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Abstract

The evolving field of multi-omics combines data and provides methods for simulta-

neous analysis across several omics levels. Here, we integrated genomics (transmitted

and non-transmitted polygenic scores [PGSs]), epigenomics, and metabolomics data

in a multi-omics framework to identify biomarkers for Attention-Deficit/

Hyperactivity Disorder (ADHD) and investigated the connections among the three

omics levels. We first trained single- and next multi-omics models to differentiate

between cases and controls in 596 twins (cases = 14.8%) from the Netherlands Twin

Register (NTR) demonstrating reasonable in-sample prediction through cross-

validation. The multi-omics model selected 30 PGSs, 143 CpGs, and 90 metabolites.

We confirmed previous associations of ADHD with glucocorticoid exposure and the

transmembrane protein family TMEM, show that the DNA methylation of the

MAD1L1 gene associated with ADHD has a relation with parental smoking behavior,

and present novel findings including associations between indirect genetic effects
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and CpGs of the STAP2 gene. However, out-of-sample prediction in NTR participants

(N = 258, cases = 14.3%) and in a clinical sample (N = 145, cases = 51%) did not

perform well (range misclassification was [0.40, 0.57]). The results highlighted con-

nections between omics levels, with the strongest connections between non-

transmitted PGSs, CpGs, and amino acid levels and show that multi-omics designs

considering interrelated omics levels can help unravel the complex biology

underlying ADHD.

K E YWORD S

ADHD, DNA methylation, genetic nurture, metabolites, multi-omics, polygenic scores

1 | INTRODUCTION

Attention-Deficit/Hyperactivity Disorder (ADHD) in children is a

highly heritable (75%–91%) complex neurodevelopmental disorder

that is characterized by high levels of hyperactivity, inattention, and

impulsiveness (Roehr, 2013). The prevalence of ADHD in children is

5%–8%, and a majority of these children continue to display symp-

toms in adulthood (Derks et al., 2008; Faraone et al., 2018; Levy

et al., 1997; Luo et al., 2019). Persons with ADHD are more likely to

be extroverted and entrepreneurs but also have an increased lifetime

risk of harmful outcomes (Faraone et al., 2021; Martel et al., 2010).

Multiple psychiatric conditions are comorbid with ADHD, including

borderline personality disorder, anxiety, and conduct/oppositional

defiant disorder, resulting in challenges with the diagnosis, referral,

and treatment of ADHD (Caye et al., 2019; Demontis et al., 2019;

Distel et al., 2011; Joseph et al., 2015; Reale et al., 2017).

Several single-omics studies involving genomics, epigenomics,

and metabolomics have been performed to unravel the etiology of

ADHD. Large (N = 55,374) Genome-Wide Association (GWA) studies

initially identified 12 (Demontis et al., 2019) and recently 27 genome-

wide significantly associated loci for ADHD (Demontis et al., 2023).

Demontis et al. (2019) compared these results with those for continu-

ous measures of ADHD symptoms in the general population

(Middeldorp et al., 2016), concluding that the same genetic variants

that give rise to an ADHD diagnosis also affect inattention and impul-

sivity in the general population.

The biological basis of ADHD has also been explored in

Epigenome-Wide Association (EWA) and metabolomics studies. Epi-

genomics constitutes a link between genetic and environmental expo-

sures through changes in gene expression with processes such as

DNA methylation (Barros & Offenbacher, 2009). Methylation level

variation is associated with exposures such as stressful life events,

nutritional factors, and toxins, and is partly due to genetic factors

(Moore et al., 2013). Interestingly, it has been hypothesized that the

decrease in hyperactivity with age might be due to epigenetic factors

regulating the expression of genes involved in hyperactivity (Elia

et al., 2012). EWA studies that measured DNA methylation in cord

blood at birth, in saliva from older children, or in blood from adults

start to provide evidence for DNA methylation sites associated with

ADHD symptom trajectories and ADHD clinical diagnosis in children

and adults (Goodman et al., 2020; Mooney et al., 2020; Neumann

et al., 2020; Rovira, Sanchez-Mora, et al., 2020; Walton, 2019). EWA

studies based on blood samples from adolescents and adults identified

multiple new candidate loci involved with immune and neuronal func-

tioning associated with adult ADHD symptoms in population-based

samples (van Dongen et al., 2019) and loci involved in cholesterol sig-

naling in a comparison of participants with persistent ADHD and con-

trols (Meijer et al., 2020).

Metabolomics studies utilize a profile of small molecules derived

from cellular metabolism (X. Liu & Locasale, 2017). The first studies of

metabolomics and ADHD identified multiple metabolites associated

with ADHD in plasma (Wang et al., 2021). For instance, metabolites

involved in oxidative stress pathway(s) were positively associated with

ADHD in children. Meta-analyses showed that across all ages, pro-

teins involved in dopamine metabolism and the fatty acid docosahex-

aenoic acid in different tissues were negatively associated with

ADHD (Bonvicini et al., 2016, 2018). However, sample sizes of the

metabolomics studies concerning ADHD are relatively small and it is

likely that other metabolites and biological pathways influencing

ADHD are still to be identified (Bonvicini et al., 2018).

The growing numbers of single-omics studies for ADHD indicate

that large cohorts increasingly collect information across omics levels,

including genomics, epigenomics, and metabolomics in relation to

health and behavior. Associations and correlations have been

observed between the genome and epigenome (Min et al., 2021; van

Dongen et al., 2016), the genome and the metabolome (Hagenbeek

et al., 2020; Hagenbeek et al., 2023), and the epigenome and the

metabolome (Gomez-Alonso et al., 2021). Single-omics analyses alone

fail to account for the interactions between these omics levels. To

address this limitation, multi-omics approaches are the next step to

understand how specific phenotypes like ADHD are linked to differ-

ent omics levels and their interconnectedness (Hasin et al., 2017).

Optimal analysis of multi-omics data in association and etiological

studies requires dedicated statistical treatment of simultaneous omics

influences (Durufle et al., 2020). Such approaches complement single-

omics techniques and may result in novel insights and uncover new

biological pathways underlying traits and diseases (Rajasundaram &

Selbig, 2016). For example, in cancer research, multi-omics findings
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show promise in advancing personalized medicine by identifying dis-

ease markers (Chakraborty et al., 2018).

We applied an integrative multi-omics approach to elucidate bio-

logical mechanisms underlying ADHD and identify potential

biomarkers. We integrated genetic data comprising genome-wide

methylation data, and urinary metabolomic data with transmitted and

non-transmitted polygenic scores (PGSs) for 15 traits, which are

genetically correlated with ADHD. Here the PGS based on alleles

transmitted from parents to offspring represent the offspring's own

genetic liability, whereas the non-transmitted PGS represent the envi-

ronmental influences that are associated with the parental with alleles

that were not transmitted (e.g., genetic nurture; Kong et al., 2018).

The study included 854 twins originating from the Netherlands Twin

Register (NTR; Ligthart et al., 2019) and 145 non-twin children from a

youth psychiatry clinic. We included non-transmitted PGSs to explore

the environmental influences that children are exposed to that are

created by the parents' genetics. To our knowledge, this is one of the

first studies to include non-transmitted PGSs in a multi-omics design.

2 | MATERIALS AND METHODS

2.1 | Study population and procedures

Participants were selected from the Young Netherlands Twin Register

(YNTR; van Beijsterveldt et al., 2013) and from a youth psychiatry

clinic (LUMC-Curium, the Netherlands), as part of the ACTION

(Aggression in Children: Unraveling gene–environment interplay to

inform Treatment and InterventiON strategies) Biomarker Study

(Bartels et al., 2018; Hagenbeek et al., 2020). The ACTION project

collected first-morning urine samples and buccal-cell swabs from

1494 twins (747 complete pairs) and 189 children from a clinical

cohort with standardized protocols (see http://www.action-euproject.

eu/content/data-protocols). The first-morning urine samples were

stored in a freezer at the child's home (T ≈ �18�C) and were trans-

ported to the lab in a mobile freezer unit at T = �18�C. In the lab,

urine samples were stored at T = �80�C until further processing. The

buccal swabs were collected on two consecutive days: twice in

the morning (before breakfast) and twice in the evening (before din-

ner). In the twin cohort, buccal-cell swabs were also collected from

the parents and siblings of the twins.

ADHD status in the twin cohort was based on sex- and age-

specific T-scores from the mother-rated ADHD DSM-oriented scale

of the ASEBA-CBCL as completed around the time of biological sam-

ple collection. T-scores were calculated in the entire NTR for children

with CBCL data available at 9–10 years of age (N = 23,858). Twins

with ADHD CBCL T-scores of 65 or higher were classified as cases

(N = 125) and twins with T-scores below 65 as controls (N = 729). In

the LUMC-Curium cohort, parents (90% mothers, 10% fathers) com-

pleted a CBCL as part of a standardized clinical assessment of a maxi-

mum of 6 months before or after biological sample collection.

T-scores were calculated via CBCL software. Children with T-scores

of 70 or higher were classified as cases (N = 74), children with

T-scores below 65 as controls (N = 71), and children with T-scores

between 65 and 69 were excluded (N = 40).

NTR and LUMC-Curium participants were excluded if no ADHD

status at the time of biological sample collection was available

(N = 209), if they were assigned a control status while their co-twin

was assigned a case status for ADHD (N = 51), if the collected urine

sample was not the first-morning urine (e.g., parent-reported time of

urine collection was after 12:00 in the afternoon, N = 13), or if any

of the omics data were not available because of poor quality

(N = 367). From the twin cohort, 854 out of 1494 participants, and

from the clinical cohort, 185 participants out of 189 had complete

phenotype and omics data across all omics levels (genomics, epige-

nomics, and metabolomics).

