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Abstract
We test whether genetic influences that explain individual differences in aggression in early life also explain individual dif-
ferences across the life-course. In two cohorts from The Netherlands (N = 13,471) and Australia (N = 5628), polygenic scores 
(PGSs) were computed based on a genome-wide meta-analysis of childhood/adolescence aggression. In a novel analytic 
approach, we ran a mixed effects model for each age (Netherlands: 12–70 years, Australia: 16–73 years), with observations 
at the focus age weighted as 1, and decaying weights for ages further away. We call this approach a ‘rolling weights’ model. 
In The Netherlands, the estimated effect of the PGS was relatively similar from age 12 to age 41, and decreased from age 
41–70. In Australia, there was a peak in the effect of the PGS around age 40 years. These results are a first indication from 
a molecular genetics perspective that genetic influences on aggressive behavior that are expressed in childhood continue to 
play a role later in life.

Keywords Aggressive behavior · Aggression · Life-course · Development · Polygenic score · Rolling weights

Introduction

Aggression is broadly defined as common human behavior 
that intends to cause harm, by verbal, psychological, and 
physical means, to others (Baron and Richardson 1994; 
Anderson and Bushman 2002). Physical aggression tends to 

peak at age 2–4 years and then decreases (Alink et al. 2006; 
Cairns et al. 1989; Cairns and Cairns 1994; Karriker-Jaffe 
et al. 2008; Loeber and Stouthamer-Loeber 1998; Tremblay 
et al 2004; Tremblay 2010), as neurological, cognitive and 
social development empower children with other means to 
get what they want. Social or relational aggression emerges 
in the preschool years, continues through childhood and 
adolescence and subsequently declines in adulthood (e.g. 
Underwood 2003).

The relative positions in terms of aggression (i.e. rank 
order) in the population persist across the life-course (Pulk-
kinen and Pitkänen 1993; Tuvblad and Baker 2011). In other 
words, the most aggressive child often grows up to be the 
most aggressive adult (Farrington 1989). There has been 
some debate about the continuation of individual differences 
in aggression from childhood to adulthood. Moffitt (1993) 
argued that this statistical continuation is driven by a small 
number of highly aggressive individuals in a population who 
remain aggressive throughout their lives, the ‘life-course 
persistent’ individuals. The rest, she argues, are the ‘ado-
lescent limited’ type, for whom aggressive behavior is lim-
ited to adolescence. Although it is clear that the ‘life-course 
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persistent’ individuals explain part of the stability in aggres-
sion, Huesmann et al. (2009) showed that most individuals 
retain their relative position in a population, regardless of 
their starting position. Several factors have been identi-
fied that help explain individual differences in continuity 
of aggression, such as parenting, peers, socioeconomic and 
cultural context, mental processes and genetic predisposi-
tion (Boomsma 2015; Farrington 1989; Labella and Masten 
2018; Murray and Farrington 2010; Tolan et al. 2013; Vuok-
simaa et al. 2021).

Twin and family studies, mostly focusing on children, 
indicate that genetic factors explain around 50% of the varia-
tion in aggression (Veroude et al. 2016). Across the lifespan, 
heritability estimates of aggression and antisocial behavior 
seem to increase somewhat from childhood through adult-
hood, as the importance of shared environmental effects 
decreases (Tuvblad and Baker 2011; Waltes et al. 2016; 
Odintsova et al. 2019). Although individuals retain their 
genetic make-up throughout their lives, this does not nec-
essarily imply that the same genetic variants play a role in 
aggression across the life-course. Studies with longitudinal 
twin designs show that genetic factors contribute signifi-
cantly to the stability of aggression during preschool age, 
school age, and puberty (van Bijsterveldt et al. 2003; Porsch 
et al. 2016). These results led us to test the hypothesis that 
genetic variants that are expressed on aggression during 
childhood and adolescence also are significantly associated 
with aggression later in the life-course.

Odintsova and colleagues (2019) published an exten-
sive overview of the current state of genomics aggression 
research, concluding that clear genome wide significant 
effects have not yet been found in genetic association stud-
ies (GWAS). This is partly attributable to the fact that 
aggression, like many other complex human behaviors, is 
influenced by a multitude of individual genetic variants, 
each of which likely has a small effect. From this ‘poly-
genic’ genetic architecture, arises the need for very large 
GWAS sample sizes. Ip and colleagues (2021) conducted 
a genome wide meta-analysis (GWAMA) of aggression 
phenotypes in children and adolescents, aged 3 to 18 years. 
In a GWAMA, results from GWAS in multiple cohorts are 
combined with the aim to increase statistical power to find 
associations between a genetic marker (usually a single 
nucleotide polymorphism, i.e. SNP) and an outcome (phe-
notype). If phenotypes and genetic effects are comparable 
across cohorts from different ages and backgrounds, small 
effects of SNPs that do not attain significance in a single 
cohort may be genome wide significant in the GWAMA. 
In the Ip et al. paper (2021), a total of 29 cohorts contrib-
uted 163 univariate GWAS to the early life aggression 
GWAMA. This resulted in a total of 328,935 observations 
from 87,485 unique individuals, aged 3 to 18 years. Obser-
vations were across multiple raters, coming from teachers, 

