ume ̊a. 1999.

2. Sinke L, van Iterson M, Cats D, et al. DNAmArr ay: str eamlined
w orkflo w for the quality control, normalization, and analysis
of Illumina methylation array data. GitHub. https://molepi.git 
hub.io/DNAmArr ay _ wor kflow/.

3. Zheng SC, Webster AP, Dong D, et al. A novel cell-type
deconvolution algorithm r e v eals substantial contamination 

by immune cells in saliva, buccal and cervix. Epigenomics 
2018;10(7):925–40. https:// doi.org/ 10.2217/ epi- 2018- 0037 .

4. Stekhoven DJ, Buhlmann P. MissFor est—non-par ametric miss- 
ing value imputation for mixed-type data. Bioinformatics 
2012;28(1):112–8. https:// doi.org/ 10.1093/ bioinformatics/btr59 
7 .

5. Ar gela guet R, Arnol D, Bredikhin D, et al. MOFA + : a statisti-
cal fr ame work for compr ehensiv e integr ation of m ulti-modal
single-cell data. Genome Biol 2020;21(1):111. https://doi.org/ 
10.1186/s13059- 020- 02015- 1 .

6. Markello R. SNFp y. https://github.com/rmarkello/snfp y . Ac- 
cessed 17 February 2023.

7. John CR, Watson D, Barnes MR, et al. Spectrum: 
fast density-aware spectral clustering for single 

https://www.x-omics.nl/
https://tweelingenregister.vu.nl/information_for_researchers/information-for-researchers
https://doi.org/10.18637/jss.v025.i01
https://doi.org/10.1201/b21874
https://doi.org/10.1016/j.comppsych.2017.03.006
https://doi.org/10.15252/msb.20178124
https://doi.org/10.1093/nar/gkab972
https://doi.org/10.1111/pcn.12835
https://doi.org/10.1007/s10519-022-10126-7
https://doi.org/10.1101/2022.07.21.22277887
https://doi.org/10.1038/nmeth.2810
https://doi.org/10.1007/s10802-005-9001-z
https://doi.org/10.1017/S0140525X09990951
https://eosc-portal.eu/
https://doi.org/10.48546/workflowhub.workflow.402.8
https://github.com/Xomics/ACTIONdemonstrator_workflow
https://www.ebi.ac.uk/ols/index
https://doi.org/10.1186/s13326-015-0005-5
https://ega-archive.org/federated
https://pht.health-ri.nl/
https://elixir-europe.org/
https://faircookbook.elixir-europe.org/
https://doi.org/10.1038/s41597-023-02166-3
https://doi.org/10.1038/s41380-020-00987-x
https://doi.org/10.1038/s41398-021-01480-x
https://doi.org/10.1017/thg.2019.93
https://dx.doi.org/10.17504/protocols.io.eq2ly7qkwlx9/v1
https://doi.org/10.2217/epi.15.114
http://www.glimdna.org/
https://molepi.github.io/DNAmArray_workflow/
https://doi.org/10.2217/epi-2018-0037
https://doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.1186/s13059-020-02015-1
https://github.com/rmarkello/snfpy


12 | GigaScience , 2024, Vol. 13, No. 1 

and multi-omic data. Bioinformatics 2019;36(4): 

9  

 

 

99. Vrije Universiteit Amsterdam. Working with NTR data—
 

1  

 

 

R
©
(

D
ow

nloaded from
1159–66. https://doi.org/10.1093/bioinformatics/ 
btz704 .

8. Benjamini Y, Hoc hber g Y. Contr olling the false discov ery r ate:
a practical and po w erful approach to multiple testing. J R Stat
Soc B (Methodological) 1995;57(1):289–300. https:// doi.org/ 10.1
111/j.2517-6161.1995.tb02031.x .
ecei v ed: J une 13, 2023. Re vised: No vember 14, 2023 
The Author(s) 2024. Published by Oxford Uni v ersity Pr ess GigaScience. This is an Open Access a

 https://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, an
Working with NTR data (vu.nl). https://ntr- data- request.psy.v
u.nl/. Accessed 24 November 2022.

00. Niehues A, de Visser C, Hagenbeek FA, et al. Supporting data
for “A Multi-omics Data Analysis Workflow P ac ka ged as a FAIR
Digital Object.” GigaScience Database. 2023. http://dx.doi.org
/10.5524/102488 .
rticle distributed under the terms of the Cr eati v e Commons Attribution License 
d reproduction in any medium, provided the original work is properly cited.

 https://academ
ic.oup.com

/gigascience/article/doi/10.1093/gigascience/giad115/7528996 by Vrije U
niversiteit Am

sterdam
 user on 18 January 2024

https://doi.org/10.1093/bioinformatics/btz704
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://ntr-data-request.psy.vu.nl/
http://dx.doi.org/10.5524/102488
https://creativecommons.org/licenses/by/4.0/

	hypertarget {sec2-01}{}Key Points:
	Background
	Findings
	Discussion
	Data and Methods
	Availability of source code and requirements
	Data Availability
	Additional Files
	Abbreviations
	Ethical Approval
	Competing Interests
	Funding
	Authors Contributions
	Acknowledgments
	References