2.2 | Genotyping and polygenic scores

2.2.1 | Genotyping and imputation

Genotyping in the NTR and LUMC-Curium cohorts was performed

simultaneously on Affymetrix AXIOM or Illumina GSA arrays (Beck

et al., 2019; Ehli et al., 2017), and genome-wide single nucleotide

polymorphism (SNP) data were available for 3334 participants, includ-

ing 1702 parents and siblings of twins (AXIOM = 909, GSA = 2425).

For each genotyping platform, samples were removed based on the

following criteria: (1) DNA sex did not match self-reported sex;

(2) Plink heterozygosity F statistic (<�0.10j>0.10); and (3) genotyping

call rate (<0.90). Criteria for excluding SNPs included: (1) minor allele

frequency (MAF; <0.005); (2) Hardy–Weinberg Equilibrium (HWE) p-

value (<1 � 10�5), (3) call rate (<0.95), (4) number of Mendelian errors

(>2); and (5) palindromic AT/GC SNPs (0.4 ≤ MAF ≤ 0.5; Purcell et al.,

2007). For each platform, data were aligned with the GoNL reference

set (V4; Boomsma et al., 2014). SNPs with an allele frequency differ-

ence of larger than 0.10, or mismatching alleles with the reference

panel were removed and samples were excluded if DNA Identity by

Descent (IBD) state did not match the expected familial relations

(PLINKv1.9). Genotypes were then re-aligned, for each platform sepa-

rately, to the 1000G Phase 3 version 5 reference panel by the PERL

based “1000G Imputation preparation and checking” tool v4.3

(https://www.well.ox.ac.uk/�wrayner/tools/). The two platforms

were subsequently phased (EAGLE v2.4.1) and imputed (MINIMAC3

v2.0.1) following the Michigan Imputation server protocols (Das et al.,

2016; Delaneau & Zagury, 2012; Loh et al., 2016). After imputation,

the resulting per-platform chromosomal files were merged into a sin-

gle best-guess Plink file (PLINKv1.9). Data were available for 3334

participants: 3149 NTR participants (1447 twins, 1702 parents/

siblings of twins), and 185 LUMC-Curium participants.

2.2.2 | Computation of principal components

From the best-guess 1000-genomes imputed data, a complete list of

all platform-genotyped SNPs on both AXIOM and Illumina GSA were
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extracted from the NTR and LUMC-Curium cohorts. This creates a

single dataset without large SNP missingness where most genotypic

information from both platforms is included. The same SNPs were

extracted from the 1000G reference panel genotype data with addi-

tional filters for MAF (>0.05), and call rate (>0.98). In the 1000G popu-

lation alone, the SNPs were then linkage disequilibrium (LD) pruned

(PLINK1.9; –indep 50 5 2) and long-range LD regions were removed

(Abdellaoui et al., 2013). Next, the NTR, LUMC-Curium, and 1000

genomes sets were merged for all SNPs that passed the above Quality

Control (QC) criteria and were present in all sets. Subsequently,

20 principal components (PCs) were calculated for the 1000 genomes

populations, and our sample was placed in the same dimensional PC

space based on genetic similarity of the SNPs, to control the PGSs for

stratification due to ancestry (SMARTPCAv7; Price et al., 2006).

2.3 | Transmitted and non-transmitted alleles and
calculation of polygenic scores

The NTR cohort included 1447 twins with genotyped parents, for

whom allele transmission could be established based on the imputed

best guess data. Allele transmission could not be established in the

LUMC-Curium cohort, as parental genotype data were not assessed.

SNPs were excluded when: (1) MAF < 0.01; (2) HWE p-value

<1 � 10�5; (3) call rate < 0.98; (4) SNPs had duplicate positions;

(5) SNPs had three or more alleles; and (6) non-ACGT SNPs on the

autosomes. The non-transmitted allele status was defined by generat-

ing a single transmission-disequilibrium test (TDT) pseudo-control

genotype for each child (given the two parents; Plink–tucc option)

after defining all children as being cases (Clayton, 1999). To determine

the maternal and paternal transmission of haplotypes, the transmitted

and non-transmitted alleles datasets were phased (SHAPEITv2.r904).

The resulting haplotypes were converted into mother and father non-

transmitted homozygous haploid genotypes for polygenic score ana-

lyses of non-transmitted alleles per parent.

In an earlier study, we applied integrative multi-omics models to

childhood aggression (Hagenbeek et al., 2023). There, we included

transmitted and non-transmitted PGSs for childhood aggression and

14 traits with significant (p < 0.02) large genetic correlations (≤�0.40

or ≥0.40) with aggression (Ip et al., 2021). As childhood aggression

(Ip et al., 2021) had a genetic correlation with ADHD of 1.0028

(se = 0.0732, p = 9.39 � 10�43), we included PGSs for the same

traits in the current study. PGSs were calculated for transmitted and

non-transmitted alleles based on 15 discovery GWA meta-analyses,

which omitted NTR and LUMC-Curium from the discovery meta-

analysis. The 15 traits comprised childhood aggression (Ip et al.,

2021), ADHD (Demontis et al., 2019), Major Depressive Disorder

(MDD; Wray et al., 2018), Autism Spectrum Disorder (ASD; Grove

et al., 2019), loneliness (http://www.nealelab.is/uk-biobank/), insom-

nia (Jansen et al., 2019), self-reported health (http://www.nealelab.is/

uk-biobank/), smoking initiation (ever/never smoked; M. Liu et al.,

2019), age of smoking initiation (Watanabe et al., 2019), number of

cigarettes per day (M. Liu et al., 2019), childhood IQ (Benyamin et al.,

2014), educational attainment (EA; Lee et al., 2018), age at first birth

(Barban et al., 2016), wellbeing spectrum (Baselmans et al., 2019), and

intelligence (Savage et al., 2018; also see Hagenbeek et al., 2023). We

calculated the PGSs in LDpred (Vilhjalmsson et al., 2015) which infers

the posterior mean effect size of each marker by using a prior on

effect sizes and LD information from an external reference panel. In

2500 second-degree unrelated individuals randomly selected from the

NTR (the reference panel) the LD weighted betas for all traits were

estimated (LDpred v0.9, fraction F of variants with nonzero effect

F = 0.50). For all phenotypes we obtained a transmitted and two non-

transmitted (one non-transmitted for the father and one for the

mother) PGSs by scoring the LD corrected betas using PLINKv1.9.

Thus, in total, 45 PGS were specified for each child. The effects of

sex, age at biological sample collection, genotype platform, and the

first 10 genetic PCs were regressed on the standardized (mean of

0 and standard deviation of 1) PGSs. The residuals of the above

regressions were included in the analyses.

2.4 | DNA methylation

Genome-wide DNA methylation for the NTR and LUMC-Curium

cohorts were measured, according to the manufacturer's specification,

on the Infinium MethylationEPIC BeadChip Kit (Illumina, San Diego,

CA, USA; Moran et al., 2016) by the Human Genotyping Facility

(HugeF) of ErasmusMC (the Netherlands; http://www.glimdna.org/),

using the ZymoResearch EZ DNA Methylation kit (Zymo Research

Corp, Irvine, CA, USA) for bisulfite treatment of 500 ng of genomic

DNA obtained from buccal swabs. QC and normalization of the meth-

ylation data were carried out with pipelines developed by the

Biobank-based Integrative Omics Study (BIOS) consortium as was pre-

viously described (Sinke et al., 2019). In short, samples were removed

if they failed to pass all five quality criteria of MethylAid (van Iterson

et al., 2014) if samples had incorrect relationships (omicsPrint; van

Iterson et al., 2018), or sex mismatches (DNAmArray; Min

et al., 2018). Methylation probes were set to missing in a sample if

they had an intensity value of zero, a bead count <3, or a detection p-

value >0.01. DNA methylation probes were excluded if they over-

lapped with a SNP or Insertion/Deletion (INDEL), mapped to multiple

locations in the genome, or had a success rate <0.95 across all sam-

ples. After QC, 787,711 out of 865,859 sites were retained for analy-

sis for 1424 samples, and cellular proportions were predicted in

epithelial tissues using the cell-type deconvolution algorithm Hierar-

chical Epigenetic Dissection of Intra-Sample-Heterogeneity

(HepiDISH) with the reduced partial correlation (RPC; Zheng

et al., 2018). Missing methylation β-values were imputed (missMDA;

Sinke et al., 2019), and two duplicate samples of NTR participants

were excluded. One sample was excluded from the LUMC-Curium

dataset because this participant and co-twin were also included in the

NTR. The effects of sex, age, percentages of epithelial and natural

killer cells, EPIC array row, and bisulfite sample plate were regressed

from the methylation β-values of the top 10% most variable methyla-

tion sites (78,772 in total) that survived QC (see Hagenbeek
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et al., 2023). The resulting residual methylation levels were included in

the analyses.

2.5 | Metabolomics

Urinary metabolomics data were generated by the Metabolomics

Facility of Leiden University (Leiden, the Netherlands) on three plat-

forms: (1) a liquid chromatography-mass spectrometry (LC–MS)

platform targeting amines; (2) an LC–MS platform targeting steroid

hormones; and (3) a gas chromatography–mass spectrometry (GC–

MS) platform targeting organic acids. Subjects were randomized

across batches, while retaining twin pairs on the same plate. Each

batch included a calibration line, QC samples (pooled aliquots from all

urine samples; every 10 samples), sample replicates, and blanks.