parents, and self-reports. The Ip et al. (2021) aggression 
GWAMA is the largest childhood aggression GWAS to date, 
but no single genome-wide significant hits were observed. 
Despite this lack of single significant hits, Ip et al. (2021) 
demonstrated that polygenic scores (PGSs), which sum the 
effects of a range of genetic markers, with markers included 
based on whether their p-value from the GWAS clears any 
of 16 thresholds between P = 1 and P < 1.0E-5, explained 
between 0.036 and 0.44% of the phenotypic variance in 
aggression in a hold-out sample of 7 year-old Dutch chil-
dren (N = 4491). In an Australian hold-out sample, childhood 
PGSs explained up to 0.2% of retrospectively assessed child-
hood conduct disorder. PGSs performed best when markers 
where included with relatively lenient P-value thresholds, 
indicating the polygenic nature of aggression phenotypes. 
Although effect sizes were small, we expect the effect to be 
large enough to test the hypothesis that there are continuing 
genetic effects across the life-course.

The Current Study

In this study, we test the hypothesis that genetic risk fac-
tors, measured as DNA variants associated with increased 
aggressive behavior in early life (Ip et al. 2021), increase 
the risk of aggression across the life-course. We quantified 
the contribution of a large number of variants by computing 
PGSs, and tested their association with aggression in two 
cohorts from two different countries, namely The Nether-
lands and Australia. We introduce a novel method to assess 
differences in genetic influences across the life-course. In 
this approach we assess the effect of a PGS on aggression at 
ages 12–70 in The Netherlands, and 16–73 in Australia, by 
specifying ‘rolling weights’ for age. Within the framework 
of a linear mixed model, we model the effect of the PGS at 
each age represented in the data. At each age, we include 
phenotype information from surrounding ages. The pheno-
type information is weighted, where weights are centered at 
the focus age and decay further away from that center. With 
this method, sample size differences between ages are small, 
because more information than just the focus age is taken 
into account. Thereby, we mitigate the risk that sample size 
differences between ages drive the effects we find. If, for 
example, there are only few observations at age 25, we can 
still use information on adjacent ages to imply the effects 
at age 25. A significant contribution in adults, of PGSs that 
are based on a discovery study in children and adolescents, 
would suggest a partially heritable origin of the stability of 
individual differences in aggression.
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Method

Participants

Dutch participants are registered with The Netherlands 
Twin Register (NTR; Ligthart et al. 2019). Phenotype data 
on aggression were collected by survey in six of the data 
collection waves (1991, 1995, 1997, 2000, 2009, 2014) for 
twin families who registered as part of the Adult Netherlands 
Twin Register (ANTR). Twins, whose parents registered 
them as newborns as part of the Young Netherlands Twin 
Register (YNTR), and their siblings provided self-ratings of 
aggression at various ages of the twins. The total phenotyped 
sample in which aggression scores were computed (Table 1), 
consisted of families with twins, their siblings, spouses, and 
parents. In the final analyses only the genotyped individuals 
could be included. This genotyped sample included 29,454 
measures from 13,471 genotyped individuals (62% female) 
aged 12–70 years (Table 3, Fig. 1). In total, 8705 of these 
individuals completed more than one questionnaire. All gen-
otyped individuals were from European ancestry, identified 
based on the top ten 1000-Genomes PCs (Abdellaoui et al. 
2013) (Table 2).

Australian data came from studies on health and wellbe-
ing collected at QIMR Berghofer Medical Research Insti-
tute (QIMRB). A total of 5628 genotyped participants from 
2983 families from the Brisbane Longitudinal Twin Study 
(Wright and Martin 2004), Young and Well (16UP study, 
Mitchell et al. 2020) and Twenty Five and Up (25UP study, 
Mitchell et al. 2020) Genetics and Human Agency study 
(GHA, Morosoli 2020), and Prospective Imaging Study of 
Ageing (PISA; Lupton et al. 2021) completed surveys which 
included the Buss-Perry aggression questionnaire (Tables 3 
and 4); 1603 people completed the questionnaire twice. 

At the time of completion, participants were aged 16–73 
(Fig. 2).