In-house developed algorithms were applied, using the pooled QC

samples, to compensate for shifts in the sensitivity of the mass spec-

trometer across batches. Metabolites were reported as “relative
response ratios” (target area/area of internal standard) after QC cor-

rection, and metabolites with a relative standard deviation of the QC

samples larger than 15% were excluded (six amines, three steroids,

and one organic acid). Metabolite measurements that fell below the

limit of detection/quantification were imputed with half of the value

of this limit, or when this limit was unknown with half of the lowest

observed level for this metabolite. The effects of sex and age were

then regressed from the sample-median normalized and inverse nor-

mal rank transformed urinary metabolites.

The metabolomics data (Hagenbeek et al., 2022) were assessed

by ultra-performance liquid chromatography-mass spectrometry

(UPLC-MS) for 66 amines and 13 steroids (pre-QC). To measure

amines, methanol was added to 5 μL of spiked (with internal stan-

dards) urine for protein precipitation and centrifugation of the super-

natant. Next, the sample was reconstituted in a borate buffer (pH 8.5)

with AQC reagent after sample evaporation (speedvac). Chromato-

graphic separation was achieved by an Agilent 1290 Infinity II LC sys-

tem (1290 Multicolumn Thermostat and 1290 High-Speed Pump;

Agilent Technologies, Waldbronn, Germany) with an Accq-Tag Ultra

column (Waters Chromatography B.V., Etten-Leur, The Netherlands).

The UPLC was coupled to electrospray ionization on an AB SCIEX

quadrupole-ion trap (QTRAP; AB Sciex, Massachusetts, USA). Ana-

lytes were monitored using multiple reaction monitoring by nominal

mass resolution and detected in positive ion mode.

To measure the steroid metabolites, internal standards were

added to 90 μL of urine, and samples were filtered with a 0.2 μm

PTFE membrane. Chromatographic separation was achieved by UPLC

(Agilent 1290, San Jose, CA, USA), using an Acquity UPLC CSH C18

column (Waters), with a flow of 0.4 mL/min over a 15 min gradient.

Samples were then transferred to a triple quadrupole mass spectrom-

eter (Agilent 6460, San Jose, CA, USA) with electrospray ionization.

By switching, positive and negative ion mode analytes were detected

with multiple reaction monitoring using nominal mass resolution.

GC–MS was applied to measure the organic acids. Liquid–liquid

extraction with ethyl acetate was applied twice to 50 μL of spiked

(with internal standards) urine to extract the organic acids and remove

urea. Online derivatization procedures were performed in two steps:

(1) oxidation with methoxamine hydrochloride (MeOX, 15 mg/mL in

pyridine); and (2) N-Methyl-N-(trimethylsilyl)-trifluoroacetamide

(MSTFA) silylation. Chromatographic separation was performed on a

25 m (HP-5MS UI) film thickness 30 � 0.25 m ID column, with helium

as a carrier gas (1.7 mL/min). The mass spectrometer (Agilent Technol-

ogies, Waldbronn, Germany), using a single quadrupole with electron

impact ionization (70 eV) was operated in SCAN mode (mass range

50–500), using 1 μL of the sample. In total, 21 organic acids were suc-

cessfully measured.

2.6 | Statistical analyses

To examine molecular variation associated with ADHD for PGSs,

DNA methylation, and metabolomics, and to build a predictive model

for ADHD, we applied an integrative multi-omics method called

sparse multi-block supervised analysis (Rohart et al., 2017; Singh

et al., 2019). All analyses were performed in R (version 4.1.1), mainly

in the mixOmics package (version 6.16.3; Rohart et al., 2017). The

analytical design consisted of three steps (Hagenbeek et al., 2023):

(1) three single-omics analyses; (2) two sets of pairwise cross-omics

analyses; and (3) a multi-omics analysis (Figure 1). The twin sample

was randomly split at twin pair level to create two subgroups with

70% of the data for model training (training data), and 30% of the data

for model testing (test data; Table 1). The performance of final single-

and multi-omics models was explored in a follow-up clinical sample.

All single- and multi-omics models employed five-fold cross-validation

(CV) with 50 repeats to determine the optimal number of components

for each model (the mixOmics perf function), for variable selection in

each model (the mixOmics perf function), and for assessment of final

model performance in the training data (the mixOmics perf function).

For these multi-omics analyses there is a strong requirement of no

missing data at any omics level. To keep the input data the same for

the single- and multi-omics models, we included participants with

complete omics data in all analyses.

2.6.1 | Step 1: single-omics analyses

Principal Component Analysis (PCA) was run separately for a total of

45 transmitted and maternal and paternal non-transmitted PGSs,

78,772 CpGs in the DNA methylation data, and all 90 metabolites

in the training data to obtain a first insight into the dimensionality in

each omics level (Figure S1). Next, Partial Least Square Discriminant

Analyses (PLS-DA) and sparse PLS-DA (sPLS-DA) were applied to the

training data to assess the ability of each of the three omics levels to

correctly classify ADHD status. CV determined the optimal number of

components to include in each PLS-DA model (Table S1; Figure S2),

determined the optimal number of components, and reduced the

number of variables in each omics layer that contribute to each com-

ponent in the sPLS-DA models (Table S1; Figure S3), and assessed the
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Study Phase Analyses

1. Single-omics

Mul�variate – model training:
• Principal Component Analysis (PCA)
• Par�al Least Squares Discriminant Analysis (PLS-DA)
• Sparse Par�al Least Squares Discriminant Analysis 

(sPLS-DA)

Mul�variate – model tes�ng & valida�on:
• Predict out-of-sample case-control status
• Receiver Opera�ng Characteris�c (ROC) analysis

Design

Training data: 
• 70% twin cohort (N = 596)
• Cases: 88 (14.8%)
• Controls: 508 (85.2%)

Test data: 
• 30% twin cohort (N = 258)
• Cases: 37 (14.3%)
• Controls: 221 (85.7%)

Follow-up data:
• Clinical cohort (N = 145)
• Cases: 74 (49%)
• Controls: 71 (51%)

2. Pairwise cross-omics

All omics traits:
• Par�al Least Squares (PLS) analysis
Selected omics traits:
• Par�al Least Squares (PLS) analysis
• Hierarchical clustering

Training data: 
• 70% twin cohort (N = 596)

Model training:
• Mul�-block Par�al Least Squares Discriminant 

Analysis (MB-PLS-DA)
• Mul�-block sparse Par�al Least Squares 

Discriminant Analysis (MB-sPLS-DA)
3. Mul�-omics

Model tes�ng & valida�on:
• Predict out-of-sample case-control status
• Receiver Opera�ng Characteris�c (ROC) analysis

Training data: 
• 70% twin cohort (N = 596)
• Cases: 88 (14.8%)
• Controls: 508 (85.2%)

Test data: 
• 30% twin cohort (N = 258)
• Cases: 37 (14.3%)
• Controls: 221 (85.7%)

Follow-up data:
• Clinical cohort (N = 145)
• Cases: 74 (49%)
• Controls: 71 (51%)

F IGURE 1 Workflow of the analyses performed in this study. We employed an analytical design consisting of three phases: (1) single-omics

analyses; (2) pairwise cross-omics analyses; and (3) multi-omics analyses. First, we built single-omics biomarker panels in the twin cohort, with
70% of the twin data for model training (training data), 30% of the twin data for model testing (test data), and the clinical cohort (follow-up data).
Second, the overall pairwise cross-omics correlations among the loading scores of the PLS components for all omics traits and the selected omics
variables in the single-omics models were examined in the training data. Third, using the same data split for model training, testing, and follow-up,
we built multi-omics biomarker panels and described the multi-omics connections of the selected omics traits. The details about the analyses are
provided in Section 2. PLS, Partial Least Squares.

TABLE 1 Demographics of the training, test, and follow-up data.

Training data (70% twin cohort) Test data (30% twin cohort) Follow-up data (clinical cohort)

Controls Cases Total Controls Cases Total Controls Cases Total

N (%) 508

(85.2%)

88

(14.8%)

596

(100%)

221

(85.7%)

37

(14.3%)

258

(100%)

71

(49.0%)

74

(51.0%)

145

(100%)

N (%) complete twin

pairs

227 24 251 98 10 108 – – –

Mean (SD) age 9.5 (1.9) 9.1 (1.6) 9.5 (1.9) 9.6 (2.0) 9.5 (1.9) 9.6 (1.9) 10.5 (1.7) 9.8 (1.7) 10.1 (1.7)

Range age 5.6–12.9 5.8–12.5 5.6–12.9 5.7–12.7 6.0–12.2 5.7–12.7 7.0–13.3 6.3–13.4 6.3–13.4

N (%) females 257

(50.6%)

37 (42%) 294

(50.7%)

113

(51.1%)

14

(37.8%)

127

(49.2%)

18

(25.4%)

19

(25.7%)

37

(25.5%)

N (%) MZ twins 436

(85.8%)

65

(73.9%)

501

(84.1%)

175

(79.2%)

30

(81.1%)

205

(79.5%)

– – –

Mean (SD) ADHD

scorea
1.4 (1.6) 7.1 (1.5) 2.3 (2.6) 1.7 (1.6) 7.2 (1.5) 2.5 (2.5) 5.3 (2.5) 11.9 (1.5) 8.7 (3.9)

Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; MZ, monozygotic.
aMeasured with the mother-rated Attention Deficit/Hyperactivity Problems DSM-oriented scale of the Achenbach System of Empirically Based

Assessment (ASEBA) Child Behavior Checklist (CBCL). The ASEBA CBCL Attention Deficit/Hyperactivity Problems DSM-oriented scale scores in the

clinical cohort include 90% mother report and 10% father report.
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performance of the final sPLS-DA model (Table S1; Figure S4). Three

types of distance measurements were assessed: (1) centroid distance,

(2) Mahalanobis distance, and (3) maximum distance. The distance that

showed the best predictive performance in the training data was

selected for the final models.