Table 1  The Netherlands Twin Register

Collection of aggression data in adolescent and adult twins, their sibs, 
spouses and parents (1991–2014) and in young twins and their sib-
lings (2005–2014)
This table includes all phenotype observations that were included to 
calculate IRT aggression scores

Year Observations Mean age (SD)

1991 3325 17.95 (2.24)
1995 3342 19.98 (3.10)
1997 4714 26.73 (10.46)
2000 6684 30.48 (10.75)
2009 14,798 41.44 (15.40)
2014 16,092 40.16 (14.61)
2005–2014 (age twins: 14) 11,080 15.35 (1.54)
2005–2014 (age twins: 16) 8075 17.43 (1.60)
2005–2008 (age twins: 18) 1516 18.88 (1.94)

Table 2  The Netherlands Twin Register: characteristics of genotyped/
phenotyped sample

IRT aggression item response theory aggression score, SD standard 
deviation

N subjects N measures Mean age (SD) IRT aggres-
sion

Mean SD

Total 13,471 29,454 31.35 (15.33) − 0.02 0.85
Male 5062 10,426 31.34 (16.07) − 0.07 0.84
Female 8409 19,028 31.35 (14.91) 0.01 0.85

Table 3  Australia

Data collection (genotyped individuals)

Study/year Observations Mean age (SD)

16UP (2014–2018) 402 16.34 (0.64)
25UP (2015–2019) 2052 30.05 (4.31)
GHA (2018–2020) 2315 40.45 (14.85)
PISA (2016–2020) 2462 59.98 (6.85)

Fig. 1  The Netherlands. Age distribution

Table 4  Australia

Sample characteristics genotyped individuals
IRT aggression item response theory aggression score, SD standard 
deviation

N subjects N measures Mean age (SD) IRT aggres-
sion

Mean SD

Total 5628 7231 42.81 (16.71) − 0.01 0.95
Male 1904 2385 41.75 (16.84) 0.18 0.90
Female 3724 4846 43.33 (16.62) − 0.11 0.96
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Phenotyping

The Netherlands

All participants completed Achenbach System of Empiri-
cally Based Assessment self-report questionnaires (ASEBA; 
Achenbach et al. 2017), either the Youth Self-Report (YSR; 
Achenbach and Rescorla 2001) or the Adult Self-Report 
(ASR; Achenbach and Rescorla 2003). In the earlier ANTR 
surveys, the Young Adult Self Report (YASR) was adminis-
tered. Surveys in each relevant data collection wave included 
between 15 and 20 items from the ASEBA aggressive behav-
ior subscale. All items were scored on a three-level scale: 
0 = never, 1 = sometimes, 2 = often. Aggression scores were 
defined separately for each wave of data collection for all 
NTR participants (i.e. regardless of genotyping status, see 
Table 1) by Item-Response Theory (IRT; Embretson and 
Reise 2000) and calculated with the Generalized Partial 
Credit Model (GPCM) in R (R Core Team 2017), with the 
mirt package (Chalmers 2012). GPCM is an Item Response 
Theory model, developed to analyze polytomous data. For 
each wave of data collection, all participants with a maxi-
mum of two missing individual items were included in the 
GPCM. An IRT-aggression score has benefits over a simple 
sum-score, because it appropriately weights the relative con-
tributions of individual items to a scale with a more favora-
ble distribution, and takes into account missing data. By 
fitting a separate model for each wave of data collection, 
aggression scores for each participant are relative to all other 
participants in that wave of data collection, thereby filtering 
out potential ‘wave’ or data collection effects. Because the 
IRT score for each individual is relative to all other par-
ticipants in the same wave of data collection, the mean IRT 
score for each wave is zero. This is reflected in the mean IRT 
aggression scores at each age (Fig. 3). The final overall IRT 
aggression score has a mean of 0.00, and ranges from − 1.6 
to 4.4, with a standard deviation of 0.86. Only genotyped 
participants were included for further analysis. The geno-
typed sample did not differ much from the total sample, with 

a mean of − 0.02, range from − 1.6 to 3.5, and a standard 
deviation of 0.84.

Australia

Aggressive behaviour was measured with the Buss–Perry 
Aggression Questionnaire. This is a 29-item questionnaire 
in which participants indicate the extent to which state-
ments are characteristic of them (5-point Likert scale, from 
"extremely uncharacteristic of me" to "extremely charac-
teristic of me", including some items that needed to be 
reversed). The questionnaire provides a total sum score and 
four subscores: physical aggression, Verbal aggression, 
Anger, and Hostility. For 107 out of 7231 observations, 
missing values on 1 to 6 individual items were imputed 
using multivariate imputation via the MICE R-package (van 
Buuren and Groothuis-Oudshoorn 2011). IRT aggression 
scores were calculated with mirt R-package (Chalmers 2012) 
within each study (i.e., 16UP, 25UP, GHA, and PISA) for 
the total aggression score and each of the subscales. Because 
the IRT score for each individual is relative to all other par-
ticipants in the same study, the mean score for each study 
is zero. This is reflected in the mean aggression scores for 
each age (Fig. 4). The final overall IRT aggression score has 

Fig. 2  Australia. Age distribution Fig. 3  Netherlands. Mean IRT aggression score for each age in the 
genotyped sample

Fig. 4  Australia. Mean IRT aggression score for each age
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a mean of 0.0, and ranges from − 2.9 to 3.8, with a standard 
deviation of 0.9.

Genotype Data

The Netherlands: Participants were genotyped on multi-
ple platforms: Affymetrix Axiom, Affymetrix 6.0, Illu-
mina 1 M, Illumina 660, Illumina GSA, Perlegen Affym-
etrix. Samples with call rate < 0.90, Plink heterozygosity 
F <  − 0.10 or F > 0.10, and inconsistency of X chromosome 
genotypes with reported gender were excluded. SNPs with 
MAF < 1.0E−6, HWE P-value < 1.0E-6, and/or call rate 
< 0.95 were removed. Genotype data were aligned with 
the 1000 Genomes reference panel, and filtered for SNPs 
with allele frequency differences from the CEU population 
larger than 0.20, palindromic SNPs, and DNA strand issues. 
DNA Identity By Descent (IBD) state was estimated for all 
individual pairs using Plink (Purcell et al. 2007) and King 
(Manichaikul et al. 2010) based on ~ 10.8 k SNPs that all 
platforms have in common. Samples were removed if IBD 
did not match expected family relations. CEU population 
outliers were removed from the data with Smartpca soft-
ware, based on per platform 1000 Genomes PC projection. 
Per platform, data were phased using Eagle and imputed to 
1000 Genomes with Minimac (Das et al. 2016). The final 
merged genotype data consist of 12,152,830 SNPs.

Australia: Genotyping was performed on DNA extracted 
from blood and saliva samples, on Illumina 317 K, 370 K, 
610 K, (‘1st generation’), GSA, or Core Exome plus Omni-
family (‘2nd generation’) arrays, and GenomeStudio soft-
ware for genotype calling (Illumina Inc., 200 Lincoln 
Centre Dr, Foster City, CA 94404). This was followed by 
imputation from a common SNP set to the 1000 Genomes 
(Phase 3 Release 5) reference panel, a strategy that allows 
genotype data from different arrays to be combined. Samples 
with < 97.5% call rate, non-European ancestry (> 6 SD from 
the mean European-population cluster for PC1 and PC2) or 
with familial relationships incompatible with those reported 
by study participants were excluded. Observed markers were 
cleaned (by batch) for call rate (≥ 95%); minor allele fre-
quency (≥ 1%); Hardy–Weinberg equilibrium (P ≥  10−6), 
GenCall score (≥ 0.15 per genotype; mean ≥ 0.7) and stand-
ard Illumina filters, before integrating batches and re-run-
ning relationship and Mendelian checks. Phasing and impu-
tation were carried out at the Michigan Imputation Server 
(https:// imput ation server. sph. umich. edu/ index. html#!) using 
the 1000 Genomes Phase 3 Release 5 ‘mixed population’ ref-
erence panel, with phasing by SHAPEIT followed by impu-
tation using minimac 3 (Das et al. 2016), ‘1st generation’ 
and ‘2nd generation’ data were imputed separately due to 
poor overlap between typed markers. Imputation was based 
on 277,690 (‘1st generation’) and 240,297 (‘2nd generation’) 
typed markers (passing QC in all relevant batches); and the 

two were combined after imputation to maximise sample 
size, using for each individual the ‘1st generation’ imputa-
tion if available, otherwise using the ‘second generation’ 
imputation. This resulted in 9,411,304 SNPs available for 
analysis, after quality control.

Polygenic Score Construction

We obtained effect sizes for the association between individ-
ual SNPs and aggression from the Ip et al. (2021) GWAMA 
after omitting the target samples, i.e. analyses were run with 
no participants from the Netherlands for the Dutch target 
sample, and no participants from Australia for the Australian 
target sample (GWAMA sample size for the Netherlands: 
 NSNPs = 7,722,825,  Nmeasures = 276,268,  Nindividuals = 81,259, 
SNP-h2 = 3.91%, SE = 0.42. GWAMA sample size 
for Australia:  NSNPs = 7,762,065,  Nmeasures = 314,604, 
 Nindividuals = 75,536, SNP-h2 = 3.97%, SE = 0.46). We then 
computed PGSs for both cohorts with SBayesR V2.03 
(Lloyd-Jones et al. 2019), using default settings.