We evaluated the out-of-sample predictions in the test and

follow-up data (mixOmics predict function) based on the best-

performing model (Table S1). We applied three methods to evaluate

how well the final models classified case–control status. First, we

employed a balanced misclassification rate, the balanced error rate

(BER; false-negative + false-positive rate), that corrects for imbal-

ances in the number of cases and controls. Second, we calculated the

sensitivity, specificity, and accuracy of the single-omics models by

comparing the predicted cases and controls with the true cases and

controls. Third, we assessed the area under the curve (AUC) for each

component in both the test and follow-up data with receiver operat-

ing characteristic (ROC) analysis.

2.6.2 | Step 2: Pairwise cross-omics analyses

To investigate pairwise cross-omics connections (i.e., PGSs-DNA

methylation, PGSs-metabolomics, and DNA methylation-metabolo-

mics) we constructed PLS regression models in canonical mode in the

training data. For each combination of omics data, we constructed

PLS models including different numbers of components. Two compo-

nents were included for the PGS-DNA methylation model, two for the

PGS-metabolomics model, and five for the DNA methylation-

metabolomics model. This resulted in a total of two sets of PLS

models, each containing three models corresponding to the pairwise

combinations of omics data. The first set of models included all

45 PGSs, 78,772 CpGs, or 90 metabolites, allowing us to examine the

correlations of the loading scores among all omics traits. In the second

set of models, we focused on the 17 PGSs, 486 CpGs, and 90 metabo-

lites selected by the single-omics sPLS-DA models (Data S1), which

were found to be the most relevant for classifying ADHD cases and

controls. By performing hierarchical clustering using the Ward linkage

algorithm on Euclidean distances of the PLS variates, we identified

biologically meaningful clusters (‘dendextend’ R-package;

Galili, 2015). We specifically extracted the two largest clusters for

each of the omics levels considered in the PLS models.

2.6.3 | Step 3: Multi-omics analyses

The multi-omics analysis was conducted through multi-block sPLS-DA

(MB-sPLS-DA) in the training data including an empirical design

matrix, based on the correlations among the loading scores from the

pairwise cross-omics PLS models including all omics traits. The design

matrix comprised of correlations of 0.25 between the PGSs and DNA

methylation, 0.29 between the PGSs and the metabolites, and 0.23

between DNA methylation and the metabolites (based on pairwise

cross-omics analyses). CV determined the optimal number of

components to include in the MB-PLS-DA models, the number of

traits to include per component per omics layer, and the performance

of the final MB-sPLS-DA model (Table S2; Figures S5–S7). The accu-

racy of out-of-sample case–control status prediction was again evalu-

ated in the test and follow-up data, with final multi-omics models

evaluated by their BER and AUCs (ROC curves were calculated per

component for each omics layer), and the model sensitivity, specific-

ity, and accuracy were calculated from the confusion matrices.

2.7 | Biological characterization

We describe the correlations among the loading scores of the PLS

components of the PGSs, CpGs, and metabolites that were selected

by the single-omics sPLS-DA and the multi-omics MB-sPLS-DA

models to facilitate high correlation patterns suitable for biological

interpretation. We performed enrichment analysis for the CpGs

selected across our analyses for all phenotypes (618) in the EWAS

atlas on December 10, 2021 (Xiong et al., 2022). We performed

enrichment on (1) the CpGs that were selected by the single-omics

sPLS-DA model, (2) the CpGs in the clusters identified by the pairwise

cross-omics analyses, (3) the CpGs that were selected for the multi-

omics MB-sPLS-DA model, and (4) the CpGs that were included in the

high correlation patterns of the multi-omics MB-sPLS-DA. When

fewer than 20 CpGs were selected, the trait associations with the

CpGs were manually retrieved from the EWAS atlas. We focused

the enrichment analysis on the CpGs since there is no similar tool to

the EWAS atlas for the metabolites.

3 | RESULTS

3.1 | Single-omics models for ADHD

Based on the sPLS-DA analyses for PGSs, DNA methylation, or meta-

bolomics data we built single-omics prediction models for ADHD

case–control status. The single-omics models included 17 PGSs,

486 CpGs, and all 90 metabolites (Table S1; Data S1). The 17 selected

PGSs in the sPLS-DA model comprised the transmitted PGS for

ADHD, smoking initiation, MDD, EA, number of cigarettes per day,

and insomnia. The non-transmitted maternal PGSs were selected for

insomnia, self-reported health, childhood aggression, age of smoking

initiation, and childhood IQ. The non-transmitted paternal PGSs were

selected for ADHD, intelligence, ASD, EA, number of cigarettes per

day, and the age of smoking initiation (Data S1). Trait enrichment ana-

lyses for all 486 selected CpGs in the sPLS-DA model showed the

strongest enrichment for glucocorticoid exposure (i.e., based on an

EWAS of administration of corticosteroid medication and DNA meth-

ylation measured in buccal cells [Braun et al., 2019]; N Overlap Differ-

ently Methylated CpGs (DMC) = 13, OR = 7.66, p = 1.12 � 10�14),

and ancestry (DMC = 15, OR = 2.61, p = 5.73 � 10�6; Table S3).

Model performance was sub-optimal in the test and follow-up data

for all three omics levels (AUC range = [0.45, 0.60], Table S4).
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3.2 | PGS-DNA methylation analysis

An average correlation of r = 0.23 (q = 8.92 � 10�16) was found

between the PGSs and DNA-methylation in the loadings scores of the

pairwise PLS cross-omics model. For the pairwise model, we applied

hierarchical clustering which identified two clusters for the PGS and

DNA methylation data (Figure 2a; Data S2). Cluster 1 contains eight

of the PGSs (47.1%) selected by the sPLS-DA model for ADHD, and

comprised the transmitted PGSs for ADHD, insomnia, MDD, smoking

initiation, and the number of cigarettes per day, the non-transmitted

maternal PGSs for insomnia and childhood aggression, and the non-

transmitted paternal PGS for ADHD. The nine PGSs (52.9%) included

in cluster 2, comprised the transmitted PGS for EA, the non-

transmitted maternal PGSs for age at smoking initiation, childhood IQ,

and self-reported health, and the non-transmitted paternal PGSs for

age at smoking initiation, ASD, the number of cigarettes per day, and

intelligence. The DNA methylation cluster 1 contains 226 (46.5%) of

the CpGs selected by the sPLS-DA models for ADHD and showed the

strongest trait enrichments for glucocorticoid exposure (DMC = 13,

OR = 12.94, p = 6.64 � 10�31), and trihalomethanes (THM) exposure

(DMC = 2, OR = 33.89, p = 1.85 � 10�11; Table S5). The

260 (53.5%) CpGs included in cluster 2 showed the strongest trait

enrichment for ancestry (DMC = 13, OR = 4.32, p = 3.30 � 10�9),

and childhood stress (DMC = 3, OR = 20.69, p = 7.20 � 10�7). The

correlations of PGSs in clusters 1 and 2 with the CpGs ranged from

�0.15 to 0.13 and from �0.20 to 0.21, respectively, and the correla-

tions of the CpGs in clusters 1 and 2 with the PGSs ranged from

�0.20 to 0.21 and from �0.17 to 0.16, respectively (Figure 2a;

Data S2 and S3).

3.3 | PGSs-metabolomics analysis

Hierarchical cluster of the pairwise PGSs-metabolomics model, with

an average correlation between the loading scores of r = 0.26

(q = 1.02 � 10�19), identified two clusters of PGSs and two clusters

of metabolites (Figure 2b; Data S2). The PGS cluster 1 contains nine

of the PGSs (52.9%) selected by the sPLS-DA model for ADHD, com-

prising the transmitted PGS for ADHD, insomnia, and MDD, the non-

transmitted maternal PGSs for insomnia, childhood aggression, and

self-reported health, and the non-transmitted paternal PGSs for

ADHD, ASD, and intelligence. The eight PGSs (47.1%) included in

cluster 2 comprises the transmitted PGSs for the number of cigarettes

per day, EA, smoking initiation, the non-transmitted maternal PGSs

for the number of cigarettes per day, age at smoking initiation, and

childhood IQ, and the non-transmitted paternal PGSs for EA, and age

at smoking initiation. Metabolite cluster 1 contains 48 metabolites

(53.3%), all of which are amines (80% of all amines). The remaining

12 amines, as well as all steroids and organic acids, have been

included in metabolite cluster 2 (N = 42, 46.7%). Overall, we observed

correlations ranging from �0.17 to 0.25 for the PGSs in cluster 1 with

metabolites, and from �0.22 to 0.16 for the cluster 2 PGSs with

metabolites (Figure 2b; Data S2 and S4). For the metabolites in cluster

1 the correlation ranged between �0.22 and 0.16 with PGS, and for

cluster 2 between �0.17 and 0.25.

3.4 | DNA methylation-metabolomics analysis

The pairwise cross-omics DNA methylation-metabolomics model

showed an average correlation of 0.23 (q = 3.95 � 10�37) and hierar-

chical clustering identified two clusters of CpGs and of metabolites

(Figure 2c; Data S2). The DNA methylation cluster 1 contains

241 (49.6%) of the CpGs selected by the sPLS-DA models for ADHD,

and the strongest trait enrichments for these CpGs were observed for

glucocorticoid exposure (DMC = 13, OR = 12.08, p = 7.63 � 10�30),

and THM exposure (DMC = 2, OR = 31.79, p = 3.22 � 10�11;

Table S5). The 245 (50.4%) CpGs included in cluster 2 show the stron-

gest trait enrichment for ancestry (DMC = 13, OR = 4.60,

p = 9.96 � 10�10), childhood stress (OR = 21.97, p = 5.12 � 10�7),

and household socioeconomic status in childhood (DMC = 3,

OR = 18.34, p = 7.20 � 10�7). Metabolite cluster 1 contains

43 (47.8%) of the metabolites, including 42 amines and 1 organic acid,

while metabolite cluster 2 contains 47 metabolites (52.2%), including

18 amines, 19 organic acids, and all 10 steroids. The correlation of the

CpGs included in cluster 1 with metabolites range from �0.23 to 0.29

(Figure 2c; Data S2 and S5). The CpGs included in cluster 2 have

correlations ranging from �0.27 to 0.28 with metabolites. For the

metabolites in cluster 1, the correlations with CpGs ranged from

�0.26 to 0.25, and for cluster 2 from �0.27 to 0.29.

3.5 | Multi-omics model for ADHD

We built a multi-omics panel for ADHD based on a multi-block sPLS-

DA (MB-sPLS-DA) model including PGSs, DNA methylation, and

metabolomics data. The four-component model included in total

30 PGSs, 143 CpGs, and all 90 metabolites (Table S2; Data S6). The

number of components and number of variables per omics layer were

determined by the single-omics models. The included variables in the

multi-omics model were selected based on CV. The multi-omics model

comprised the transmitted PGS for ADHD, aggression, cigarettes per

day, insomnia, loneliness, childhood IQ, self-reported health, age at

first birth, intelligence, smoking initiation, EA, MDD, and wellbeing.

The non-transmitted maternal PGSs were selected for aggression, cig-

arettes per day, insomnia, loneliness, childhood IQ, self-reported

health, and age smoking initiation. The non-transmitted paternal PGSs

were selected for ADHD, aggression, cigarettes per day, insomnia,

loneliness, age at first birth, intelligence, smoking initiation, age smok-

ing initiation, and ASD. Trait enrichment analyses for all selected CpGs

in the MB-sPLS-DA model showed the strongest enrichment for child-

hood stress (DMC = 3, OR = 38.00, p = 2.25 � 10�8), and respira-

tory allergies (AR; DMC = 2, OR = 28.48, p = 1.58 � 10�5; Table S6).

The multi-omics prediction in the test data showed a better prediction

(0.42 ≤ BER ≤ 0.51; 0.43 ≤ AUC ≤ 0.62) as compared to single-omics

models, while prediction in the follow-up data was similar to those
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F IGURE 2 Clustered heatmaps of the correlations among the loading scores of the Partial Least Squares (PLS) components including only the
omics traits as selected by the single-omics sparse Partial Least Squares Discriminant Analyses (sPLS-DA). The hierarchical clustering was
generated using the Ward linkage algorithm on Euclidean distances of the PLS variates. Two clusters have been identified for each dendrogram
(cluster 1 = pink, cluster 2 = blue). Positive correlations among the omics traits have been depicted in red and negative correlation in blue. For
the polygenic scores (PGSs), the “_NTm” suffix denotes PGSs non-transmitted by mother, the “_NTf” suffix denotes the PGSs non-transmitted by
father, and childhood aggression is abbreviated as “aggression,” Attention-Deficit Hyperactivity Disorder as “ADHD,” Major Depressive Disorder
as “MDD,” Autism Spectrum Disorder as “Autism,” and Educational Attainment as “EA.” For the metabolites, the “amines.” prefix indicates these
metabolites were measured on the liquid chromatography-mass spectrometry (LC–MS) amines platform, the “steroids.” prefix indicates these
metabolites were measured on the LC–MS steroids platform, and the “OA.” prefix indicates these metabolites were measured on the gas
chromatography–mass spectrometry (GC–MS) organic acids platform. (a) Correlation among the 17 PGSs and 486 CpGs included in the two-
component PGS-DNA methylation PLS model, where the selected CpGs are represented in the rows and the selected PGSs in the columns. The
cluster assignments and the full correlation matrix are included in Data S2 and S3. (b) Correlations among the 17 PGSs and 90 metabolites
included in the two-component PGS-metabolomics PLS model, where the selected metabolomics traits are represented in the rows and the
selected PGSs in the columns. The cluster assignments and the full correlation matrix are included in Data S2 and Data S4, respectively.
(c) Correlation among the 486 CpGs and 90 metabolites included in the five-component DNA methylation-metabolomics PLS model, where the
selected metabolomics traits are represented in the rows and the selected CpGs in the columns. The cluster assignments and the full correlation
matrix are included in Data S2 and Data S5.
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observed for the single-omics models (0.49 ≤ BER ≤ 0.55;

0.50 ≤ AUC ≤ 0.53; Table S7; Table S4).

The average correlations among the loading scores of the PLS

components between each omics layer in the multi-omics model were

r = 0.17 (q = 1.41 � 10�16) for PGSs-DNA methylation, r = 0.14

(q = 1.24 � 10�11) for PGSs-metabolomics, and r = 0.20

(q = 1.1 � 10�21) for DNA methylation-metabolomics. We observed

high absolute correlations (r ≥ 0.60) between 4 selected PGSs,

19 CpGs, and 10 metabolites, which can be summarized in three sets

of correlational patterns (Figure 3; Data S7; Data S8). Correlation
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F IGURE 3 High cross-omics correlations among the loading scores of the PLS components of the multi-omics traits identified in the four-
component multi-block sparse Partial Least Squares Discriminant Analysis (MB-sPLS-DA) model. The outer ring depicts the polygenic scores
(PGSs), CpGs, and metabolites in yellow, pink, and green, respectively. For the PGSs, Educational Attainment is abbreviated as “EA,” and the
“_NTm” suffix denotes the PGSs non-transmitted by mother. The inner plot depicts the correlations among the omics traits. For the metabolites,
the “amines.” prefix indicates these metabolites were measured on the liquid chromatography-mass spectrometry (LC–MS) amines platform, and
the “OA.” prefix indicates these metabolites were measured on the gas chromatography–mass spectrometry (GC–MS) organic acids platform.
Here, only high absolute correlations (r ≥ 0.60) between traits of at least two omics levels are depicted, with blue lines reflecting negative
correlations and red lines positive correlations. Correlations are averaged across all components in the MB-sPLS-DA model. The full correlation
matrix is included in Data S7 and the correlational patterns are included in Data S8.
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pattern 1 comprises correlations of CpGs located in the STAP2 gene

with the transmitted ADHD PGS (r range: �0.62 to �0.61), the trans-

mitted self-reported health PGS (r range = [0.63, 0.66]), and 11 amino

acids (r range = [�0.71, �0.60]). Correlation pattern 2 comprises cor-

relations between eight CpGs and the non-transmitted paternal ciga-

rettes per day PGS (r range = [�0.70, �0.61]). Two of these CpGs

(cg15914316 and cg25352924) are located in the MAD1L1 gene

(chromosome 7). Correlation pattern 3 comprises correlations

between five CpGs and the transmitted childhood IQ PGS (r range =

[�0.60, 0.67]). Three of these five CpGs are located in genes coding

for transmembrane proteins (C7orf49, TMEM100, TMEM135, and

TMEM140). The other two CpGs (cg10864680 and cg06843189) are

located in TNFSF13B (chromosome 13) and NR3C2 (chromosome 4),

respectively.

4 | DISCUSSION

We present an integrative multi-omics analysis of childhood ADHD

based on genomics, epigenomics, and metabolomics data to identify

multi-omics biomarkers and to investigate the connections among the

different omics levels. The single-omics models identified 17 PGSs,

486 CpGs, and 90 metabolites as relevant variables, while the

multi-omics model selected 30 PGSs, 143 CpGs, and 90 metabolites.

Several of these selected variables showed support for known associ-

ations with ADHD. However, the out-of-sample predictions from both

the single- and multi-omics models were sub-optimal, with BER rang-

ing from 0.40 to 0.57 and 0.42 to 0.55, respectively. We also evalu-

ated the pairwise associations between variables and found that the

averaged correlations range from 0.23 to 0.29. In the multi-omics

model, the connections among the ADHD biomarkers highlighted sev-

eral genomic regions that may be involved in the disorder. Addition-

ally, our findings further supported previously identified markers such

as the gene MAD1L1, childhood stress, and glucocorticoid exposure.

The single-omics models selected 17 PGS based on 12 pheno-

types, while the multi-omics model selected 30 PGSs comprising all

15 phenotypes. Transmitted PGSs were selected for ADHD, insomnia,

MDD, EA, smoking initiation, and cigarettes per day. These traits are

genetically correlated with ADHD (Demontis et al., 2019, 2021). One

study that looked at the intergenerational transmission of EA and

ADHD found that transmitted PGSs influenced ADHD behavior at

school (de Zeeuw et al., 2020). For traits such as aggression, self-

reported health, age of smoking initiation, intelligence, childhood IQ,

and autism only non-transmitted PGSs were selected. This may repre-

sent an important observation: the genotype of the parents can help

predict the ADHD status of their offspring when we consider their

non-transmitted scores across a broad range of traits. We note that

the predictive accuracy of the model is currently low but may improve

when PGSs improve with increasing GWAS sample size.