Statistical Analyses

To ascertain the viability of predicting adult aggression with 
the PGS that is based on a discovery in 3- to 18-year-olds, we 
first model the association between the PGS and aggression 
in the total sample in the Netherlands and in Australia. Here, 
IRT aggression is predicted from the PGS, age,  age2, sex, 
dummy variables for genotyping arrays, and five ancestry-
based principal components. We control for the dependence 
between measures due to relatedness and repeated measures, 
by adding a random effect for families. Next, we model the 
effect of the PGS at specific ages. When investigating the 
effect of PGSs at specific ages, there is a risk that differences 
in sample size at each age may affect the results. To remedy 
this, we employ a novel weighted analytic approach in which 
we make use of more data when looking at specific ages. For 
each age for which data are available, ages 12 to 70 years in 
the Dutch context, and ages 16–73 years in the Australian 
context, we model aggression with the package lme4 (Bates 
et al. 2015), as a function of the PGS, age,  age2, sex, dummy 
variables for genotyping arrays, and five ancestry-based 
principal components. This means a total of 59 analyses in 
The Netherlands and 58 in Australia. The models are fitted 
with weights that weight observations at the focus age as 1 
and decay for ages further from that age. In this approach, 
sample size at each age includes ages around the focus age, 
but to a lesser extent. In other words, data on surrounding 
ages are included in the analyses, resulting in larger and 
more comparable sample sizes at different ages. At each 
age we control for the dependence between measures due 
to relatedness and repeated measures, by adding a random 
effect for families. This captures both dependence due to 

https://imputationserver.sph.umich.edu/index.html#
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relatedness and dependence between longitudinal measures. 
Age covariates are included in the model because a range 
of ages is still present in each model, albeit with different 
weights. The mixed effects regression model at each age can 
be written as:

In this notation, Y is the aggression outcome of individual 
i in family f, the intercept β0f is a combination of the popu-
lation level intercept and the family-level deviation of that 
intercept, �Agef is the regression estimate for age and the 
family-level deviation of that estimate, Agemi is the age of 
individual i at measure m,  �1−v are the regression estimates 
for all the fixed effects (the PGS, age,  age2, sex, dummy vari-
ables for genotyping arrays, and five ancestry-based prin-
cipal components.), xmi,1−v are the corresponding observed 
scores of individual i at measure m for each fixed effect, and 
�if  is the combined individual and group level error term. In 
matrix notation, this gives:

In this notation, Y is the matrix of observed responses, 
X and Z are the design matrices for fixed effects and mixed 
effects respectively, � is the matrix of unknown fixed param-
eters, b is the matrix of unknown random parameters, and 
� is the vector of unobservable model errors. Because we 
apply weights to observations based on age, the least squares 
estimates for the fixed effects model parameters in this 
model are obtained by the following matrix formula, when 
we subtract away the random effects:

where Y is the matrix of observed responses, �0 to �v are the 
regression estimates for the intercept and all fixed effects, 
X is the design matrix, and W is the diagonal matrix of 
weights. The weights we apply to observations in the model 
are calculated in three steps. In step 1 the vector of ages is 
weighted as a function of center (age of interest) and shoul-
der (reflecting kurtosis in the distribution of weights):

In this notation, w1 is the weights vector after step 1, x is 
the vector of ages, c is the center of the weights, and s is the 
shoulder. In the second step, the weights vector from step 1 
is scaled, by applying a min–max scalar:

In this notation, w2 is the weights vector after step 2, w1 
is the weights vector after step 1. Third, the desired decay is 

(1)Ymif = �0f + �Agef ∗ Agemi + �1−v ∗ xmi,1−13 + �if

(2)Y = X ∙ � + Z ∙ b + �

(3)�̂ =

⎡
⎢
⎢
⎣

�0
⋮

�v

⎤
⎥
⎥
⎦
= (X� ∙W ∙ X)

−1
X� ∙W ∙ Y

(4)w1 = 1 − |c − x|s

(5)w2 = (w1 − min(w1))∕(max(w1) − min(w1))

applied to the scaled vector w2, and the final diagonal matrix 
of weights is calculated:

where W is the final diagonal matrix of weights, w2 is the 
weights vector after step 2 and ek represents the decay in 
the distribution of weights. In this approach, we opted for a 
shoulder of 1.5, and a decay of 25. See Fig. 5 for an example 
of the weights for ages 25 and 50. In general, a wider distri-
bution of weights smooths the sample size and age-specific 
effects more, while a narrower distribution is more sensitive 
to fluctuations in sample size and age effects. We ran sup-
plemental analyses to test the impact of wider and narrower 
age weight distributions (see Supplements Fig. 2 and 3).