The CpGs in the single-omics model were enriched for multiple

traits and disorders previously associated with ADHD, such as gluco-

corticoid exposure, Klinefelter syndrome, and childhood stress

(Friedrichs et al., 2012; Grimm et al., 2020; Harpin, 2005; Lo-Castro

et al., 2011; Xiong et al., 2022). In the single- and multi-omics models,

we observed enrichment for traits involved in diet exposure, such as

glucocorticoid and vitamin B12 levels. We also found associations for

THM exposure, a class of chemical compounds that can be present

when water is disinfected with chlorine (Hood, 2005). Still, we note

that the number of overlapping DMCs with all known DMCs in the

EWAS atlas was usually relatively small. The multi-omics model

selected two novel CpGs located in the gene MAD1L1 previously

linked to ADHD in blood and saliva tissue (Goodman et al., 2020;

Mooney et al., 2020; Rovira, Sanchez-Mora, et al., 2020). Another

finding for rs11982272 located in MAD1L1 has previously been

reported as a shared risk locus between ADHD and disruptive behav-

ior disorders (DBD) but was only moderately associated with ADHD

in a large GWAS (Demontis et al., 2021). MAD1L1 was also identified

in studies focusing on schizophrenia and bipolar disorder, suggesting

that MAD1L1 is a risk gene for several psychiatric disorders (Ikeda

et al., 2018; Ripke et al., 2014).

The CpGs in the multi-omics models were connected with the

non-transmitted paternal cigarettes per day PGS in our study.

The connection suggests that the association between ADHD and the

methylation around MAD1L1 might be caused by the effects of pater-

nal smoking or that paternal smoking is a confounder between ADHD

and the methylation around MAD1L1 (e.g., parental smoking leads to

both ADHD and DNA methylation, but there is no connection

between the DNA methylation and ADHD). Still, to our knowledge

this is the first observation of paternal smoking effects on ADHD and

paternal smoking should merit investigation in future studies. An ear-

lier multi-omics study identified several genes whose expression or

DNA methylation level in the (fetal) brain mediates the effects of

genetic variants on ADHD, including a gene for a transmembrane pro-

tein TMEM125 (Hammerschlag et al., 2020). We observed four CpGs

located in three genes of this same gene family (TMEM100,

TMEM135, and TMEM140) had a connection with the transmitted

childhood IQ PGS. The findings of MAD1L1 and the TMEM family sup-

port the results of the previous studies and imply an effect of these

genomics regions on ADHD.

Both the single- and multi-omics models selected all 90 metabo-

lites, which is not unexpected since the data were generated on tar-

geted platforms, covering metabolites previously associated with

aggression (Hagenbeek et al., 2016), and aggression is the trait which

is one of the strongest associated variables with ADHD in childhood

(Bartels et al., 2018). Each metabolite by itself has a small effect and

single and multi-omics models are not equipped to identify these small

effects, but a combination of all metabolites discriminates better

between ADHD cases and controls.

We observed three connection patterns in our multi-omics analy-

sis where the omics variables showed correlation coefficients of

r ≥ 0.60. As a result, we can make several observations about these

patterns. First, only amines (mostly essential amino acids) showed high

negative correlations with CpGs (r range = [�0.71, �0.60]) and we

observed no high correlations between the organic acids and the ste-

roids, and the other omics levels. Recent studies have linked several

of these essential amino acids, such as glycine, serine, leucine, and
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valine, to childhood ADHD (Anand et al., 2021; Yu et al., 2021). Essen-

tial amino acids, are amino acids that that come from dietary intake.

This suggests a relationship between diet, DNA methylation, and

metabolites involved in ADHD and that DNA methylation mediates

the effect of diet on metabolite levels. (Dekkers et al., 2016). A previ-

ous study suggested IGF2 methylation mediates the effect of prenatal

diet on ADHD symptoms in childhood (Rijlaarsdam et al., 2017). Our

observation concerning the amino acids supports hypotheses that

essential amino acids affect childhood ADHD, and that diet might help

to improve the symptoms of ADHD (Anand et al., 2021; Hamza

et al., 2019; Yu et al., 2021). We would like to point out that, even

though we highlight these associations, we cannot make claims about

cause and effect. Our study identified associations between ADHD

and amino acids, which indicate that it is worthwhile to further exam-

ine the possibility of causal relations among diet, DNA methylation,

and amino acids.

Another multi-omics connection pattern comprised the transmit-

ted PGSs for ADHD and self-reported health with 6 CpGs and

10 amino acids. The six CpGs are located in the STAP2 gene (Signal

Transducing Adaptor Family Member 2) on chromosome 19. No SNPs

or CpGs in or around this gene were associated with ADHD in GWA

or EWA studies, suggesting STAP2 is a novel genomic region that

could be involved in ADHD (Demontis et al., 2019, 2021; Goodman

et al., 2020; Mooney et al., 2020; Neumann et al., 2020; Rovira,

Demontis, et al., 2020; Rovira, Sanchez-Mora, et al., 2020;

Walton, 2019; Walton et al., 2017). The six CpGs and the STAP2 gene

have been associated with other traits such as smoking behavior,

aging, and type 2 diabetes in blood (Xiong et al., 2022; Data S8).

Although we observed no connection between these CpGs and the

smoking-related PGSs, it should be taken into account that smoking

PGSs are an imperfect measure of overall smoking exposure.

A challenge in machine learning via CVs is the risk of leaky pre-

processing: data processing that inadvertently causes information to

leak from the training set to the test set (Whalen et al., 2021). We

preselected the top 10% most variable methylation sites before the

split in training and test set to limit the computational burden of our

method. We selected these methylation sites solely based on the cri-

terion of variability, regardless of any association of these probes with

a phenotype. Since we randomly selected test and training set sam-

ples, we may assume the same distributions in both sub-samples.

A source of confounding in the ACTION cohort are the effects of

puberty. We do not, however, expect puberty to affect the results in

any major way, given the ages of the subjects and the fact that only

three females had had their first period.

A major limitation of most multi-block multi-omics methods,

including MB-sPLS-DA, is that these methods do not allow for any

missing values in the training data on any of the included omics levels.

For our study, this meant we had to exclude 367 participants (almost

one third of the original sample) because of missing or poor-quality

data in at least one of the omics levels. Allowing missing data is an

important improvement that multi-omics methods need to address in

the future.

In contrast to previous multi-omics studies for ADHD, which

relied on sequential integration of summary statistics (Cabana-

Domínguez et al., 2022; Cheng et al., 2020; Hammerschlag et al.,

2020), our multi-block integration approach allowed simultaneous

modeling of multiple omics levels and gain insights into the relation-

ships among the different omics levels (Wörheide et al., 2021). Unsu-

pervised multi-omics methods, such as PLS structural equation

modeling (PLS-SEM; Csala et al., 2020) or Multi-Omics Factor Analysis

(MOFA, Argelaguet et al., 2018), constitute powerful alternatives to

explore the relationships among omics levels, but are not appropriate

for classification of groups, as was one of the aims of this study.

Another asset of our study is that by employing an integrative multi-

omics design with harmonized sample collection and measurement

protocols in the twin and the clinical groups, we reduced the detri-

mental heterogeneity due to, for example, differences in sample size

for different omics layers, or study protocols as far as possible

(Wörheide et al., 2021). Problems with design and technical heteroge-

neity are not uncommon in sequential integration methods. In the cur-

rent study, such undesirable sources of technical heterogeneity were

minimized by our choice of analytical design and by streamlining the

collection protocol for biological samples across twins from the NTR

and participants from LUMC-Curium. We collected the biological sam-

ples in both cohorts in parallel and generated the omics data for both

cohorts together. Other than the difference in cohort type, population

versus clinical, the main difference between these cohorts is the

absence of genotyping information for the parents of the children

included in LUMC-Curium and non-transmitted PGSs could not be

assessed in the clinical cohort.

5 | CONCLUSION

Our study underscores the complexity of ADHD, as it remains a chal-

lenge to detect multi-omics biomarkers and indicates that clinically

useful prediction models based on omics data are not viable yet. We

showed how different omics levels involved in ADHD are connected

to each other, leading to new hypotheses about cross-omics interac-

tions. The connection patterns reproduced previously identified asso-

ciations with ADHD, including the MAD1L1 gene and glucocorticoid

exposure, while also highlighting new interesting genomic regions

such as the STAP2 gene. Multi-omics methods are expected to

become increasingly important in the translation from association

studies to clinical applications and it is of value to continue to improve

them. The integrated approach we applied in this study requires raw

data analysis and demands that all participants are measured across all

omics levels. Solving the challenge of missing data in multi-omics

approaches will lead to increased sample sizes and increased power in

future projects. Multi-omics might be especially promising for complex

traits such as ADHD, where clinicians have been struggling to find fit-

ting treatments for patients and struggle to predict the persistency of

ADHD (Caye et al., 2019). By improving methods and enhancing

models, as well as by including more omics levels such as transcrip-

tomics, proteomics, and exposome (Cheng et al., 2020; Liu

et al., 2021), the identification of multi-omics biomarkers will eventu-

ally aid in diagnosing and improving personalized treatment plans for

persons diagnosed with ADHD.
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Carracedo, Á., Czamara, D., Evandt, J., Felix, J. F., Fuemmeler, B. F.,

Gutzkow, K. B., Hoyo, C., Julvez, J., … Tiemeier, H. (2020). Association

between DNA methylation and ADHD symptoms from birth to school

age: A prospective meta-analysis. Translational Psychiatry, 10(1), 1–11.
https://doi.org/10.1038/s41398-020-01058-z

Price, A., Patterson, N., Plenge, R., Weinblatt, M. E., Shadick, N. A., &

Reich, D. (2006). Principal components analysis corrects for stratifica-

tion in genome-wide association studies. Nature Genetics, 38, 904–
909. https://doi.org/10.1038/ng1847

Purcell, S., Neale, B., Todd‐Brown, K., Thomas, L., Ferreira, M. A., Bender,

D., Maller, J., Sklar, P., de Bakker, P. I., Daly, M. J., & Sham, P. C.

(2007). PLINK: a tool set for whole‐genome association and popula-

tion‐based linkage analyses. American Journal of Human Genetics, 81

(3), 559–575. https://doi.org/10.1086/519795
Rajasundaram, D., & Selbig, J. (2016). More effort – more results: Recent

advances in integrative “omics” data analysis. Current Opinion in Plant

Biology, 30, 57–61. https://doi.org/10.1016/j.pbi.2015.12.010
Reale, L., Bartoli, B., Cartabia, M., Zanetti, M., Costantino, M. A.,

Canevini, M. P., Termine, C., Bonati, M., & Lombardy, A. G. (2017).

Comorbidity prevalence and treatment outcome in children and ado-

lescents with ADHD. European Child & Adolescent Psychiatry, 26(12),

1443–1457. https://doi.org/10.1007/s00787-017-1005-z
Rijlaarsdam, J., Cecil, C. A. M., Walton, E., Mesirow, M. S. C., Relton, C. L.,

Gaunt, T. R., McArdle, W., & Barker, E. D. (2017). Prenatal unhealthy

diet, insulin-like growth factor 2 gene (IGF2) methylation, and atten-

tion deficit hyperactivity disorder symptoms in youth with early-onset

conduct problems. Journal of Child Psychology and Psychiatry, and Allied

Disciplines, 58(1), 19–27. https://doi.org/10.1111/JCPP.12589
Ripke, S., Neale, B. M., Corvin, A., Walters, J. T. R., Farh, K. H.,

Holmans, P. A., Lee, P., Bulik-Sullivan, B., Collier, D. A., Huang, H.,

Pers, T. H., Agartz, I., Agerbo, E., Albus, M., Alexander, M., Amin, F.,

Bacanu, S. A., Begemann, M., Belliveau, R. A., … O'Donovan, M. C.

(2014). Biological insights from 108 schizophrenia-associated genetic

loci. Nature, 511(7510), 421–427. https://doi.org/10.1038/

nature13595

Roehr, B. (2013). American Psychiatric Association explains DSM-5. BMJ,

346, f3591. https://doi.org/10.1136/BMJ.F3591

Rohart, F., Gautier, B., Singh, A., & le Cao, K. A. (2017). mixOmics: An R

package for 'omics feature selection and multiple data integration.

PLoS Computational Biology, 13(11), e1005752. https://doi.org/10.

1371/journal.pcbi.1005752

Rovira, P., Demontis, D., Sanchez-Mora, C., Zayats, T., Klein, M.,

Mota, N. R., Weber, H., Garcia-Martinez, I., Pagerols, M., Vilar-Ribo, L.,

Arribas, L., Richarte, V., Corrales, M., Fadeuilhe, C., Bosch, R.,

Martin, G. E., Almos, P., Doyle, A. E., Grevet, E. H., … Ribases, M.

16 of 17 HUBERS ET AL.

 1552485x, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ajm

g.b.32955 by C
ochrane N

etherlands, W
iley O

nline L
ibrary on [16/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1038/s41588-018-0147-3
https://doi.org/10.1038/s41588-018-0147-3
https://doi.org/10.1097/00004583-199706000-00009
https://doi.org/10.1097/00004583-199706000-00009
https://doi.org/10.1017/thg.2019.93
https://doi.org/10.1017/thg.2019.93
https://doi.org/10.1016/j.biopsych.2021.06.022
https://doi.org/10.1016/j.biopsych.2021.06.022
https://doi.org/10.1038/s41588-018-0307-5
https://doi.org/10.1016/j.tibs.2017.01.004
https://doi.org/10.1016/j.tibs.2017.01.004
https://doi.org/10.1016/j.braindev.2010.05.011
https://doi.org/10.1016/j.braindev.2010.05.011
https://doi.org/10.1038/ng.3571
https://doi.org/10.3389/fnhum.2019.00042
https://doi.org/10.1037/a0017511
https://doi.org/10.3389/FGENE.2020.00016/BIBTEX
https://doi.org/10.3389/FGENE.2020.00016/BIBTEX
https://doi.org/10.1016/J.JAAC.2016.05.025
https://doi.org/10.1093/bioinformatics/bty476
https://doi.org/10.1093/bioinformatics/bty476
https://doi.org/10.1038/s41588-021-00923-x
https://doi.org/10.1038/s41398-020-0710-4
https://doi.org/10.1038/s41398-020-0710-4
https://doi.org/10.1038/npp.2012.112
https://doi.org/10.1038/npp.2012.112
https://doi.org/10.2217/epi.15.114
https://doi.org/10.2217/epi.15.114
https://doi.org/10.1038/s41398-020-01058-z
https://doi.org/10.1038/ng1847
https://doi.org/10.1086/519795
https://doi.org/10.1016/j.pbi.2015.12.010
https://doi.org/10.1007/s00787-017-1005-z
https://doi.org/10.1111/JCPP.12589
https://doi.org/10.1038/nature13595
https://doi.org/10.1038/nature13595
https://doi.org/10.1136/BMJ.F3591
https://doi.org/10.1371/journal.pcbi.1005752
https://doi.org/10.1371/journal.pcbi.1005752


(2020). Shared genetic background between children and adults with

attention deficit/hyperactivity disorder. Neuropsychopharmacology,

45(10), 1617–1626. https://doi.org/10.1038/s41386-020-0664-5
Rovira, P., Sanchez-Mora, C., Pagerols, M., Richarte, V., Corrales, M.,

Fadeuilhe, C., Vilar-Ribo, L., Arribas, L., Shireby, G., Hannon, E., Mill, J.,

Casas, M., Ramos-Quiroga, J. A., Soler Artigas, M., & Ribases, M.

(2020). Epigenome-wide association study of attention-

deficit/hyperactivity disorder in adults. Translational Psychiatry, 10(1),

199. https://doi.org/10.1038/s41398-020-0860-4

Savage, J. E., Jansen, P. R., Stringer, S., Watanabe, K., Bryois, J., de Leeuw,

C. A., Nagel, M., Awasthi, S., Barr, P. B., Coleman, J. R. I., Grasby, K. L.,

Hammerschlag, A. R., Kaminski, J. A., Karlsson, R., Krapohl, E., Lam, M.,

Nygaard, M., Reynolds, C. A., Trampush, J. W., … Posthuma, D. (2018).

Genome‐wide association meta‐analysis in 269, 867 individuals iden-

tifies new genetic and functional links to intelligence. Nature Genetics,

50(7), 912–919. https://doi.org/10.1038/s41588-018-0152-6
Singh, A., Shannon, C. P., Gautier, B., Rohart, F., Vacher, M., Tebbutt, S. J., &

le Cao, K. A. (2019). DIABLO: An integrative approach for identifying

key molecular drivers from multi-omics assays. Bioinformatics, 35(17),

3055–3062. https://doi.org/10.1093/bioinformatics/bty1054

Sinke, L., van Iterson, M., Cats, D., Slieker, R., & Heijmans, B. (2019). DNA-

mArray: Streamlined workflow for the quality control, normalization, and

analysis of Illumina methylation array data. Zenodo. https://doi.org/10.

5281/ZENODO.3355292

van Beijsterveldt, C. E., Groen-Blokhuis, M., Hottenga, J. J., Frani�c, S., Hud-

ziak, J. J., Lamb, D., Huppertz, C., de Zeeuw, E., Nivard, M., Schutte, N.,

Swagerman, S., Glasner, T., van Fulpen, M., Brouwer, C., Stroet, T.,

Nowotny, D., Ehli, E. A., Davies, G. E., Scheet, P., Orlebeke, J. F., …
Boomsma, D. I. (2013). The Young Netherlands Twin Register (YNTR):

longitudinal twin and family studies in over 70, 000 children. Twin

Research and Human Genetics, 16(1), 252–267. https://doi.org/10.

1017/thg.2012.118

van Dongen, J., Nivard, M. G., Willemsen, G., Hottenga, J. J., Helmer, Q.,

Dolan, C. V., Ehli, E. A., Davies, G. E., van Iterson, M., Breeze, C. E.,

Beck, S., BIOS Consortium, Suchiman, H. E., Jansen, R., van Meurs, J.

B., Heijmans, B. T., Slagboom, P. E., & Boomsma, D. I. (2016). Genetic

and environmental influences interact with age and sex in shaping the

human methylome. Nature Communications, 7, 11115. https://doi.org/

10.1038/ncomms11115

van Dongen, J., Zilhao, N. R., Sugden, K., Consortium, B., Hannon, E. J.,

Mill, J., Caspi, A., Agnew-Blais, J., Arseneault, L., Corcoran, D. L.,

Moffitt, T. E., Poulton, R., Franke, B., & Boomsma, D. I. (2019). Epigen-

ome-wide association study of attention-deficit/hyperactivity disorder

symptoms in adults. Biological Psychiatry, 86(8), 599–607. https://doi.
org/10.1016/j.biopsych.2019.02.016

van Iterson, M., Cats, D., Hop, P., Consortium, B., & Heijmans, B. T. (2018).

omicsPrint: Detection of data linkage errors in multiple omics studies.