All continuous fixed effects and the IRT aggression scores 
were standardized before the analyses. We employed boot-
strapping to assess the robustness of the model estimated 
standard error. The approach was to sample complete fami-
lies with replacement from the original data, 100 samples 
for each age-analysis. We found that model implied standard 
errors were slightly underestimated. Therefore, 95% confi-
dence intervals reported in the results were calculated with 
the bootstrap standard errors. Significance is implied when 
the empirical (bootstrap) 95% confidence intervals do not 
intersect zero.

Results

In the total genotyped Dutch sample  (Nobservations = 29,454, 
 Nindividuals = 13,471), we first analyzed all data together with-
out weighting the data. In this approach, the PGS was sig-
nificantly associated with aggression, β = 0.05, SE = 0.01, 
pseudo R2 = 0.002, P < 0.001. Next, we ran the age-specific 
age models with rolling weights. These analyses showed that 
the PGS was significantly related to IRT aggression from 
age 12 to age 41 (β = 0.04–0.05; Fig. 6, Supplements Table 
I). After age 41, the effect of the PGS decreases, with confi-
dence intervals that are close to, or below zero. The highest 

(6)W = diag(w2
ek )

Fig. 5  Example of weights with centers at ages 25 and 50
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estimates for the effect of the PGSs are at around age 28. 
Supplemental analyses with wider and narrower age weights 
show that the width of the distribution affects the smooth-
ing of the results, meaning that a narrower distribution of 
weights leads to more defined differences in PGS effects 
between ages (see Supplements Figs. 1 and 2).

In the total genotyped Australian sample without rolling 
weights  (Nobservations = 7231,  Nindividuals = 5, 28), the PGS was 
significantly associated with adult and adolescent aggres-
sion, β = 0.04, SE = 0.01, pseudo R2 = 0.002, P = 0.002. The 
specific age analyses from the model with rolling weights 
suggested a different association pattern across age (see 
Fig. 7, Supplements Table II) compared to the Dutch sample. 
The results did not indicate a downward trend in the regres-
sion estimates. Instead, the PGS was significantly related to 
aggression at ages 38 to 48 (β = 0.04–0.11).

In the Australian cohort we also investigated whether 
there are differences in prediction for the four subscales 

of the Buss Perry Aggression questionnaire (i.e. Physical 
aggression, Verbal aggression, Anger, and Hostility). The 
trends are very similar across all subscales. The peak around 
age 45 is clearly present for all subscales, albeit to a slightly 
lesser extent in verbal aggression. For figures of the regres-
sion estimates from the Buss Perry subscales see Supple-
ments Fig. 3.

Discussion

In this study we introduce a new method to investigate the 
effect of a PGS across levels of a continuous moderating 
variable, in this case age. The approach is to run a linear 
model for each age in years present in the data. In each anal-
ysis, the phenotype information is weighted, with weights 
that are centered at the focus age and decay further away 
from that center. The strength of this method is that with 
each age analysis, information on proximal ages is taken 
into account, mitigating the risk that sample size differences 
at different ages will drive the effects we find. We applied 
this approach to assess the association between childhood 
aggression PGSs and aggression across the life-course, in 
two cohorts from The Netherlands and Australia.

In The Netherlands, the PGS was significantly related to 
aggression at ages 12 to 41 years. The effect of the PGS 
decreased from age 41–70 years. In the smaller Australian 
cohort, the effect of the PGS was significant at ages 38 to 
48. Sample sizes at the peak of the PGS effect in Australia 
were between N = 193 and N = 868 (calculated as sum of 
weights, see Supplements Table II), which was relatively 
small. Because of these sample sizes, we should interpret 
this peak in effects with caution; for example, it could be 
driven by a small number of individuals that are not rep-
resentative of the population. Effect sizes are small in both 
cohorts, with just under 0.2% explained variance in the 
full non-weighted models. We expect that effect sizes will 
increase as discovery GWAS sample sizes increase.

Although the effects are small, these results are the 
first indication from a molecular genetics perspective that 
genetic influences drive part of the continuity and stability 
of aggressive behavior, and that genetic effects in childhood 
persist across life, and thus across situations. This suggests 
that throughout people’s lives, most notably in the Dutch 
context, developmental changes in individuals only slightly 
impact the polygenic effects on aggression that were appar-
ent in childhood. These results correspond with findings 
from longitudinal twin studies on the stability of aggres-
sion in children (van Beijsterveldt et al. 2003; Eley et al. 
2003; Porsch et al. 2016), and a twin study on the stability 
of externalizing psychopathology in adults (Gustavson et al. 
2020), where genetic factors accounted for a large part of 
the stability over time. Van Beijsterveldt et al. (2003) also 

Fig. 6  Dutch data: standardized regression estimates for the effect of 
the PGS with bootstrapped 95% confidence intervals (as grey ban-
ners)

Fig. 7  Australian data: standardized regression estimates for the 
effect of the PGS with bootstrapped 95% confidence intervals (as grey 
banners)
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demonstrated that new genetic influences can contribute to 
stability of aggression across different ages. As such, the 
continuity of polygenic effects across the life-course covers 
only part of the genetic influences on the stability of aggres-
sion across the life-course.