Bioinformatics, 34(12), 2142–2143. https://doi.org/10.1093/

bioinformatics/bty062

Van Iterson, M., Tobi, E. W., Slieker, R. C., den Hollander, W., Luijk, R.,

Slagboom, P. E., & Heijmans, B. T. (2014). Methyl Aid: visual and inter-

active quality control of large Illumina 450k datasets. Bioinformatics

(Oxford, England), 30(23), 3435–3437. https://doi.org/10.1093/

bioinformatics/btu566

Vilhjálmsson, B. J., Yang, J., Finucane, H. K., Gusev, A., Lindström, S., Ripke,

S., Genovese, G., Loh, P. R., Bhatia, G., Do, R., Hayeck, T., Won, H. H.,

Schizophrenia Working Group of the Psychiatric Genomics Consor-

tium, Discovery, Biology, Risk of Inherited Variants in Breast Cancer

(DRIVE) study, Kathiresan, S., Pato, M., Pato, C., Tamimi, R., Stahl, E., …
Price, A. L. (2015). Modeling linkage disequilibrium increases accuracy

of polygenic risk scores. American Journal of Human Genetics, 97(4),

576–592. https://doi.org/10.1016/j.ajhg.2015.09.00
Walton, E. (2019). Epigenome-wide associations with attention-

deficit/hyperactivity disorder in adults: The need for a longitudinal life

course approach in epigenetic psychiatry. Biological Psychiatry, 86(8),

570–572. https://doi.org/10.1016/j.biopsych.2019.07.021

Walton, E., Pingault, J. B., Cecil, C. A., Gaunt, T. R., Relton, C. L., Mill, J., &

Barker, E. D. (2017). Epigenetic profiling of ADHD symptoms trajecto-

ries: A prospective, methylome-wide study. Molecular Psychiatry, 22(2),

250–256. https://doi.org/10.1038/mp.2016.85

Wang, L. J., Chou, W. J., Tsai, C. S., Lee, M. J., Lee, S. Y., Hsu, C. W.,

Hsueh, P. C., & Wu, C. C. (2021). Novel plasma metabolite markers of

attention-deficit/hyperactivity disorder identified using high-

performance chemical isotope labelling-based liquid chromatography-

mass spectrometry. The World Journal of Biological Psychiatry, 22, 139–
148. https://doi.org/10.1080/15622975.2020.1762930

Watanabe, K., Stringer, S., Frei, O., Umićević Mirkov, M., de Leeuw, C.,

Polderman, T. J. C., van der Sluis, S., Andreassen, O. A., Neale, B. M., &

Posthuma, D. (2019). A global overview of pleiotropy and genetic

architecture in complex traits. Nature Genetics, 51(9), 1339–1348.
https://doi.org/10.1038/s41588-019-0481-0

Whalen, S., Schreiber, J., Noble, W. S., & Pollard, K. S. (2021). Navigating the

pitfalls of applying machine learning in genomics. Nature Reviews Genetics,

23(3), 169–181. https://doi.org/10.1038/s41576-021-00434-9
Wörheide, M. A., Krumsiek, J., Kastenmüller, G., & Arnold, M. (2021).

Multi-omics integration in biomedical research—A metabolomics-

centric review. Analytica Chimica Acta, 1141, 144–162. https://doi.
org/10.1016/J.ACA.2020.10.038

Wray, N. R., Ripke, S., Mattheisen, M., Trzaskowski, M., Byrne, E. M.,

Abdellaoui, A., Adams, M. J., Agerbo, E., Air, T. M., Andlauer, T. M. F.,

Bacanu, S. A., Bækvad-Hansen, M., Beekman, A. F. T., Bigdeli, T. B.,

Binder, E. B., Blackwood, D. R. H., Bryois, J., Buttenschøn, H. N.,

Bybjerg-Grauholm, J., Cai, N., … Major Depressive Disorder Working

Group of the Psychiatric Genomics Consortium. (2018). Genome‐wide

association analyses identify 44 risk variants and refine the genetic

architecture of major depression. Nature Genetics, 50(5), 668–681.
https://doi.org/10.1038/s41588-018-0090-3

Xiong, Z., Yang, F., Li, M., Ma, Y., Zhao, W., Wang, G., Li, Z., Zheng, X.,

Zou, D., Zong, W., Kang, H., Jia, Y., Li, R., Zhang, Z., & Bao, Y. (2022).

EWAS open platform: Integrated data, knowledge and toolkit for

epigenome-wide association study. Nucleic Acids Research, 50(D1),

D1004–D1009. https://doi.org/10.1093/NAR/GKAB972

Yu, M. C., Wang, T. M., Chiou, Y. H., Yu, M. K., Lin, C. F., & Chiu, C. Y.

(2021). Urine metabolic phenotyping in children with nocturnal enure-

sis and comorbid neurobehavioral disorders. Scientific Reports, 11(1),

16592. https://doi.org/10.1038/s41598-021-96104-1

Zheng, S. C., Webster, A. P., Dong, D., Feber, A., Graham, D. G.,

Sullivan, R., Jevons, S., Lovat, L. B., Beck, S., Widschwendter, M., &

Teschendorff, A. E. (2018). A novel cell-type deconvolution algorithm

reveals substantial contamination by immune cells in saliva, buccal and

cervix. Epigenomics, 10(7), 925–940. https://doi.org/10.2217/EPI-

2018-0037/ASSET/IMAGES/LARGE/FIGURE6.JPEG

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Hubers, N., Hagenbeek, F. A., Pool, R.,

Déjean, S., Harms, A. C., Roetman, P. J., van Beijsterveldt,

C. E. M., Fanos, V., Ehli, E. A., Vermeiren, R. R. J. M., Bartels,

M., Hottenga, J. J., Hankemeier, T., van Dongen, J., &

Boomsma, D. I. (2024). Integrative multi-omics analysis of

genomic, epigenomic, and metabolomics data leads to new

insights for Attention-Deficit/Hyperactivity Disorder.

American Journal of Medical Genetics Part B: Neuropsychiatric

Genetics, 195B:e32955. https://doi.org/10.1002/ajmg.b.

32955

HUBERS ET AL. 17 of 17

 1552485x, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ajm

g.b.32955 by C
ochrane N

etherlands, W
iley O

nline L
ibrary on [16/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1038/s41386-020-0664-5
https://doi.org/10.1038/s41398-020-0860-4
https://doi.org/10.1038/s41588-018-0152-6
https://doi.org/10.1093/bioinformatics/bty1054
https://doi.org/10.5281/ZENODO.3355292
https://doi.org/10.5281/ZENODO.3355292
https://doi.org/10.1017/thg.2012.118
https://doi.org/10.1017/thg.2012.118
https://doi.org/10.1038/ncomms11115
https://doi.org/10.1038/ncomms11115
https://doi.org/10.1016/j.biopsych.2019.02.016
https://doi.org/10.1016/j.biopsych.2019.02.016
https://doi.org/10.1093/bioinformatics/bty062
https://doi.org/10.1093/bioinformatics/bty062
https://doi.org/10.1093/bioinformatics/btu566
https://doi.org/10.1093/bioinformatics/btu566
https://doi.org/10.1016/j.ajhg.2015.09.00
https://doi.org/10.1016/j.biopsych.2019.07.021
https://doi.org/10.1038/mp.2016.85
https://doi.org/10.1080/15622975.2020.1762930
https://doi.org/10.1038/s41588-019-0481-0
https://doi.org/10.1038/s41576-021-00434-9
https://doi.org/10.1016/J.ACA.2020.10.038
https://doi.org/10.1016/J.ACA.2020.10.038
https://doi.org/10.1038/s41588-018-0090-3
https://doi.org/10.1093/NAR/GKAB972
https://doi.org/10.1038/s41598-021-96104-1
https://doi.org/10.2217/EPI-2018-0037/ASSET/IMAGES/LARGE/FIGURE6.JPEG
https://doi.org/10.2217/EPI-2018-0037/ASSET/IMAGES/LARGE/FIGURE6.JPEG
https://doi.org/10.1002/ajmg.b.32955
https://doi.org/10.1002/ajmg.b.32955

	Integrative multi-omics analysis of genomic, epigenomic, and metabolomics data leads to new insights for Attention-Deficit/...
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Study population and procedures
	2.2  Genotyping and polygenic scores
	2.2.1  Genotyping and imputation
	2.2.2  Computation of principal components

	2.3  Transmitted and non-transmitted alleles and calculation of polygenic scores
	2.4  DNA methylation
	2.5  Metabolomics
	2.6  Statistical analyses
	2.6.1  Step 1: single-omics analyses
	2.6.2  Step 2: Pairwise cross-omics analyses
	2.6.3  Step 3: Multi-omics analyses

	2.7  Biological characterization

	3  RESULTS
	3.1  Single-omics models for ADHD
	3.2  PGS-DNA methylation analysis
	3.3  PGSs-metabolomics analysis
	3.4  DNA methylation-metabolomics analysis
	3.5  Multi-omics model for ADHD

	4  DISCUSSION
	5  CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