A strength of this study is that we investigate the asso-
ciation between the PGS and aggression in two cohorts. 
This also implies, if we want to compare our results across 
cohorts, that there are several considerations, including dif-
ferences in phenotyping, the impact of the discovery data, 
cultural differences between societies, and genetic differ-
ences between populations that may limit the feasibility of 
a reliable comparison. In the Dutch cohort, phenotyping was 
done with the ASEBA self-report questionnaires. In the Aus-
tralian cohort, phenotyping was done with the Buss Perry 
Aggression self-report questionnaire. Differences in pheno-
typing are somewhat mitigated by using an IRT latent vari-
able as dependent variable, instead of a sum score. Because 
different measurement instruments are used, this somewhat 
limits how we draw conclusions from the differences we 
found between the cohorts. A large percentage of partici-
pants in the discovery childhood aggression GWAMA from 
which we calculated our PGSs, were also scored with the 
ASEBA instruments, i.e. self-, parent- and teacher-reports 
(Ip et al. 2021), which relate directly to the ASEBA self-
report questionnaires used in the current Dutch sample. Cor-
relations between self-, parent- and teacher-reports were not 
very high in Ip and colleagues’ GWAMA. Still, we expect 
slightly greater power in the Dutch cohort compared to the 
Australian cohort, based on the similarities in the measure-
ment instrument. Another potential source of dissimilarity 
is that the cohorts were not phenotyped in the same years. 
In The Netherlands, participants were phenotyped between 
1991 and 2014, in Australia between 2014 and 2020, i.e. 
individuals that were phenotyped at the same age, are often 
not phenotyped in the same year. Van der Laan et al. (in 
press) show that self-reported aggression in The Nether-
lands declined from 1991 to 2015. Thus, differences between 
cohorts may be influenced by time effects. Another differ-
ence in phenotyping between the cohorts was that missing 
data (< 20%) were imputed prior to calculating IRT scores, 
while in the Dutch sample missing data (< 20%) were han-
dled by the IRT models when calculating the scores.

The two discovery GWAMAs for the Dutch and Austral-
ian cohorts were also not identical. For The Netherlands, 
discovery data excluded all NTR participants. For Australia, 
discovery data excluded all Brisbane Longitudinal Twin 
Study and Prospective Imaging Study of Ageing partici-
pants. We opted for this strategy because leaving participants 
from both cohorts out of the discovery data would mean 
an unnecessary decrease in sample size. The differences in 
the discovery GWAMAs means that the PGSs in both sam-
ples are calculated based on overlapping, but not identical 

information. This may have resulted in slight differences 
in association between cohorts, although respectively only 
5 and 17% of the Dutch and Australian discovery samples 
was not shared.

More generally, even if phenotyping is similar, cultural 
and genetic differences between populations can affect 
the magnitude, and thereby the merit, of PGS predictions. 
Cultural norms may influence aggression directly, and 
thereby moderate the effect of PGSs on aggression. One 
way to measure the effects of cultural differences on traits 
is by assessing generalizability of the measurement instru-
ments via Confirmatory Factor Analysis (CFA), using the 
framework of measurement invariance (Millsap 2012). By 
assessing measurement invariance, we can test whether 
we measure the same underlying psychopathological trait 
when studying different societies. Because the Australian 
and Dutch cohorts did not phenotype by the same instru-
ments, we cannot test measurement invariance directly in our 
sample. However, measurement invariance for the ASEBA 
self-report questionnaires is well documented. CFA of the 
eight-syndrome structure of the youth self-report, originally 
derived from a U.S. general population sample, plus clini-
cally referred youths from Australia, England, and the United 
States (Achenbach and Rescorla 2001), fits YSR data from 
a wide range of societies (Ivanova et al. 2007). Fit indices 
were almost identical between Australia, RMSEA = 0.042 
and The Netherlands, RMSEA = 0.040. Ivanova and col-
leagues (2015) also investigated generalizability of the 
eight-syndrome structure of the adult self-report (ASR) in 29 
societies. Although The Netherlands and Australia were not 
included, model fit was good for all samples, with fit indices 
very similar to those found in the YSR CFAs. Generaliz-
ability of the Buss Perry aggression questionnaire has been 
less extensively studied, but validation is well documented 
for young Western adults (see for an overview Gerevich et al. 
2007). Generalizability has been questioned for older and 
more diverse samples, but the four-factor structure (Physical 
aggression, Verbal Aggression, Hostility, and Anger) did 
replicate in a sample of Chilean students (Valdivia-Peralta 
et al. 2014), a slimmed down, translated 12 item version 
(Bryant and Smith 2001) replicated well in a sample of Hong 
Kong Chinese (Maxwell 2007), and all factors except Anger 
replicated in Hungarian adults with a mean age of 46.6 years 
(Gerevich et al. 2007).

Another source of differences between the population 
cohorts may be genetic heterogeneity. Based on genetic 
marker data, there are several ways to assess the compa-
rability of samples from different populations. In an early 
comparison based on DNA tandem repeat polymorphisms 
from The Netherlands and Australia, Sullivan et al. (2006) 
estimated the fixation index  (FST)—the percentage genetic 
variability attributable to genetic differences between 
cohorts—to be only 0.3%. The empirical variability between 
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the Australian and Dutch cohorts was in fact smaller than for 
a combination of European samples  (FST = 0.8%; Rosenberg 
2021). More recently, Beck and colleagues (2019) studied 
interpopulation stratification between cohorts from The 
Netherlands and Australia, by analyzing genome wide SNP 
data. Negligible interpopulation stratification was confirmed 
by visualizing uncorrelated principal components and  FST 
estimations of 0.05%. These findings should not be surpris-
ing, given the colonization history of Australia via immi-
grants from the UK, who are genetically very similar to 
Dutch individuals, as previously described with similarities 
in Y-chromosome haplogroups (Rosser et al. 2000).

At the moment, this genetic similarity between cohorts 
included in genomic studies is the rule rather than the excep-
tion. Around 78% of individuals included in GWAS are from 
European ancestry (EA; Buniello et al. 2019). The lack of 
individuals from non-EA populations included in GWAS, 
means that it is often unclear to what extent genetic effects 
generalize to diverse populations. Carlson and colleagues 
(2013) demonstrated that in non-EA populations, most 
GWAS-identified variants have allelic associations in the 
same direction as in EA populations, with none showing a 
statistically significant effect in the opposite direction. How-
ever, 25% of tagSNPs had significantly different effect sizes 
in at least one non-EA population, most frequent in Afri-
can Americans, with all differential effects diluted towards 
zero. Thus, associations between the PGS based on the Ip 
et al. (2021) discovery and aggression might be weaker in 
non-EA populations, as has been seen for other traits, such 
as obesity/BMI (Domingue et al. 2014; Belsky et al. 2013; 
Ware et al. 2017), height (Ware et al. 2017), educational 
attainment (Domingue et al. 2015; Ware et al. 2017; Lee 
et al. 2018), schizophrenia (Vilhalmsson et al. 2015; Ware 
et al. 2017; Vassos et al. 2017), and breast cancer (Ho et al. 
2020). This means that advances through GWAS and PGS 
studies tended to benefit EA populations more than non-EA 
populations, especially when predicting health outcomes 
(Martin et al. 2019). The overrepresentation of EA partici-
pants in GWAS is partly because admixed populations were 
long considered inconvenient in gene discovery studies, as 
this led to population stratification issues. However, due to 
advances in GWAS methods, populations with mixed genetic 
backgrounds can now be included in GWAS to obtain accu-
rate estimates of SNP effects, boost power, and improve 
fine-mapping of effects by leveraging linkage disequilib-
rium differences (Asimit et al. 2016; Atkinson et al. 2020). 
Beside the general benefits to gene discovery studies, the 
inclusion of diverse genetic backgrounds will improve our 
understanding of genetic liability across diverse populations, 
as demonstrated for example in a study of glycemic traits 
(Chen et al. 2021), where 30% of the participants were of 
non-European ancestry.

In summary, we investigated the continuity of polygenic 
effects on aggression across the life-course, in two cohorts 
from The Netherlands and Australia, with a novel weighted 
mixed effects regression approach. Our results suggest 
that the same genetic factors that explain part of the indi-
vidual differences in aggression in childhood, also explain 
individual differences in adolescents and adults. The new 
method we employed shows promise in modeling genetic 
effects across levels of a continuous moderating variable, 
in way that smooths any possible effects due to sample size 
differences between those levels. The possibilities of reli-
ably comparing results between the Dutch and Australian 
cohorts were limited because of differences in phenotyping 
and GWAMA discovery samples. When studying genetic 
liability in different populations, there are two main con-
siderations: cultural/environmental differences and genetic 
differences. If we are interested in studying differences in 
genetic effects between populations with different cultural 
norms and environments, the optimal design is to look at 
populations with similar genetic backgrounds. For this to 
work, phenotyping has to be standardized across popula-
tions. To better understand genetic effects in diverse genetic 
populations, we need gene discovery studies that include 
diverse populations, so that predictions in non-EA popula-
tions are not dependent on EA discovery samples.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10519- 021- 10076-6.
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